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Abstract

Radiologists often examine X-rays of cervical, thoracic and lumbar vertebrae for determining the presence of osteoarthritis and

osteoporosis. For individual vertebra assessment, the boundary increasingly digresses from the general rectangular shape as the vertebra

becomes less normal in appearance. For an abnormal vertebra, bony growths (‘osteophytes’) may appear at the vertebral corners, resulting in

a change in the vertebra’s shape. Image processing techniques are presented for computing size-invariant, convex hull-based features to

highlight anterior osteophytes. Feature evaluation of 714 lumbar spine vertebrae using a multi-layer perceptron yielded normal and abnormal

average correct discrimination of 90.5 and 86.6%, respectively.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Osteoarthritis, or degenerative joint disease, is charac-

terized by the deterioration of joints in the body due to age,

injury or disease. It affects more than 16 million Americans,

including virtually everyone above the age of 75 [1].

Osteoporosis is a disease that is characterized by low bone

mass and structural deterioration of bone tissue, which

may result in fragile bones and an increased susceptibility

to hip, spine and wrist fractures [2]. From this disease

there are over 700,000 vertebral fractures in the US

annually [2]. The Lister Hill National Center for

Biomedical Communications, an R&D division of the

National Library of Medicine (NLM) has built a Web-based

Medical Information Retrieval System (WebMIRS) to

permit Internet access to databases of X-ray images and

associated text data from the National Health and Nutrition

Examination Surveys (NHANES) [3]. Part of the initiative to

develop WebMIRS is to determine the feasibility of

computer-assisted techniques for the analysis of lumbar

spine X-ray images. The NHANES X-rays were originally

collected for the study of osteoarthritis in the US population;

although this paper is concerned with detection of some

image features related to that disease, the X-rays are a

potential resource for the study of osteoporosis and vertebral

fracture through the application of convex hull techniques to

measure vertebral deviations.

Radiographs of the spine provide a practical approach

for detecting and assessing vertebral abnormalities that

may be related to osteoarthritis or osteoporosis. Fig. 1

presents a lumbar spine X-ray image example. The boxed

region highlights the lumbar spine vertebrae. The presence of

bony growths (‘osteophytes’) on vertebra corners, disc space

narrowing, and subluxation are all features commonly

evaluated visually from radiographs that are important to

the osteoarthritis research community. Other techniques such

as quantitative computed tomography (QCT) [4], dual photon

absorptiometry (DPA) [5] and dual energy radiography [6]

facilitate accurate assessment of bone mineral content and

spine density.

Vertebral morphometry is a commonly used technique to

evaluate osteoporosis. In particular, measuring morpho-

metric vertebral deformity is often used in clinical trials for

assisting in the diagnosis and follow-up of fractures.

Measurement techniques include conventional rulers and
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calipers [7 – 11] and digitizing tablets [12 – 15].

Morphometric analysis has encompassed radiographic

diagnosis of vertebral fractures based on subjective visual

assessment and arbitrarily assessed reductions in vertebral

heights [16,17]. Prior studies have utilized vertebral

dimensions to establish normal ranges using anterior and

posterior vertebral height, percent reduction of anterior

compared to posterior height of the same vertebra, the

difference in vertebral height of adjoining vertebrae,

vertebral width, wedge angle and vertebral angle [7].

Other techniques have been explored assessing the severity

of vertebral fractures [7,18,19].

This research focuses on vertebral distortion along the

anterior boundary as an indicator of osteophytes. Fig. 2

presents three examples of anterior osteophytes in lumbar

vertebrae with osteophytes in the upper left-hand corner (a),

osteophytes in the lower left-hand corner (b), and

osteophytes in both left-hand corners (c). Fig. 3 shows a

normal vertebra (left-hand side is the anterior side) for

comparison purposes. The presence of osteophytes is

significant because it may be related to degeneration in

the attachment of the outer annular fibers of the disc to the

vertebral endplate. This degeneration may allow the

vertebra to slip to the anterior or to both the anterior and

the side [20]. Vertebra distortion based on anterior

osteophytes results in a deviation from the characteristic

rectangular vertebral shape, which tends to be convex.

