Applying Deep Learning and Radiomics to Determine Biological Lung and Heart Age from Chest Radiographs

Guanxun Cheng1,12, Puxuan Lu5,13, Peijun Wang3, Wen Zhou1, Weiye Yu5, Stefan Jaeger6, Jing Li10, Teresa Wu10, Xiaowen Ke3, Bin Zheng9, Sameer Antani6, Sema Candemir7, Shenwen Quan2, Fleming Y. M. Lure2,11, Hongjun Li4,14, Lin Guo2,15

1. Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
2. Shenzhen Zhiying Medical Imaging, Shenzhen, Guangdong Province, China
3. Shanghai Tongji Hospital, Shanghai, China
4. Beijing Youan Hospital, Capital Medical University, Beijing, China
5. Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
6. National Library of Medicine, National Institute of Health, Bethesda, MD
7. The Ohio State University Wexner Medical Center, Radiology Department
8. Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
9. Department of Electrical Engineering, University of Oklahoma, Norman, OK, USA
10. School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tucson, AZ, USA
11. College of Engineering, University of Texas, El Paso, TX, USA
12. First author (第一作者): The first two authors contributed equally to this paper.
13. Joint first author (并列第一作者): The first two authors contributed equally to this paper.
14. First correspondence author (第一通讯作者)
15. Second correspondence author (第二通讯作者)

Purpose

Age is an important risk factor for disease. The study goal is to establish a mean value of the size of lung parenchyma (SLP) and the cardiothoracic ratio (CTR) of healthy population in Southern China using a large-scale chest radiograph (CXR) dataset as baseline for different ages and genders. The result is used to generate prediction models for biological lung or heart age to monitor aging processes and early detect lung or heart diseases.

Material and methods

A large PA/AP CXR dataset was acquired from six sources in Southern China, from 2012 to 2018, including 249,858 and 222,011 CXRs for SLP and CTR, respectively. All cases were confirmed by at least one radiology report, EKG, or other clinical report to exclude abnormal SLP and pre-existing heart conditions.

CXR image was first resized and converted into PNG format. An adaptive histogram equalization was applied to improve the contrast. A deep learning artificial intelligence (AI) technique was trained and applied to automatically segment the left and right lung, and the heart area with a very high accuracy.
(DICE value<0.017). The left and right SLP was calculated for different ages and genders. The CTR was calculated for each age and gender by dividing the transverse cardiac diameter by the maximum internal thoracic diameter.

Results

The mean right and left SLP increased with age until it peaked at gender specific maturity age. Figures 1 and 2 show the SLP and CTR profiles for each age, referred as lung and heart age, with a 95% confidence level. The mean SLPs of the study population were 399, 368, and 435 cm², and the mean CTRs of the study population were 0.417, 0.420, and 0.413, for general, female, and male population, respectively.

Conclusion

This is the first large-scale study on radiological lung and heart age measured using PA/AP CXR images. The study generated prediction models and obtained the averaged biological lung and heart age using deep learning AI and radiomics. The trend of lung and heart age profiles are similar to various reported disease risks and growth trends.

Key Words: Deep Learning Convolutional Neural Network, Artificial Intelligence, Chest Radiograph, Lung Age, Heart Age, Biological Age

References:

Figure 1. Distribution of patients by age (a) used to generate SLP; Total SLP distribution by age (b); Left SLP distribution by Age (c); and Right SLP distribution by Age (d). The mean SLP increased gradually from Age 12 till Age 24, with females having less values than males. The right SLP is greater than the left SLP.
Figure 2. Distribution of patients by age (a) used to generate CTR profile and average CTR distribution by age (b). The mean CTR increased with age, with females having greater values than males, and the CTR for males staying relatively flat until after Age 35.

