
USENIX Association

Proceedings of the
LISA 2001 15th Systems

Administration Conference

San Diego, California, USA
December 2–7, 2001

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Management System for Network-Sharable
Locally Installed Software: Merging RPM and

the Depot Scheme Under Solaris
R. P. C. Rodgers and Ziying Sherwin

– Lister Hill National Center for Biomedical Communications

ABSTRACT

Efficient management of locally installed software is a recurring central theme of system
administration. We report here on an experimental merger of two previously independent systems:
Redhat’s RPM Package Manager (RPM), an open-source database-driven system developed by a
major Linux vendor to manage software on a single host; and, an enhanced version of depot, a
well-established set of conventions used to manage software that is installed on a server and
shared over a network with multiple (possibly heterogeneous) clients. The combination remedies
shortcomings in both systems, but to be fully effective, extensions to RPM are required,
particularly to its database system. The results of this study point the way toward a second-
generation network-distributed version of RPM.

Introduction

Management of the operating system (OS) soft-
ware on a computer can be time consuming; at many
sites, though, the amount of OS software is dwarfed
by the amount of additional, locally installed, software
arising from a variety of sources. Such software gener-
ally provides the services which justify the very exis-
tence of the computing facility. The proper installation
and maintenance of software is at the heart of system
administration, and has a major influence on the util-
ity, reliability, and security of a facility. The work pre-
sented here attempts to merge the complimentary fea-
tures of two open source software installation and
management systems: one, known as depot, is a sys-
tem designed for managing network-shared software;
the other, RPM, is designed to manage software on a
single host.

Prior Work

One of the earliest attempts to attack the problem
of creating and maintaining a network-shared local
software repository was the NIST depot scheme [1].
The depot conventions were widely perceived as too
complex for smaller facilities run by non-professional
administrators, leading to simplified derivatives such
as depot-lite [2] and GNU Stow [3]. Colyer, et al. of the
Andrew project at CMU offered extensions to the
original NIST scheme, including the notion of a soft-
ware ‘‘collection’’ [4, 5]. Abbey and colleagues at the
Advanced Research Laboratory at the University of
Texas, Austin (ARL:UT), created a set of perl scripts,
opt_depot, which facilitated use of the depot conven-
tions [6, 7]. Other software management schemes that
have been developed include STORE [8], the Applica-
tion Software Installation Server (ASIS) [9], and the /pack-
ages scheme employed at Los Alamos National

Laboratory (web-based documents for which have
been withdrawn from public access). Most of these
publically-available systems were developed on UNIX
platforms, and attempted to support the sharing of
installed software over multiple systems via filesys-
tem-sharing schemes such as network file system
(NFS), where clients might be using hardware and OS
software different from that of the server. It is difficult
to objectively measure the relative costs and benefits
of these different approaches; however, STORE and
ASIS are much more complex than depot, and none of
these systems has been taken up widely outside of its
original site of invention.

Commercially-derived systems exist as well. Sun
introduced a software management system (pkgadd,
pkgrm, pkginfo, . . .) as part of its Solaris 2 operating
system, using it to install Solaris itself. Functional
components that can be installed independently of
other components are carved off into their own named
‘‘packages,’’ and a list is maintained of where a pack-
age’s files are installed. Major Linux vendors have all
developed software packaging methods with similar
intent. These include: Redhat’s RPM Package Manager
(RPM) [10], which is also used by the French-based
MandrakeSoft [11]; Ximian’s Red Carpet [12] (and
Redhat’s equivalent, up2date client); and Debian’s
Package Management System [13]. Suse’s YaST inter-
face appears to be more concerned with OS installa-
tion than ongoing local software installation. Caldera
International’s Volution [14] product is claimed to man-
age software and other resources over a network of
(multi-vendor) Linux hosts. Of these systems, RPM is
likely the most widely used, due to Redhat’s substan-
tial share of the Linux market as well as to RPM being
available as open source for multiple hardware plat-
forms using different UNIX variants. Numerous open
source software applications are distributed as RPM

2001 LISA XV – December 2-7, 2001 – San Diego, CA 267

A Management System for Network-Sharable Locally Installed Software . . . Rodgers & Sherwin

packages. With the exception of Volution, these systems
are concerned with management of software on a sin-
gle host.

