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Deep Learning for Smartphone-Based Malaria
Parasite Detection in Thick Blood Smears
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Abstract—Objective: This work investigates the possibil-
ity of automated malaria parasite detection in thick blood
smears with smartphones. Methods: We have developed
the first deep learning method that can detect malaria para-
sites in thick blood smear images and can run on smart-
phones. Our method consists of two processing steps.
First, we apply an intensity-based Iterative Global Mini-
mum Screening (IGMS), which performs a fast screening
of a thick smear image to find parasite candidates. Then,
a customized Convolutional Neural Network (CNN) classi-
fies each candidate as either parasite or background. To-
gether with this paper, we make a dataset of 1819 thick
smear images from 150 patients publicly available to the
research community. We used this dataset to train and
test our deep learning method, as described in this paper.
Results: A patient-level five-fold cross-evaluation demon-
strates the effectiveness of the customized CNN model
in discriminating between positive (parasitic) and negative
image patches in terms of the following performance indi-
cators: accuracy (93.46% + 0.32%), AUC (98.39% = 0.18%),
sensitivity (92.59% + 1.27%), specificity (94.33% + 1.25%),
precision (94.25% + 1.13%), and negative predictive value
(92.74% + 1.09%). High correlation coefficients (>>0.98) be-
tween automatically detected parasites and ground truth,
on both image level and patient level, demonstrate the
practicality of our method. Conclusion: Promising results
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are obtained for parasite detection in thick blood smears
for a smartphone application using deep learning meth-
ods. Significance: Automated parasite detection running on
smartphones is a promising alternative to manual parasite
counting for malaria diagnosis, especially in areas lacking
experienced parasitologists.

Index Terms—Deep learning, convolutional neural

networks, computer-aided diagnosis, malaria.

[. INTRODUCTION

ALARIA is a worldwide life-threatening disease. Ac-
M cording to the 2018 World Health Organization (WHO)
malariareport [1], about 219 million malaria cases were detected
worldwide in 2017, causing approximately 435,000 deaths. Mi-
croscopy examination of stained thick and thin blood smears
is the gold standard for malaria diagnosis [2], [3]. Microscopy
examination is low-cost and is widely available, but is time-
consuming. Moreover, the effectiveness of microscopy diag-
nosis depends on the parasitologists’ expertise [4]. It is very
common for parasitologists to work in resource-limited envi-
ronments, with no rigorous system in place that can ensure
the maintenance of their skills or/and diagnostic quality. This
leads to incorrect diagnostic results and thus inappropriate treat-
ment [4]. For example, false positive diagnostic results lead
to unnecessary use of anti-malaria drugs and suffering from
their side effects such as abdominal pain, nausea, etc., whereas
false negative diagnosis leads to unnecessary use of antibiotics,
second consultation, and potential progression of more severe
malaria [5]. Therefore, the development of an automated system
for malaria diagnosis is an appealing research goal for improving
individualized patient treatment and management. Automated
parasite detection has two big advantages: 1) it can provide a
more reliable diagnosis, especially in resource-limited areas,
and 2) it reduces diagnostic costs. Parasite counts are essential
to diagnosing malaria and quantifying disease severity. They
are also important for monitoring patients to measure drug-
effectiveness and potential drug-resistance. In this study, we
investigate automatic malaria parasite detection and counting in
digital images of thick blood smears acquired with smartphones.

A thick blood smear is used to detect the presence of malaria
parasites in a drop of blood. It allows more efficient detection
of parasites than a thin blood smear, with about 11 times higher
sensitivity [5]. A thin blood smear results from spreading a drop
of blood across a glass slide, and is typically used to differentiate
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(a) Thick blood smear  (b) Thin blood smear

Fig. 1.
parasites and yellow circles are white blood cells.

