
MEDINFO 2001
V. Patel et al. (Eds)
Amsterdam: IOS Press
© 2001 IMIA. All rights reserved

161

An Object-oriented Model for Representing Semantic Locality in the UMLS

Olivier Bodenreider

U. S. National Library of Medicine, Bethesda, MD, USA
olivier@nlm.nih.gov

Abstract

Several information models have been developed for the
Unified Medical Language System (UMLS). While some
models are term-oriented, a knowledge-oriented model is
needed for representing semantic locality, i.e. the various
semantic links among concepts. We propose an object-
oriented model in which the semantic features of the UMLS
are made available through four major classes for
representing Metathesaurus concepts, semantic types, inter-
concept relationships and Semantic Network relationships.
Additional semantic methods for reducing the complexity of
the hierarchical relationships represented in the UMLS are
proposed. Implementation details are presented, as well as
examples of use. The interest of this approach is discussed.

Keywords:

Unified Medical Language System, Knowledge
representation, Semantics, Object-oriented model.

Introduction

The Unified Medical Language System® (UMLS®) is an
extensive source of biomedical knowledge developed and
maintained by the U.S. National Library of Medicine [1].
The UMLS Knowledge Sources include the
Metathesaurus®, which provides a common structure for
more than 50 biomedical vocabularies, and the Semantic
Network, a high-level structure that defines and organizes
the semantic types assigned to each Metathesaurus concept.

The representation of meaning in the UMLS allows users to
define and explore the semantic space surrounding a given
concept [2]. The various semantic links among concepts
represent one of the organizing principles of the UMLS:
semantic locality [3]. The dimensions of semantic locality
include term information (synonymy, hypernymy,
hyponymy), contextual information in a particular source,
co-occurrence of terms in the medical literature, and the
categorization of the concepts in a semantic network. Figure
1 shows a subset of the semantic space for the concept
“Heart”, based on the principles of semantic locality.

In slightly different terms, semantic locality is based on a
combination of terminological knowledge (relationships
among terms in source vocabularies), lexical knowledge
(relationships derived from the lexical analysis of terms),
symbolic knowledge (inter-concept relationships based on
the meaning of the concepts) and statistical knowledge
(relationships among concepts that co-occur in the medical
literature).

Several strategies have been proposed to access UMLS
data, based on different information models (relational or
object-oriented [4]), different formalisms (directed acyclic
graphs [5], conceptual graphs [6], ASN.1 [7]), and for
different purposes, including knowledge representation and
reasoning, terminology services [8], and vocabulary
management [9].

The rationale for initiating this work was the following. The
UMLS is designed to represent not only lexical and
semantic information about the biomedical domain, but also
virtually every bit of information present in the medical
vocabularies it integrates. Semantic locality depends on the
semantic information in the UMLS, but not on the detailed
characteristics of the constituent vocabularies. Hence, the
model representing semantic locality is knowledge-oriented
rather than term-oriented and can be simpler than a
comprehensive model of the UMLS. However, in order to
perform common tasks on semantic spaces (e.g., building
the graph of the ancestors of a given concepts, or selecting
all the concepts related to a given concept through selected
relationships), high level methods must be added to the
information model.

An object-oriented model was preferred over the original
relational model because it provides simpler, more flexible
and extendable methods for utilizing the knowledge in
applications, and offers both an additional level of
abstraction above the UMLS distribution and some
independence from its back-end implementation.

Chapter 4: Knowledge Representation

162

Left Phrenic
Nerve

Heart

Concepts

Tissue
Donors

22

Cardiotonic
Agents

225

Angina
Pectoris

97

Saccular
Viscus

Medias-
tinum

4

Esophagus
12

Heart
Valves

9

Fetal
Heart

31

Hierarchical relationships
Associative relationships
Siblings relationships
Categorization

Anatomical
Structure

Embryonic
Structure

Fully Formed
Anatomical
Structure

Body Part, Organ or
Organ Component Pharmacologic

Substance

Disease or
Syndrome

Population
Group

Semantic Types

Figure 1 - Semantic space for the concept “Heart” (partial representation).
Numbers refer to the frequency of co-occurrence in MEDLINE between “Heart” and other concepts, when available.