In prior research, image processing techniques were

investigated to compute features along the anterior boundary

of cervical spine vertebrae for differentiating normal

vertebrae from vertebrae with abnormal osteophytes [21].

The features examined were radius-of-curvature-and

grayscale gradient-based features computed along the

anterior boundary of cervical spine vertebrae. The radius of

curvature-based features highlight the relative constriction

along the anterior boundary between normal and abnormal

vertebrae. The grayscale border gradient features examine

the grayscale contrast difference between the vertebral

interior and exterior along the boundary. The primary

difficulty with the radius-of-curvature features was that

they were not adaptive to vertebral size. In this research,

size-invariant convex hull features are introduced to detect

anterior osteophytes in lumbar spine vertebra. Size-invariant

features are investigated in order to facilitate the direct

comparison of vertebrae between radiographs.

The convex hull of a data set of points is the smallest

convex set of points that includes the data set of points

[22]. The convex hull is determined from a vertebra’s

boundary points in order to compute features characterizing

the vertebra’s shape. Examining Figs. 2 and 3, a normal

vertebra generally has rectangular shape and tends to be

convex. Thus, the convex hull for a lumbar spine without

anterior osteophytes is anticipated to be similar to its

original shape on the anterior side. Inspecting Fig. 2, the

protrusion region along the anterior side of the vertebra

contains osteophytes, making the vertebra shape concave.

Four size-invariant features are determined based on

comparing a filled vertebra with its filled convex hull.

A standard multi-layer perceptron (MLP) is used to

evaluate the features for osteophytes discrimination on a

substantial lumbar vertebrae data set. The outline for the

remainder of the paper is to present: (1) the algorithm for

osteophyte detection in lumbar vertebrae, (2) experiments

Fig. 1. Lumbar spine X-ray image example from the National Library of

Medicine image dataset. Vertebrae are highlighted in the box region.

Fig. 2. Three examples of anterior osteophytes in lumbar vertebrae with osteophytes in upper left-hand corner (a), osteophytes in the lower left-hand corner (b),

and osteophytes in both left-hand corners (c).
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performed, (3) experimental results and discussion, and (4)

conclusions.

2. Algorithm for osteophytes discrimination in lumbar

vertebrae

In this research, image analysis techniques are

investigated for detecting and differentiating normal and

abnormal (i.e. having osteophytes) lumbar spine vertebrae.

For individual vertebra analysis manual vertebral segmen-

tation is performed. The steps for manual vertebra

segmentation, vertebral feature calculations, and vertebral

discrimination are presented in following sections. Fig. 4

shows the algorithm overviewing the operations performed

on each vertebra for feature calculations.

2.1. Vertebral boundary determination

For the lumbar spine X-ray images used in this research,

an expert radiologist identified and marked 7–9 points

along the vertebra’s boundary. Specifically, the radiologist

marked the top and bottom points of the anterior and

posterior sides, the midpoints of the top and bottom sides,

the anterior midpoint, and up to two points near the anterior

corners, where osteophytes (if any) were located. For

vertebra segmentation, vertebral boundary points were

manually chosen and a second order B-spline algorithm

[23] was used to connect the points to generate a closed

boundary. In order to facilitate manual boundary point

selection, the expert radiologist selected points were

superimposed onto the histogram stretched [24] original

X-ray image. Histogram stretching of the original image

improved the contrast between the vertebral boundaries and

the surrounding background. Based on experimentation,

approximately 55 manually chosen points provided a

reasonable vertebral boundary representation for feature

analysis. Fig. 5 presents an example of histogram stretched

X-ray image with the radiologist points superimposed (a)

and a reference vertebra containing the selected positions

along the vertebra boundary that the radiologist would label

(b). The arrows in Fig. 5(a) point to two radiologist-

provided points. Figs. 2 and 3 present image examples of

vertebral boundaries determined using the manual and

B-Spline-based procedure.