Finally, some software applications are bundled
with their own installation systems; an example is the
XPInstall system employed by the Mozilla web client.

How RPM Works

RPM packages exist in two forms: binary-type
packages contain executable code for a specific hard-
ware/OS combination, whereas source-type packages
contain the original source code used to generate the
executable binary files. The RPM binary package for-
mat is well-defined and consists of four sections: the
lead (a largely abandoned file structure now used to
identify the package), signature (the PGP and MD5
data used to validate/authenticate a package), header
(tag-demarcated information about the package), and
archive (the files constituting the package, compressed
with GNU gzip). For a binary-type RPM package file,
the RPM command rpm -i does the following: it
checks for the presence of any other required packages
(dependency checking) and for potential conflicts (the
overwriting of existing files, or the installation of the
current or older versions of already-installed pack-
ages); it performs any required pre-installation com-
mands; it installs the files associated with the current
package, attempting to preserve local modifications
made to configuration files; it performs any required
post-installation commands; and, it logs all of the file
locations and other package information into the RPM
database, which is based on Berkeley DB [15].

For a source-type RPM package file, the rpm -i
command does much less: it unbundles the source
code files and specification file (see below), putting
the latter in the SPECS subdirectory. One then uses
the rpm -ba command to build both binary- and
source-type packages.

Both binary- and source-type RPM packages have
to be created manually. This process employs various
directories that are created when RPM is installed,
named BUILD, RPMS, SOURCES, SPECS, and
SRPMS, and proceeds as follows:

1. Create a RPM specification (spec) file, contain-
ing sections which address various aspects of
installing and uninstalling a package. The spec
file begins with a mandatory preamble consist-
ing of tag-demarcated fields containing general
information about the package and its creator. It
then continues with one or more of the follow-
ing sections, as appropriate (using the formal
name, beginning with a percent sign):

• %prep (script to prepare for building);
• %build (compile/build the package);
• %pre (optional script to prepare for

installation);
• %install (copy requisite files into place);
• %clean (clean the build directory tree);

• %verifyscript (script to verify correct
functioning of the package);

• %post (optional script to be executed
after installation);

• %preun (optional script to prepare for
uninstallation);

• %postun (optional script to be executed
after uninstallation); and,

• %files (list of files to be installed).
Spec files can make use of macros, OS-specific
conditionals, and division of the package into
subpackages that can be treated differently
from one another.

2. Place the spec file in the RPM SPECS subdirec-
tory.

3. Place the source code in the RPM SOURCES
subdirectory (the %prep section of the spec file
instructs RPM how to unpack this source and
place it in the RPM BUILD directory; macros
are available for dealing with common types of
non-RPM source packaging such as gzipped tar
files).

4. Execute the rpm -ba command. This unpacks
the sources and places copies in the RPM
BUILD subdirectory (a helpful behavior for
software distributions which tamper with their
own source during the build procedures, as the
original source is left intact), changes permis-
sions as required, builds the system from
source, installs the compiled and other files
where specified and generates binary- and
source-type RPM packages, placing them in the
RPMS and SRPMS subdirectories, respectively.
This maneuver will generally have to be
repeated at least twice, as the builder will want
to save effort by generating the file list section
of the spec file by making a recursive directory
listing of the files installed from an earlier pass.

As packages are built, the BUILDS subdirectory
gets cleaned out by RPM, but files and packages accu-
mulate in the SPECS, RPMS, and SRPMS directories.
Several locations require manual cleaning: the
SOURCES subdirectory, and a temporary directory in
which log files accumulate in association with failed
rpm -ba commands.