– cui (concept unique identifier)
– name (preferred English name)
– freq (total frequency of co-occurrence in MEDLINE)
– par, bro, anc1
– chd, nar, des1
– sib, sib_bn, sibx
– oth, sim, aq, qb
– par_tr, bro_tr, anc1_tr
– chd_tr, nar_tr, des1_tr
– sib_tr, sib_bn_tr, sibx_tr

Sets of related concepts
(list of Concept instances)

C
on

ce
pt

– tui (semantic type unique identifier)
– name
– name_inverse (relationships only)
– groupSe

m
Ty

pe

Se
m

N
et – st1, st2 (SemType instances)

– rel

– exists (existence of a relationship)

Set of Semantic Network relationships
(list of SemType instances)

– cui1, cui2 (concept unique identifiers)
– par, bro
– chd, nar
– sib
– oth, sim, aq, qb
– coc (co-occurrence)

Complex properties (access to
the list of relationship attributes,
the list of sources and the
frequency of co-occurrence)R

el
at

io
ns

hi
p

Figure 2 - The four major UMLS classes, with their properties and method
 (properties that are not directly available in the UMLS are displayed in italic).

Chapter 4: Knowledge Representation

 163

The Model

Our model is based on a minimal set of classes, properties
and methods, as shown in Figure 2.

Classes and properties

There are four major classes.
1. Concept. The UMLS Metathesaurus is organized by

concept or meaning, which is a cluster of
synonymous terms. Concepts are identified by a
concept unique identifier (CUI) which is needed to
instantiate Concept objects. A given term may have
several meanings and belong to several concepts,
which prevents a term from unambiguously
instantiating a concept. Mapping text to UMLS
concepts is necessary but must be kept distinct from
instantiating Concept objects. Besides the CUI,
Concept properties include the preferred name of the
concept in the UMLS, a list of definitions, a list of
sources, and the total frequency of occurrence in
MEDLINE®. These properties are simply strings or
numerical values rather than instances of other
classes, since they are generally used only for
illustrative purposes. In contrast, other properties
such as sets of related concepts (e.g., parents,
children, siblings, etc.) or the set of semantic types
are lists of instances of the Concept or SemType
classes.

2. SemType. Semantic types are the nodes of the
UMLS Semantic Network. They play a role in the
Semantic Network equivalent to that of concepts in
the Metathesaurus. Semantic types are identified by
a unique identifier (TUI), but SemType objects may
be instantiated either from a TUI or from a semantic
type name, since no two semantic types share the
same name. In addition, a property defines the
semantic group (groupings of semantic types
providing a broad categorization of the concept [10])
to which a given semantic type belongs. Technically,
allowable relationships between semantic types in
the Semantic Network (e.g., isa, treats) are also
represented as SemType instances. The inverse name
of a relationship can be queried.

3. Relationships. Inter-concept relationships defined in
the Metathesaurus describe either symbolic
knowledge or statistical knowledge. This class
provides access to all relationships between two
concepts, i.e. for a pair of CUIs or Concept
instances. For a given type of relationship (e.g.,
child), detailed information about the nature of this
relationship (e.g., isa, part_of), its sources and the
frequency of co-occurrence in MEDLINE is
provided when available.

4. SemNet. Semantic Network relationships (SNRs)
are relationships defined between semantic types
(STs), and the Semantic Network can be represented
as a list of triplets (ST1, SNR, ST2). This class
provides access to all relationships between two
semantic types, i.e. for a pair of TUIs or SemType
instances. Besides the two related semantic types
represented as SemType instances, the only other
property in this class is the list of relationships
between these semantic types, provided as a list of
SemType instances.

Additional classes were defined for more specialized
purposes. The ATX class represents associated expressions,
expression trees in which leaves are elementary concepts
and nodes logical operators or main heading to subheading
relationship indicators. The COC class offers several
techniques for selecting the most important co-occurring
concepts in MEDLINE, using the frequency of co-
occurrence as a surrogate for the strength of the
relationship. Finally, a Term class merely encapsulates calls
to the UMLS Knowledge Source Server in order to provide
for mapping terms to UMLS concepts using the traditional
matching techniques (exact match, through the normalized
string index, and approximate matching). All these
additional classes link a term or a concept to a set of
concepts represented as instances of the Concept class.

Methods

Methods defined for the major classes are essentially
accessors, allowing users to get or set properties from a
given instance. Several methods are systematically added to
each class, allowing instances to format themselves to serve
general purposes (e.g., write to a file or display as part of an
HTML document). Additional methods were defined for
certain classes for specific purposes. For example, the
SemNet class has an exist method that tests for the existence
of a given relationship between two semantic types.