2.2. Vertebral features calculation

In this section, four convex hull-based features are

investigated for vertebra discrimination. The following

notation is used for defining the features. Let I denote the

M £ N intensity lumbarspineX-ray image,where1 # x # M

and 1 # y # N: Let V denote a lumbar vertebra within an

X-ray image with area Av such that

V ¼
1 if ðx; yÞ is on or inside the vertebra boundary

0 otherwise

(

For the lumbar spine X-ray image data examined, the lumbar

vertebrae examined in each X-ray image include L3-L5. The

convex hull for V is determined using the quick convex hull

algorithm[22].LetCdenotetheresultingfilledconvexhull for

vertebra V such that

C¼
1 if ðx;yÞ is on or inside the convex hull boundary for V

0 otherwise

(

Let E denote the set of exclusive-OR points between V and C

such that Eðx; yÞ ¼ Vðx; yÞ%Cðx; yÞ: E is expected to contain

one or more connected regions, for each concave vertebral

side. Using 8-connectivity, let k denote the number of unique

connected components within E:

The four features used for detecting anterior osteophytes

include: (1) the ratio of the vertebral area to the convex hull

area, (2) the ratio of the exclusive-OR area to the convex

hull area, (3) the ratio of the exclusive-OR area on the

vertebra’s anterior side to the vertebra area and (4) the ratio

of the area of the largest connected region from the

exclusive-OR regions on the anterior side of the vertebra to

the vertebra area. For the data set examined in this

research, osteophytes, if present, are found on the anterior

side of the vertebra, with the left-hand side of each

Fig. 4. The algorithm over view of the operations performed on each vertebra for feature calculations.

Fig. 3. Example for normal lumbar vertebra without anterior osteophytes.

The left-hand side is the anterior side of the vertebra shown.
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vertebra corresponding to the anterior side and the

right-hand side corresponds to the posterior side. The

goal with feature extraction is to highlight protrusion

regions on the anterior side of the vertebra that are

characteristic of osteophytes. The ratios of the exclusive-

OR area to the filled convex hull and the vertebra area,

respectively, are intended to quantify the variation of the

vertebral shape from the vertebra’s ideal rectangular

shape. The exclusive-OR regions represent concave

regions around the vertebra’s periphery. The final

exclusive-OR-based feature focuses on the anterior side of

the vertebra for finding the largest concave region and

comparing the size of the concavity to the vertebra size in

order to highlight the location of the largest protrusion region.

The features examined provide size-invariant measures of

the deviation of the filled convex hull from the original

filled vertebra. The purpose for exploring size-invariant

features is to enable the direct comparison of different

vertebrae within the same X-ray image (i.e. the same

patient) and vertebrae from different images (i.e. different

patients).

For the initial feature, the ratio of the vertebral area to

the filled convex hull is denoted as R and is defined as

R ¼ AV=AC: The ratio of the exclusive-OR area to the

filled convex hull area is denoted as T and is defined as

T ¼ AE=AC: In order to illustrate this feature, Fig. 6

presents the exclusive-OR for a normal lumbar vertebra,

and Fig. 7 provides the exclusive-OR of an abnormal

vertebra with anterior osteophytes on the lower left-hand

side. From Figs. 6 and 7, there are a number of

disconnected regions in the exclusive-OR between the

filled vertebra and its corresponding filled convex hull.

The following procedure is used to compute the final two

exclusive-OR-based features. The centroid location, ðxc; ycÞ;

is calculated for the vertebra V. Second, the connected

regions within E are connected component labeled [24].

Third, the original XY plane is shifted to new X1Y1 plane

for V, which is centered at the centroid location with the

axes parallel to the original XY axes.