Examples of thick and thin blood smears. Red circles are

parasite species and development stages. Thick and thin blood
smears, as shown in Fig. 1, require different processing methods
for parasite detection. In thin blood smears, both white blood
cells (WBCs) and red blood cells (RBCs) are clearly visible. A
typical step for automatic parasite detection in thin smears is to
first segment RBCs and then classify each segmented RBC as
infected or uninfected [5]—[7]. In thick blood smears, however,
only WBCs and the nuclei of RBCs are visible (see Fig. 1(a)).
Therefore, parasites need to be detected directly, and a typical
step is to first preselect parasite candidates and then classify the
candidates as either actual parasites or background noise. This
can be challenging because the nuclei of WBCs and various
non-parasite components can absorb stain, creating artifacts that
can lead to false parasite detection.

A. Related Work

In recent years, several approaches have been proposed for
image processing and analysis on both thin and thick blood
smears, aiming at automated detection of parasites. Reviews
of the published literature may be found in [5], [8], [9]. In
the following paragraph, we provide a brief overview of the
approaches for malaria detection in thick blood smears.

Traditional parasite detection techniques are often performed
based on segmentation [10]-[13] using thresholding and mor-
phological operations. Kaewkamnerd et al. [10] propose a
method using an adaptive threshold on the V-value histogram
of the HSV image to extract parasite candidates and white
blood cells (WBCs) from the background, and then distinguish
parasites from WBCs according to their size. Evaluation on 20
images shows that the proposed method achieves an accuracy
of 60%. Hanif et al. [11] use an intensity-stretching method
to enhance the contrast of 255 thick blood smears, and then
use an empirical threshold to segment malaria parasites. The
authors show qualitative results on different images, in which
different empirical thresholds are applied to obtain satisfy-
ing segmentation results. Chakrabortya et al. [12] combine a
morphological segmentation with color information to identify
parasites in thick blood smears. Experiments are performed
on 75 images and patch level evaluation shows a successful
detection rate of 95% with a false positive ratio of 10%. Dave
et al. [13] perform histogram-based adaptive thresholding and
morphological operations on denoised images to detect RBCs
infected by malaria parasites in thin and thick blood smears.

Patch level evaluation on 87 images shows that the method
detects 533 parasites compared to 484 parasites annotated as
ground truth. Traditional approaches for parasite detection are
simple and fast, whereas they are difficult to extend to large
datasets. This is due to the fact that traditional approaches are
very sensitive to image variations and that parameters are very
often determined empirically. Performance evaluation on patch
level on small datasets (from 20 to 300 images) can change
greatly when evaluating on big datasets, on image level or patient
level.

Feature-based approaches involve feature extraction and clas-
sification based on machine learning techniques [14]-[18]. Elter
et al. [14] extract 174 features from pre-detected plasmodia
candidates and apply a Support Vector Machine (SVM) classifier
to the feature set for parasite identification. The authors report
a sensitivity of 97% for 256 images on patch level. Purnama
et al. [15] extract features from histograms of RGB channel,
H channel from HSV space, and H channel from HIS space,
and then use Genetic Programming to identify parasite type
and stage. Their classification model on 180 patches achieves
an average accuracy of 95.58% for parasite identification and
95.49% for non-parasite identification. Yunda et al. [16] ex-
tract color features, co-occurrence texture features, and wavelet-
based texture features from the pre-segmented image, and then
use Principal Component Analysis (PCA) to reduce redundant
features, followed by a neural network model for the final clas-
sification. Evaluation on 110 images shows that the sensitivity
for parasite detection is 76.45%. Quinn et al. [17] propose to
first split each image into 475 randomly overlapping patches
using downsampling and sliding window screening, then extract
connected component and moment features from the patches,
and finally use a randomized tree classifier for the classification.
The method is evaluated on 2903 images from 133 patients and
produces a precision of 90% at a recall of 20% on patch level.
Rosado et al. [18] use an adaptive thresholding approach for the
parasite detection and then apply geometry, color and texture
features in combination with a RBF kernel based SVM classifier
for WBC and parasite identification. Evaluation on 94 images
from 6 patients shows their automatic prediction of parasites
has achieved a patch level accuracy of 91.8% along with a
sensitivity of 80.5% and a specificity of 93.5%, while their WBC
detection achieves 98.2% sensitivity and 72.1% specificity. The
feature-based approaches evaluate their performance on patch
level. That is, the input sample is a single patch image and the
evaluation is typically a patch classification accuracy. However,
the ultimate goal for malaria patient diagnosis is to detect and
classify all patches (both parasites and false positives) for a
patient. A satisfying patch level classification performance does
not necessarily assure good performance on image level or
patient level.