Authors:

Name: Guanxun Cheng
Degree: MD., Ph.D.
Title: Director, Department of Radiology
Organization: Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
Address: No. 1120th Futian Lianhua Road, Shenzhen, Guangdong, China
Phone: +86-139-2520-0816
E-mail address: chengguanxun@outlook.com

Name: Pu-xuan Lu
Degree: M.D., Ph.D.
Title: Radiologist
Organization: Shenzhen Center for Chronic Disease Control, Guangdong Province, China.
Address: NO.2021, Buxin Road, Luohu District, Shenzhen, Guangdong, China 518020
Phone: +86-0755-25503845
E-mail address: Lupuxuan@126.com

Name: Peijun Wang
Degree: M.D., Ph.D.
Title: Director, Department of Radiology,
Organization: Shanghai Tongji Hospital, Shanghai, China.
Name: Wen Zhou
Degree: M.D., Ph.D.
Title: Deputy director of radiology
Organization: Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
Address: No. 1120th Futian Lianhua Road, Shenzhen, Guangdong, China
Phone: +86-138-2889-6802
E-mail address: tongjipjwang@vip.sina.com

Name: Weiye Yu
Degree: M.D., Ph.D.
Title: Director, Department of tuberculosis
Organization: Shenzhen Center for Chronic Disease Control, Guangdong Province, China.
Address: NO.2021, Buxin Road, Luohu District, Shenzhen, Guangdong, China 518020
Phone: +86-0755-25503845
E-mail address: ywy2002@163.com

Name: Stefan Jaeger
Degree: Ph.D.
Title: Research Fellow
Organization: National Library of Medicine, National Institute of Health
Address: 8600 Rockville Pike, Bethesda, MD 20894
Phone: 301-435-3198
E-mail address: stefan.jaeger@nih.gov

Name: Jing Li
Degree: Ph.D.
Title: Associate Professor
Organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University
Address: 699 S. Mill Ave., Tempe, Arizona, 85281-8809
Phone: 480-965-0125
E-mail address: jing.li.8@asu.edu

Name: Teresa Wu
Degree: Ph.D.
Title: Professor
Organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Phoenix, AZ
Address: 699 S. Mill Ave., Tempe, Arizona, 85281-8809
Phone: 480-965-4157
E-mail address: teresa.wu@asu.edu

Name: Xiaowen Ke
Degree: M.S.
Name: Bin Zheng
Degree: Ph.D.
Title: Professor
Organization: University of Oklahoma
Address: 110 W. Boyd Street, Devon Energy Hall 150
Norman, Oklahoma 73019-1102
Phone: 405-325-3597
E-mail address: bzheng5911@gmail.com

Name: Sameer Antani
Degree: Ph.D
Title: Staff Scientist
Organization: National Library of Medicine, National Institute of Health
Address: 8600 Rockville Pike, Bethesda, MD 20894
Phone: 301-435-3218
E-mail address: sameer.antani@nih.gov

Name: Sema Candemir
Degree: Ph.D.
Title: Radiology Department
Organization: The Ohio State University Wexner Medical Center, Radiology Department
Address: 444 Faculty Office Tower, 395 W 12th Avenue, Columbus, OH, 43210
Phone: 614939978
E-mail address: candemirsema@gmail.com

Name: Shenwen Quan
Degree: B.S.
Title: Sr. Engineering Manager
Organization: Shenzhen Zhiying Medical Imaging, Shenzhen, China
Address: Building 9-C-1606, Baoneng Science & Technology Park
Longhua District, Shenzhen, China
Phone:+86-0755-23702592
E-mail address: shenwen.quan@zying.com.cn

Name: Fleming Y. M. Lure
Degree: Ph.D.
Title: Chief Technology Officer
Organization: Shenzhen Zhiying Medical Imaging, Shenzhen, China
Address: Building 9-C-1606, Baoneng Science & Technology Park
Longhua District, Shenzhen, China
Name: Hongjun Li
Degree: M.D., Ph.D.
Title: Director, Department of Radiology
Organization: Beijing Youan Hospital, Capital Medical University, Beijing, China.
Address: Rm 205, Bldg D, No. 8, Xi Tou Tiao, You An Men Wai Feng Tai District, Beijing, 100069, China
Phone: +86-135-2027-8511
E-mail address: lihongjun00113@126.com

Name: Lin Guo
Degree: Ph.D.
Title: Clinical Researcher Manager
Organization: Shenzhen Zhiying Medical Imaging, Shenzhen, China
Address: Building 9-C-1606, Baoneng Science & Technology Park
Phone: +86-136-1283-0660
E-mail address: guolin913@outlook.com