The third feature computed is the ratio of the

exclusive-OR area on the vertebra’s anterior side to the

vertebral area. Connected components in E that touch or

are entirely located on the right-hand side of the X1Y1

plane (i.e. positive X1 half-plane) are removed. In other

words, any connected component in E with one or more

pixels on the Y1 axis or the negative X1 axis are removed.

These connected components are considered as part of the

posterior portion of the vertebra and are not related to

anterior osteophytes. Let G denote the number of

Fig. 5. Image examples showing expert radiologist selected points used in

the manual point selection process around the vertebra boundary. (a)

Histogram stretched original image and expert radiologist selected points.

(b) Labeled points that the expert radiologist selects to characterize a

vertebra. Points 8 and 9 are locations for abnormal osteophytes.

Fig. 7. The exclusive-OR operation between original vertebra and its

convex hull image for an abnormal vertebra with anterior osteophytes

(lower left-hand side).

Fig. 6. The exclusive-OR operation between original vertebra and its

convex hull image for a normal vertebra.
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connected components remaining in the negative X1 plane

(i.e. anterior side). Let H ¼ {h1; h2;…; hG} refer to the set

of connected components remaining with areas given by

Ah; for 1 # i # G: Then, the ratio of the exclusive-OR

area on the vertebra’s anterior side to vertebral area is

denoted as U and is defined as U ¼
PG

i¼1 Ahi
=Av: The final

convex hull-based feature is based on finding the largest

connected component on the anterior side. Then, the ratio

of the largest connected region from the exclusive-OR

regions on the anterior side of the vertebra to the vertebral

area is denoted as F and is defined as F ¼ maxi ðAhoi
Þ=AV;

where 1 # i # G: Note that G ¼ 1 for the lumbar vertebrae

examined. Figs. 8 and 9 show examples of the exclusive-OR

area after removing the posterior portion of the image for

normal and abnormal vertebrae, respectively.

3. Experiments performed

3.1. Data set description

A data set of lumbar spine X-ray images was used for

algorithm development. For classification purposes,

vertebrae are labeled normal or abnormal (i.e. those

that contain anterior osteophytes). From these X-ray

images, borders were manually determined for 714

individual vertebrae, including 357 normal and 357

abnormal vertebrae using lumbar vertebrae L3-L5. The

four convex hull-based features are computed for each

vertebra.

3.2. Schemes for vertebral classification

In order to evaluate which features contribute most

significantly to correct vertebrae discrimination, the

following experiments are performed. Standard MLPs

[25] were used to evaluate all four convex hull-based

features and the features individually for vertebrae

discrimination. The Matlab 6.1 implementation for the

MLP was used, using the built-in functions for training and

testing modes. Twenty randomly generated training,

cross-validation and test sets were generated for evaluating

the vertebral features using about 80% of the data for

training, 5% for cross-validation and the remaining 15%

for testing. From the data set examined, 572 vertebrae used

for training (286 normal and 286 abnormal), 34 for

cross-validation (17 normal and 17 abnormal) and 108

vertebrae for testing (54 normal and 54 abnormal)

purposes. Feature normalization was performed by

computing the mean and standard deviation of each

feature from the training set. Each feature was normal-

ized for the training, cross-validation and test sets by

subtracting the mean and dividing by the standard

deviation using the mean and standard deviation feature

values obtained from the training set.