In the Concept class, however, many more methods were
defined, making this class substantially different from its
counterpart in the UMLS relational model. Some methods
were added for convenience, to group the values of several
properties. For example, anc1 retrieves all concepts in
direct hierarchical relationship to a given concept, i.e. first-
generation ancestors, whether the relationship comes from
source vocabularies (par property, for ‘parent of’) or from
the UMLS editors (bro property, for ‘broader than’).
Similarly, des1 combines all descendants of the first
generation, i.e. linked by the ‘child of’ (chd property) or
‘narrower than’ (nar property) relationship in the
Metathesaurus. Additionally, a names method fetches the
preferred name for a concept in a given source, or all the
names for this concept when called without arguments.

In other cases, however, methods provide information that
is not directly available in the UMLS and therefore
constitutes some sort of an added value. For example, the
SIB relationship defined in the UMLS retrieves the list of
siblings of a given concept as defined in source

Chapter 4: Knowledge Representation

 164

vocabularies, i.e. the children of this concept’s parents. Let
us assume that the par and bro properties are close in
meaning and can be replaced by anc1 for certain purposes,
and that the same thing is true for chd and nar, replaced by
des1. In this case, the notion of sibling can as well be
extended from “children of the parents” to “children or
narrower concepts of parents or broader concepts”, i.e.
“first generation descendants of first generation ancestors”.
We defined a sibx property for such an extended version of
the siblings. Similarly, the sib_bn property of a concept
retrieves the narrower concepts of its broader concepts.

Another reason for extending the set of methods applicable
to Concept objects was to absorb some of the redundancy
resulting from the way the UMLS is built. Due to
differences in granularity among vocabularies, a
hierarchical relationship may be defined directly between
concepts C1 and C3 in some vocabulary while some finer-
grained vocabulary may define C1 parent of C2 and C2
parent of C3. Though consistent, these relationship may
appear unnecessarily redundant: assuming that their nature
is the same, those coming from the finer-grained vocabulary
are sufficient to infer the other one. Such redundancy may
even be considered detrimental for display purposes, for
example, or, more generally, when the goal is to simplify
the representation. In graph theory parlance, the removal of
such redundant links is called transitive reduction. For this
reason, for each property or method related to hierarchical
or hierarchy-based (siblings) relationships, we define an
alternative method that has the same meaning but
additionally performs a transitive reduction to the ancestors
and descendants organized as a graph (methods with a _tr
suffix).

Application

OO model

Local UMLS
database

Database
mediator class

Knowledge
Source
Server

KSS API

Back-end

Mediator
classes

UMLS
classes

Figure 3 - Architecture of the model

Implementation

A prototype of the object-oriented model was implemented
in Perl, using the object-oriented features available since

version 5 of the language [11]. As shown in figure 3, the
whole architecture classically consists of three layers: the
UMLS classes described earlier, mediator classes, and a
back-end. Therefore, a limited knowledge (limited to the
first layer) is required to use this model in an application.
Moreover, changes made to the back-end will not require
the application’s code to be modified; mediator classes will
make the changes transparent to the UMLS classes.

Most UMLS classes rely on data stored in a relational
database, but data could generally be queried through the
Knowledge Source Server (KSS), as is the case for the
Term class. Having a local copy of the UMLS stored in a
database allows for additional filtering of the data. For
example, circular hierarchical relationship that would lead
to cycles in the graph of concepts (and prevent performing
the transitive reduction) may be removed from the database.

Mediator classes essentially contain predefined SQL
statements or KSS calls used to retrieve a given property in
a class. For example, the SQL statement “select STY from
STYPE where TUI = ?” retrieves the name of a semantic
type by its unique identifier. More complex statements are
sometimes needed: for example, to instantiate a
Relationship object from a pair of CUIs requires combined
data from the MRREL and MRCOC tables.

Applications

This object-oriented model was used for the development of
several UMLS-based applications at the National Library of
Medicine. The Restrict to MeSH algorithm [12], a
component of the Indexing Initiative prototype [13], helps
find the MeSH descriptors closely associated with any
UMLS concept. The UMLS Semantic Navigator1, an
experimental knowledge exploration tool, displays the
semantic space surrounding an arbitrary UMLS concept,
allowing users to navigate it. These two applications make
heavy use of the graph data structure for representing
hierarchical information from the Metathesaurus.

Using this model, we were able to rapidly develop a
program for defining the “family” of a concept [14]. One
part of the family consists of ancestors and descendants,
siblings and “other relatives” (other related concepts), all
already defined as related concepts in the UMLS and
accessible through the corresponding property of the
Concept class. Additionally, we used combinations of
properties to define uncles (siblings of first-generation
ancestors) or cousins (first-generation descendants of
uncles). Figure 4 shows an example of Perl code for
computing the unique identifiers for the uncles and the
cousins of a given concept. The model can easily be
extended through derived classes in order to serve specific
purposes.