RPM makes use of MD5 checksums to validate
both entire packages and individual files within a
package (prior to and after installation), and to guide
the treatment of an application’s configuration files. It
also (optionally) employs PGP [16] to create and
authenticate digital signatures for packages. RPM pro-
vides utilities to search the RPM database to recover
information about installed packages, and to easily
update and remove them.

The behavior of RPM can be tailored by system-
wide and user-specific initialization files. RPM is built
on the rpmlib library, which has an Application Pro-
grammer ’s Interface comprising over 60 different
functions.

268 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Rodgers & Sherwin A Management System for Network-Sharable Locally Installed Software . . .

How Depot Works

Henceforth in this paper, depot refers to conven-
tions for software management employed at the U. S.
National Library of Medicine (NLM), relying upon
modified versions of the ARL:UT perl scripts (origi-
nally known as opt_depot, and building upon the ear-
lier work at NIST [1] and CMU [4, 5]).

The method employs the following directory tree
on a server: /depot_server/<hardware-type>/<OS-type>/
package, which allows the server to provide files for
multiple arbitrary hardware/OS combinations. An
individual package exists within its own subdirectory
within the above path, and is named for the package
and its version number (for example, /depot_server/
sparc/SunOS5.8/package/gcc_3.0).

Within such a package directory, individual files
must be installed within the following subdirectories
(this list is locally configurable): app-defaults (X win-
dows app-defaults files), bin (binaries), html (HTML
documentation), include (include files), info (TeXinfo
files), javaclass (Java class files), lib (library files),
man (UNIX manual pages), pdf (PDF documentation),
and sbin (administrative binaries); UNIX manual
pages are organized within a package’s man subdirec-
tory in subdirectories (man1, man1m, man3, . . .) in
accord with System V UNIX manual section number-
ing conventions. If a package has requirements which
preclude following this convention (as for example,
with some commercial software), it is installed within
a subdirectory named vendor, and links are made from
files or subdirectories within the vendor subdirectory
to the appropriate app-defaults . . . sbin subdirectories.

On a depot client, a directory with a name of the
form /depot_mount/<server-name>/package is pre-
sent, where <server-name> represents a particular
depot server. One such directory is present for each
depot server that is providing software to this client.
Package subdirectories from each server’s /depot_
server/<hardware-type>/<OS-type>/package/ directory
are mounted into the client’s corresponding /depot_
mount/<server-name>/package directory, using a net-
work file-sharing scheme such as NFS.

The client also has a /depot directory, which con-
tains subdirectories as listed above for the server pack-
age directories (app-defaults . . . sbin, excluding ven-
dor). Entire packages from /depot_mount/. . . are sym-
bolically linked into /depot/package (for example,
/depot/package/ gcc_3.0). In addition, the files appear-
ing within a package are linked into the corresponding
directories of /depot (for example, /depot/package/
gcc_3.0/bin/gcc is linked to /depot/bin/gcc). Finally, if
a package must write into host-specific files (for
example, log or database files), these are placed in the
directory /var/depot/<package-name>

A server (or standalone host) may act as a client
to itself, and possess /depot_mount, /depot, and /var/
depot directories as well, although we employ symbolic

links rather than NFS to provide files to the /depot_
mount tree in that case.

The behavior of depot on a client is controlled by
configuration files: /depot/site controls the mounting
of files from multiple depot servers; /depot/.exclude
prevents specified packages from being linked into
/depot/package; and, /depot/.priority controls which
packages have priority for linking into /depot/{bin,
html, . . . sbin} when there are name conflicts between
individual files coming from different packages.

Thus far we have described shared depot pack-
ages, which a server provides to one or more depot
client hosts. Packages that are specific to a client (for
example, node-locked commercial products, or soft-
ware that requires hardware that is specific to the
client) can be installed directly into /depot/package as
a local package; its files are linked into /depot/{bin,
html, . . ., sbin} along with the shared packages, sub-
ject to the same configuration files.