The process for neural network training for each

training/cross-validation/test set is to train the neural

network for an initial five epochs (iteration through the

entire training set five times), retaining the neural network

weights. Then, MLP training is performed one epoch at a

time, ‘testing’ the neural network using the cross-validation

set to compute the percentage of correctly classified

vertebrae for that epoch. For cross-validation testing, T

denotes the MLP cross-validation output threshold that

yields the maximum percent correct vertebral classification

for the current epoch. Based on the approach used for

training the MLP, a vertebra with a feature vector that

generates MLP output values less than T is labeled

abnormal, otherwise the vertebra is called normal. The

process is repeated, continuing to update the neural network

weights for each epoch, until either: (1) the correct

classification rate for the cross-validation set has not

improved for five consecutive epochs or (2) the correct

classification rate for the cross-validation set is lower than

for the previous epoch. The MLP weights obtained from the

previous epoch for the two terminating conditions described

above are used in testing the neural network. Tmax denotes

the threshold obtained from the cross-validation set

corresponding to the epoch at which MLP training was

Fig. 9. The exclusive-OR area after removing the posterior side of an

abnormal vertebra.

Fig. 8. The exclusive-OR area after removing the posterior side of a normal

vertebra. (example for a normal vertebra).
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terminated. The threshold Tmax is applied to the test set for

determining the correct classification rate for normal and

abnormal vertebrae. Tmax is also applied to the training set to

compute the correct training normal and abnormal

classification rates.

4. Experimental results and discussion

4.1. Image regions used for feature calculations

Four convex hull-based features were computed for each

manually segmented vertebra. Fig. 10 presents an example

of the vertebral image regions (abnormal vertebra shown)

used for computing the four features. Fig. 10(a) gives the

filled vertebra. Fig. 10(b) provides the filled convex hull for

the vertebra in Fig. 10(a). Fig. 10(c) presents the exclusive-

OR of the filled vertebra and its filled convex hull. Fig. 10(d)

gives the connected components from (c) that are on the

anterior side of the vertebra. Fig. 10(e) provides the largest

connected component from (c). R is computed using areas of

(a) and (b). T is found based on the areas from (a) and (c).

U is calculated using the areas from (d) and (b). F is

obtained based on the areas from (e) and (b).

4.2. Vertebra discrimination results

The initial set of experiments evaluated the discrimi-

nation capability of the four convex hull-based features

using the MLP approach described in Section 4.1 Twenty

randomly generated training, cross-validation and test sets

were generated for feature evaluation. The following MLP

parameters were experimentally determined: (1) architec-

ture of 4 inputs, 4 nodes in a single hidden layer and one

output (4 £ 4 £ 1), (2) learning rate of 0.03, (3) momentum

of 0.85, (4) sigmoid transfer functions at the input and all

hidden layers, and (5) a linear transfer function at the output

layer. The threshold Tmax is determined for each randomly

generated training, cross-validation and test set. The number

of epochs used for MLP training is based on identifying the

epoch for which the cross-validation classification results

Fig. 10. Example of images used for feature calculations for an abnormal vertebra. (a) Filled vertebra image. (b) Filled convex hull image. (c) Exclusive-OR

image of (a) and (b). (d) Exclusive-OR image region on vertebra’s anterior side. (e) Connected component with largest area on anterior side.
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satisfied one of the two conditions described in Section 3.

Experiments performed.

Table 1 below presents the training and test results for the

four convex hull-based features for the 20 randomly

generated training, cross-validation and test sets with the

mean and standard deviation training and test results. The

first column shows the randomly generated training, cross-

validation, test set iteration number. The second column

gives the threshold value Tmax used for determining the

correct normal and abnormal vertebrae classification rates

for the corresponding training and test sets. Tmax is chosen

experimentally with cross-validation data set to minimize

the classification errors. Columns 3 and 4 provide

the training normal and abnormal discrimination rates.

Columns 4 and 5 present the test normal and abnormal

discrimination rates.