1 umlsks.nlm.nih.gov → Resources → Semantic Navigator

Chapter 4: Knowledge Representation

 165

use UMLS::CON::Concept;

my $c = UMLS::CON::Concept->new('C0005400');
my %seen = ();
my %ancestors = ();
my %uncles = ();
my %cousins = ();
foreach my $anc ($c->anc1_tr) {

$ancestors{$anc->cui}++;
foreach my $uncle ($anc->sibx_tr) {

next if $seen{$uncle->cui};
remove from the uncles
those that are ancestors themselves
next if $ancestors{$uncle->cui};
$seen{$uncle->cui}++;
$uncles{$uncle->cui}++;
foreach my $cousin ($uncle->des1_tr) {

$cousins{$cousin->cui}++;
}

}
}

Figure 4 - Example of code (Concept class)

Discussion

This object-oriented, knowledge-oriented model quite
obviously differs from term-oriented models and from the
original relational model. Differences from other object-
oriented models may be subtler. Gu and al. used an object-
oriented database for representing the Metathesaurus and
the Semantic Network as a unified system [4]. In contrast,
we chose to keep the original structure of the UMLS, i.e.
two distinct layers for the concepts and the semantic types.
Instead of using a unified representation, we rather
developed methods for exploring the semantic space from
different perspectives, extending the set of relationships
available in the UMLS. However, we use the same class to
represent inter-concept relationships, whether symbolic or
statistical.

Although this model has not been used outside its
development environment, it has proven to be usable for
different purposes (information retrieval, visualization and
navigation), in the context of application development.
Other properties such as sharability and inter-operability
need to be evaluated.

References

1. Lindberg DA, Humphreys BL, McCray AT. The
Unified Medical Language System. Methods Inf Med
1993;32(4):281-91.

2. McCray AT, Nelson SJ. The representation of meaning
in the UMLS. Methods Inf Med 1995;34(1-2):193-201.

3. Nelson SJ, Tuttle MS, Cole WG, Sherertz DD, Sperzel
WD, Erlbaum MS, et al. From meaning to term:
semantic locality in the UMLS Metathesaurus. Proc
Annu Symp Comput Appl Med Care 1991:209-13.

4. Gu H, Perl Y, Geller J, Halper M, Liu LM, Cimino JJ.
Representing the UMLS as an object-oriented database:
modeling issues and advantages. J Am Med Inform
Assoc 2000;7(1):66-80.

5. Bodenreider O, Burgun A, Botti G, Fieschi M, Le Beux
P, Kohler F. Evaluation of the Unified Medical
Language System as a medical knowledge source. J Am
Med Inform Assoc 1998;5(1):76-87.

6. Volot F, Joubert M, Fieschi M. Review of biomedical
knowledge and data representation with conceptual
graphs. Methods Inf Med 1998;37(1):86-96.

7. McCray AT, Divita G. ASN.1: defining a grammar for
the UMLS knowledge sources. Proc Annu Symp
Comput Appl Med Care 1995:868-72.

8. Hogarth MA, Gertz M, Gorin FA. Terminology query
language: A server interface for concept-oriented
terminology systems. Proc AMIA Symp 2000(20
Suppl):349-53.

9. Gu H, Cimino JJ, Halper M, Geller J, Perl Y. Utilizing
OODB schema modeling for vocabulary management.
Proc AMIA Annu Fall Symp 1996:274-8.

10. McCray AT, Burgun A, Bodenreider O. Aggregating
UMLS semantic types for reducing conceptual
complexity. MEDINFO 2001:(submitted).

11. Conway D. Object Oriented Perl. Greenwich, CT:
Manning; 2000.

12. Bodenreider O, Nelson SJ, Hole WT, Chang HF.
Beyond synonymy: exploiting the UMLS semantics in
mapping vocabularies. Proc AMIA Symp 1998:815-9.

13. Aronson AR, Bodenreider O, Chang HF, Humphrey
SM, Mork JG, Nelson SJ, et al. The NLM indexing
initiative. Proc AMIA Symp 2000(20 Suppl):17-21.

14. Burgun A, Bodenreider O. Methods for exploring the
semantics of the relationships among co-occurring
concepts. MEDINFO 2001:(submitted).

Address for correspondence

Olivier Bodenreider, National Library of Medicine, 8600
Rockville Pike (MS 43), Bethesda, MD 20894 - USA.

e-mail: olivier@nlm.nih.gov

	Abstract
	Keywords
	Introduction
	The Model
	Classes and properties
	Methods

	Implementation
	Applications
	Discussion
	References
	Address for correspondence