Although this description may make depot seem
complicated, in practice it is not. The main labor is
learning how to make a new software package con-
form to depot’s package directory structuring conven-
tions. We often employ script wrappers to encapsulate
actual binaries, which allows us to set up various envi-
ronment variables for a given application, freeing the
user from having to do so. The perl scripts of the
ARL:UT depot system automate maintenance of the
underlying system of links.

Shared and Complementary Features of Depot and
RPM

Both RPM and depot provide structured, disci-
plined means of managing software installations. Not
surprisingly, they address many issues in common, but
with varying degrees of rigor:

1. Both RPM binary-type and installed depot pack-
ages can be easily installed on additional hosts.
In the case of RPM, this is done by copying the
binary-type package to the target host and using
the rpm -i command; in the case of depot, this is
done by copying the directory for the installed
package from /depot_server/<hardware-type>/
<OS-type>/package (for a shared package), or
/depot/package (for a local package) to the tar-
get host (either client or server) and running a
depot script to update the requisite symbolic
links (cron can be used to automate the latter).
Both reduce the number of times that a given
piece of software must be installed from
scratch: the original installer/packager can bet-
ter afford to focus upon installing the package
correctly, as it must be done only once.

2. Both allow easy uninstallation of packages.
With depot, packages can be cleanly removed
by a single rm command followed by execution
of a depot script to clean up unresolved sym-
bolic links (using cron to automate this if

2001 LISA XV – December 2-7, 2001 – San Diego, CA 269

A Management System for Network-Sharable Locally Installed Software . . . Rodgers & Sherwin

desired). RPM automates the taking of addi-
tional actions through its uninstallation scripts.

3. Both methods attempt to document the installed
software. At NLM, each depot package has in
its root directory a manually constructed file
named README.LOCAL, which includes a
header containing defined fields describing the
package, its author and origin, and its installer.
There is considerable overlap with the informa-
tion contained in the RPM spec file.

4. Both systems can support multiple versions of a
given package, if and only if the package in
question does not require the use of absolute
file paths; with RPM, this requires use of the
--relocate flag.

The two systems compliment one another in a
number of important respects:

1. Applicability over a network. Unlike RPM,
depot is inherently designed to accommodate
use of a network. Multiple depot servers can
provide redundancy (through NFS roll-over).
Collaboration is facilitated, as different work-
groups can specialize in particular types of soft-
ware on their own depot server, and share the
results within their larger organization.

2. Dependency checking. Under NLM depot, the
installer places dependency information in the
README.LOCAL file that gets installed with
the package. This manual process is error-
prone. RPM employs the UNIX ldd command to
determine which libraries the package requires
(its ‘‘dependencies’’), and logs this information
into the RPM database. At installation and unin-
stallation time, dependencies can be handled
rigorously.

3. Package documentation. The README.LOCAL
file remains as a human-readable document
with the installed package; various components
of the RPM spec file become part of the RPM
database record, but the spec file does not
remain online as part of the installed package.
Unlike README.LOCAL, a spec file can con-
tain procedural components (various scripts)
that get automatically invoked at the appropri-
ate moment. Unlike the spec file, README.
LOCAL includes (manual) instructions for
host- and user-specific installation steps that a
package may require to become fully func-
tional, reflecting the multi-host networked
nature of depot. For example, the GNU findutils
system requires that a database be built on each
client host, and Sun’s StarOffice system requires
that each user run an initialization script prior
to using the package. README.LOCAL also
contains transcripts of the installation proce-
dure and copies of email correspondence with
other parties in connection with the software.