From Table 1, the average and standard deviation

training classification rates are 89.48 and 1.75% for

normal vertebrae and 89.79 and 2.23% for abnormal

vertebrae, respectively. The corresponding average and

standard deviation test results are 88.61 and 4.47% for

normal vertebrae and 90.46 and 4.09% for abnormal

vertebrae, respectively. The low standard deviations for

the training and test results indicate consistency in the

results obtained. The normal and abnormal vertebrae test

results show that the convex hull-based features can be

used to successfully discriminate normal vertebrae from

vertebrae containing anterior osteophytes. The convex

hull-based features quantify concavities in the vertebra

shape in comparison to the vertebral area or the vertebra’s

filled convex hull area. The primary difficulty with

vertebra area, filled convex hull area and

exclusive-OR area features, R and U; is that these features

are global features based on the entire vertebra. In

contrast, the maximum exclusive-OR region feature ðFÞ

focuses on the anterior side of the vertebra, where the

osteophytes may be present. The feature T is examined in

order to determine if there is detectible shape variation

between normal vertebrae and vertebrae with anterior

osteophytes.

Each feature is evaluated individually used an MLP in

order to discern discrimination capability of the global

vertebral features ðR and UÞ to the local vertebra features

ðT and FÞ: For the individual features, the same 20

randomly generated training/cross-validation/test sets and

the same approach for MLP training were used. The MLP

architecture used was simply 1 input and 1 output, with

no hidden layer. Table 2 shows the average and standard

deviation of twenty random data sets training and test

results for each individual feature. The first column

contains the feature evaluated ðR;U;T ;FÞ and all features

for the mean and standard deviation results over the 20

randomly generated training/cross-validation/test sets.

Columns 2 and 3 present the training average and

standard deviation normal and abnormal vertebral classi-

fication results, respectively. Columns 3 and 4 give

Table 1

MLP training and test discrimination results for four convex hull-based features for 20 randomly generated training, cross-validation and test sets, including the

mean and standard deviation results. The threshold Tmax is shown for each iteration

Iteration Threshold Tmax Training results Test results

% Correct normal % Correct total % Correct normal % Correct abnormal

1 0.40 87.41 93.01 90.74 88.89

2 0.40 87.41 90.56 79.63 98.15

3 0.40 88.81 91.26 87.04 90.74

4 0.41 88.81 90.91 83.33 90.74

5 0.40 87.06 92.31 88.89 90.74

6 0.40 88.81 89.86 88.89 90.74

7 0.55 92.31 87.41 83.33 94.44

8 0.57 90.91 86.71 96.30 83.33

9 0.40 90.21 90.21 85.19 87.04

10 0.59 92.31 84.27 98.15 87.04

11 0.56 91.61 86.36 90.74 87.04

12 0.45 90.56 89.51 87.04 90.74

13 0.40 90.91 89.16 88.89 92.59

14 0.40 88.11 91.61 92.59 87.04

15 0.40 88.46 91.61 87.04 98.15

16 0.40 89.51 90.21 94.44 90.74

17 0.55 91.61 89.16 85.19 85.19

18 0.40 89.51 88.46 88.89 87.04

19 0.40 86.71 91.96 88.89 96.30

20 0.40 88.46 91.26 87.04 92.59

Mean 89.48 89.79 88.61 90.46 89.48

Standard deviation 1.75 2.23 4.47 4.09 1.75
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the test average and standard deviation normal and

abnormal vertebral classification results, respectively. The

average and standard deviation training and test results

for all four features from Table 1 are shown for

comparison purposes.

The results presented in Tables 1 and 2 lead to several

observations. First, feature F provides the highest average

test results for the convex hull-based features. From Table 2,

one can observe the mean and standard deviation results for

each feature. The standard deviation for the results from F

feature show the consistency in the feature’s performance.

From Table 2, the results for all four features provide

a slightly lower standard deviation than for feature F by

itself. Fig. 11 shows the principal component analysis

(PCA) results for all four features. The figure shows the

dominance of one feature over the other three features,

which caused the all-feature neural network to give about

the same performance when compared to feature F:

Features R and T are based on the complete vertebra

(i.e. including the posterior side of the image). From

Figs. 6 and 7, one can observe the significant area on the

top portion of the vertebra after exclusive-OR between the

filled vertebra and its filled convex hull. The numerator for

feature F is the area of the largest connected component on the

vertebra’s anterior side from the exclusive-OR of the filled

vertebra and its filled convex hull. This corresponds to the

largest concave region along the vertebra’s periphery. A

vertebra with osteophytes contains one or more protrusion

regions, causing the vertebra to deviate from the character-

istic rectangular shape. The protrusion regions introduce

concavities in the vertebra’s shape. The convex hull-based

features investigated attempt to quantify the degree of the

vertebra’s concavity with respect to the vertebra’s filled

convex hull. One potential reason that feature F outper-

forms the other features so significantly is that features

R;T ; and U include regions on the top and bottom of the

vertebra in the numerators for the respective feature

calculations. The top and bottom regions of the vertebra

are often curved, providing concave regions in the

vertebra. These concave regions may provide inconsis-

tencies in the features R;T ; and U:

Second, the four convex hull-based features can be

successfully applied to osteophyte detection for lumbar

vertebrae in the data set examined. The convex hull-based

features are size-invariant and can be applied to other data

Table 2

Average and standard deviation MLP training and test discrimination

results for 20 randomly generated training, cross-validation and test sets for

individual features. The average and standard deviation training and test

results for all four features from Table 1 are shown for comparison

Feature Training set Test set

% Correct

normal

% Correct

abnormal

% Correct

normal

% Correct

abnormal

Mean

R 59.41 76.42 57.78 76.39

U 61.47 70.58 60.19 71.11

V 65.93 86.10 65.28 85.28

F 88.81 90.44 87.87 92.22

All features 89.48 89.79 88.61 90.46

Standard deviation

R 27.10 15.32 26.40 16.39

U 26.82 27.04 26.77 27.67

V 34.55 21.09 33.94 21.82

F 1.50 1.45 5.08 4.27

All features 1.75 2.23 4.47 4.09

Fig. 11. Principal component analysis results for all four size-invariant, convex hull-based features.

M. Cherukuri et al. / Computerized Medical Imaging and Graphics 28 (2004) 99–108106



sets for osteophyte analysis. From Tables 1 and 2, the

average normal and abnormal vertebrae correct test

discrimination results for all four features are 88.61 and

90.46%, respectively. These results are quite similar to the

average discrimination results for feature F by itself with

average normal and abnormal correct test results 87.87

and 92.22%, respectively. However, the average standard

deviation results from Tables 1 and 2 for all four features

are slightly lower than for feature F by itself. The convex

hull-based features introduced in this research provide a

novel approach for lumbar vertebrae osteophyte analysis.

The experimental results demonstrate the utility of these

features for discriminating normal vertebrae from ver-

tebrae containing anterior osteophytes.

Finally, size-invariant features are needed in order to

assess a vertebra’s relative deviation from the characteristic

rectangular shape for a vertebra. A normal vertebra showing

the characteristic rectangular shape is expected to be convex

in shape. An abnormal vertebra containing osteophytes

contains a protrusion region at one or more of the vertebra

tips, resulting in a deviation from the typical rectangular,

convex shape.

5. Summary

In this research, image analysis techniques were

presented for anterior osteophyte assessment in lumbar

vertebrae. Specifically, four size-invariant, convex hull-

based features were investigated for differentiating normal

vertebrae from vertebrae containing anterior osteophytes.

The convex hull-based features quantify the variation in a

vertebra’s shape from a typical convex shape, emphasizing

the variation on the anterior side of the vertebra. Using a

MLP, experimental results showed that the ratio of the

largest connected component on the anterior side from the

exclusive-OR between the filled vertebra and its filled

convex hull, denoted as F; provided the highest and most

consistent results of the four convex hull-based features.

The experimental results demonstrate that the convex hull-

based features can be successfully applied to normal and

abnormal (i.e. contain anterior osteophytes) vertebrae

discrimination. Furthermore, the features investigated are

size-invariant and can be applied to vertebra analysis in

different X-ray images.
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