4. User environment. Under depot, search paths
are short and simple (/depot/bin, /depot/man,
. . .).

The Experimental Environment

The study was done using an UltraSPARC 2 as
the depot server, and an UltraSPARC 2 and two Ultra-
SPARC 60 machines as depot clients. The machines
were operating under Solaris 2.[5-8]. We standardized
the naming and NFS automounting schemes used by
depot as described above. At our request, Abbey and
colleagues added new features to the original ARL:UT
opt_depot scripts: the ability to mount software pack-
ages on a client from multiple depot servers; and,
improved configurability of the perl scripts. We installed
and used depot routinely for a period of four years,
successfully supporting as many as two different ver-
sions of Solaris concurrently. At the time of writing,
the depot server contained 321 shared packages and 21
local packages for Solaris 2.8. Source for the SPARC-
compatible version RPM 4.0.2 was obtained from the
web site http://www.rpm.org . Eighteen lines of the
code had to be modified to get it to compile under
Solaris 2.8 using gcc 3.0. RPM was installed as a
shared depot package on the depot server, with the RPM
database files placed in /depot/package/rpm_4.0.2/
vendor/var/lib/rpm. Information about all shared pack-
ages is logged into this database. On each client, the
RPM database is installed in /var/depot/rpm_4.0.2/
local_db, and information about local packages is
placed there. The need for and limitations of using two
databases is discussed below.

To allow RPM dependency checking to operate,
we employed a script, vpkg-provides2.sh, provided with
the Solaris version of RPM, which uses the information
provided by Sun’s proprietary package database to
create entries for ‘‘virtual’’ RPM packages (there were
564 such packages on our depot server). We then
installed a number of packages using RPM, while fol-
lowing the depot conventions: a library (libpcap 0.4);
an application depending upon that library (snort 1.7);
a self-standing source application (wget 1.6), and, a
commercial pre-built binary application (netscape
4.77).

Results/Discussion

The RPM/depot merger experiment suggested a
number of technical directions for future work:

1. The creation of ‘‘virtual’’ RPM packages from
Sun’s proprietary package format is slow, and
the script must be rerun when additional Sun
packages are installed. Ideally, Sun should use
RPM/depot; otherwise, the script should be
improved, and wrappers created for the Sun
package tools to invisibly and reliably integrate
them with RPM/depot.

2. RPM and depot functionalities should be cou-
pled. RPM spec file macros could be used to
invoke requisite depot scripts during installa-
tion/uninstallation, and to automate actions now
taken manually. Alternatively, the scripts could
be invoked directly from RPM source code.

270 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Rodgers & Sherwin A Management System for Network-Sharable Locally Installed Software . . .

3. Capabilities of the RPM spec and depot
README.LOCAL files should be merged; in
particular, RPM needs to know how to trigger
the host- and user-specific initialization (and
uninstallation) steps required by some software.
Other helpful aspects of depot as used at NLM:
inclusion of installation transcripts and related
email correspondence, and leaving a human-
readable document with the installed package.
Transcripts of the build could be created by
using spec file macros to capture the process in
a subshell, redirecting the output to a file which
is then incorporated into the package documen-
tation. It would be ideal if the README.
LOCAL/spec merger resulted in redundancy,
such that the README.LOCAL files could be
used to rapidly rebuild a corrupted RPM
database, and to manually manage packages in
an emergency.

4. Modifications to RPM to allow dependency
checking over a network. RPM can only use one
database at a time; either the default one, or one
supplied following the rpm command line argu-
ment --dbpath. As described earlier, we
installed RPM with two databases: one database
(on the server) containing the information for
shared packages (shared by all hosts over the
network), and a second database for local pack-
ages (on each client). Most packages can be
shared, and use of the shared package database
will succeed much of the time, as it contains
records for most of the Solaris virtual packages
as well as the shared depot packages. Installa-
tion of local packages will fail more often, as
the local package database will not contain
information about shared packages upon which
local ones may depend. This problem could be
partially solved by modifying RPM, supporting
the searching of a comma-separated list of
databases instead of just a single database (an
enhancement that has already been requested
by other RPM users; see bugzilla request #4137
on the Redhat web site). This is preferable to
error-prone work-arounds such as cloning the
content of the shared database onto the local
databases. This solution is partial, however,
because of the way in which depot handles mul-
tiple versions of packages and file name colli-
sions, through the depot configuration files.
RPM should be able to deal with these files, so
as to know how to get to the files a new pack-
age needs.

5. User-defined tags are not supported for the RPM
spec file and database; such tags would be use-
ful for local extensions to the database.

6. Other RPM enhancements could be achieved
more efficiently by means of modest code mod-
ifications. When creating an installable RPM
binary-type package, its installation path must

be configured for either a local or shared depot
package. RPM could be altered to allow the
package to be designated to be installed as
shared or local, and alter the installation auto-
matically. (currently, one can use the RPM
--relocate command-line option, with
appropriate path argument, to install a shared
package as a local package, or vice versa).

7. One of depot’s strengths is its ability to offer
files for a variety of operating systems, whereas
RPM is UNIX-specific. If RPM were to be made
to support non-UNIX target operating systems,
it would have to know how to check for depen-
dencies and to build packages on the target OS.
This would be a considerable undertaking com-
pared to the changes suggested earlier. How-
ever, one could still concurrently employ
RPM/depot for enhanced control of UNIX soft-
ware, while continuing to use depot as at pre-
sent to support the other OSs.

Conclusion

Automation and standardization are two means
of reducing the considerable costs of administering
software on multiple hosts. Depot is a highly efficient
means of managing local software, even on stand-
alone systems; its benefits are compounded when used
with multiple networked hosts, an environment in
which one can use both network-shared and local (client-
specific) depot packages. RPM is better at certain things
such as documenting packages by database, and
dependency checking, but is currently designed for
use on a single machine. Our experiment in merging
RPM and depot is a qualified success, in that most of
our software can be installed and used with RPM/depot
without modifying RPM or depot. A fully functioning
RPM/depot system, however, requires slight modifica-
tions to RPM source code: most importantly, to allow
the searching of multiple RPM databases to support
dependency checking for local depot packages; less
importantly, to couple execution of depot scripts to the
execution of RPM commands, and to support the auto-
matic reconfiguration of paths required when installing
as a local depot package one that was originally
designed to be shared (or vice versa).

Such modifications seem a slight price to pay in
order to turn RPM into a network-based software man-
agement tool. It would also make the system more
attractive as a packaging system for use by other
UNIX/Linux vendors. The existence of a single widely-
shared system could save time for administrators, by
allowing the creation of ftp- and Web-accessible
archives of RPM/depot packages for Solaris (and other)
platforms, greatly reducing installation effort.

Modifications to RPM to support non-UNIX
clients would be more complex than the ones just
described, and are harder to justify.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 271

A Management System for Network-Sharable Locally Installed Software . . . Rodgers & Sherwin

Code Availability

The code and documentation for RPM/depot for
Solaris will be available at the time of the conference,
from: http://www.etg.nlm.nih.gov .

Acknowledgements

We wish to thank Jeff Johnson of Redhat for
invaluable assistance with installing and using RPM
under Solaris. Jonathan Abbey of ARL:UT assisted us
in understanding and using his opt_depot scripts, and
made helpful extensions to them at our request. Both
provided helpful remarks about the manuscript, along
with Jules Aronson of NLM and Nelson Beebe of the
University of Utah.

Funding Sources & Copyright

Both authors are functioning as paid employees
within a U. S. government research laboratory and
produced this work as part of their routine duties. No
additional funding was involved. As a work produced
at government expense, this text is placed in the public
domain and can not be copyrighted.

Biographical Notes

R. P. C. Rodgers (rodgers@nlm.nih.gov) works
in biomedical informatics at the Lister Hill National
Center for Biomedical Communications (LHNCBC),
where he heads the Emerging Technologies Group. He
received a B.A. From Harvard College in 1972, a
M.D. from the University of Utah College of Medicine
in 1976, and postdoctoral training from the University
of London, University of Louvain, the National Can-
cer Institute, and the University of California, San
Francisco (UCSF). He served on the faculty at UCSF
prior to joining LHNCBC, a research arm of the U. S.
National Library of Medicine (NLM). At NLM he
became an early and active exponent of the World
Wide Web, creating and running NLM’s web services
for the first two years of their existence. He has partic-
ipated in a number of IETF working groups, and
served as a founding member of the International
World Wide Web Conference Committee and found-
ing chair of the NSF/NCSA World Wide Web Federal
Consortium.

Ziying Sherwin (sherwin@nlm.nih.gov) received
a B.S. in Computing & Engineering from Zhejiang
University in 1996, and a M.S. in Computer & Infor-
mation Science from the University of Delaware in
1999. She has worked Bell for Atlantic, and joined the
Emerging Technologies Group at LHNCBC in 2000.

References

[1] Manheimer, K., B. Warsaw, S. N. Clark, and W.
Rowe, ‘‘The Depot: A Framework for Sharing
Software Installation Across Organizational and
UNIX Platform Boundaries,’’ LISA IV, http://
www.forwiss.uni-passau.de/archive/marchiv/
systemverwaltung.html, 17-19 October, 1990.

[2] Rouillard, J. P., and R. B. Martin, ‘‘Depot-Lite:
A Mechanism for Managing Software,’’ http://
www.usenix.org/publications/library/proceedings/
lisa94/martin.html, LISA VIII, 1994.

[3] Glickstein, B., ‘‘GNU Stow,’’ http://www.gnu.ai.
mit.edu/software/stow/ , http://www.gnu.ai.mit.edu/
software/stow/manual.html .

[4] Colyer, W., and W. Wong, ‘‘Depot: A Tool for
Managing Software Environments,’’ LISA VI,
http://andrew2.andrew.cmu.edu/depot/depot-lisaVI-
paper.html, 1992.

[5] ‘‘The Depot Configuration Management Pro-
ject,’’ Carnegie Mellon University, http://andrew2.
andrew.cmu.edu/ANDREWII/depot.html, http://
asg.web.cmu.edu/depot/depot.html.

[6] ‘‘opt_depot,’’ ARL, University of Texas at
Austin, http://www.arlut.utexas.edu/csd/opt_depot/
opt_depot.html .

[7] Abbey, J., ‘‘The Group Administration Shell and
the GASH Network Computing Environment,’’
LISA VIII, http://www.arlut.utexas.edu/csd/gash_
docs/lisa_paper/paper.html, September, 1994.

[8] Bakken, S. S., A. Christensen, T. Egge, and A.
H. Juul, ‘‘STORE,’’ Norwegian University of
Science and Technology, http://www.pvv.unit.no/
˜arnej/store/storedoc.html .

[9] Defert, P., S. Gouache, A. Peyrat, and I. Reguero,
‘‘ASIS User’s and Reference Guide, Version
3.95,’’ http://consult.cern.ch/writeups/asis/node1.
html, CERN, 1997.

[10] Bailey, E. C., Maximum RPM, SAMS Publishing
http://www.rpm.org/max-rpm/index.html; http://
www.rpmdp.org/rpmbook, 1997.

[11] Bégnis, C., G. Cottenceau, G. Lee, and T. Vig-
naud, Mandrake RPM HOWTO, vol. 1.1, http://
www.linux-mandrake.com/en/howtos/mdk-rpm/ .

[12] Ximian, ‘‘Red Carpet,’’ http://www.ximian.com/
products/ximian_red_carpet/ .

[13] Debian, ‘‘Package Management System,’’ http://
www.debian.org/doc/FAQ/ch-pkg_basics.html, http://
www.debian.org/doc/packaging-manuals/developers-
reference/ .

[14] Caldera International, ‘‘Volution,’’ http://www.
caldera.com/products/volution/ .

[15] Sleepycat Software Inc., Berkeley DB, New Rid-
ers Publishing, Indianapolis, 2001.

[16] Garfinkel, S., PGP: Pretty Good Privacy, First
Edition, December, 1994.

272 2001 LISA XV – December 2-7, 2001 – San Diego, CA