Deep learning is the latest trend in machine learning for
its superior performance on big data. It has already boosted
the performance in many non-medical areas. Recently, deep
learning has gained increasing recognition in computer-aided
diagnostic systems. Two main factors contributed to this de-
velopment: 1) compared to traditional methods and feature-
based approaches, deep learning requires neither segmentation
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TABLE |
EXISTING APPROACHES APPLIED TO PARASITE DETECTION IN THICK BLOOD SMEARS

Authors Methods Images Patients SE/SP(%) Remarks
Kaewkamnerd et~ Adaptive threshold on the V-value histogram + size 20 - 60% DR
al., 2011 filtering
Hanif et al., 2011 Intensity-based contrast enhancement + threshold-based 255 - Qualitative results Threshold is empirical
segmentation
Chakrabortya et Color information based morphological segmentation 75 - 95% DR + 10% FPR Patch level evaluation
al,, 2015
Daveetal., 2017  Histogram-based adaptive thresholding + 87 - 91% DR Patch level evaluation
morphological operations on denoised images
Elter et al., 2011 Feature extraction from pre-detected plasmodia 256 - 97% SE Patch level evaluation
candidates + SVM classifier
Purnama et al., Feature extraction from RGB histogram + Genetic - - 96% ACC Only 180 patch images
2013 Programming classification were used.
Yunda et al., 2011  Feature extraction from color, co-occurrence matrix 110 - 76% DR Patch level evaluation
related texture and wavelet-based texture + PCA
feature reduction + neural network classification
Quinn et al., 2014 Feature extraction from connected components and 2903 133 20% SE + 90% PR Patch level evaluation
moment features + randomized tree classifier
Rosado et al., Adaptive thresholding + feature extraction in color and 94 6 80.5% SE + 93.8% SP Patch level evaluation
2016 texture + RBF kernel based SVM classifier
Delahunt et al., Parasite candidate localization + segmentation + feature - 143 LoD =300 ~3000 p/uL Patient level evaluation
2015 extraction with CNN + linear SVM classification +92% SP
Quinn et al.,, 2016~ Small block splitting + CNN classifier 1182 - 97% PR Patch level evaluation
Mehanian et al., Dynamic local thresholding for parasite candidate 1452 195 92% SE + 94% SP Patch level and patient
2017 selection + SVM classifier + CNN classifier LoD =100 p/uL level evaluation
Torres et al., 2018  Same method as Mehanian et al., 2017 700 72% SE + 85% SP; Patient level evaluation

52% SE + 70% SP

Note: DR indicates detection rate; FPR represents false positive rate; PR denotes precision; ACC means accuracy; SE indicates sensitivity; SP is specificity.

nor handcrafted features, offering an end-to-end solution and
2) it can discover hierarchical feature representations that are
solely derived from data [19]-[21]. In the past three years, deep
learning methods have been applied to thick blood smears for
automatic feature extraction and parasite detection. Delahunt e?
al. [22] propose a combination of a linear SVM and a Convolu-
tional Neural Network (CNN) for classification after localizing
parasite candidates. They suggest the use of CNNs for feature
extraction, whereas their reported results on 143 patients use
only traditional features (including morphological, color, texture
and Harr-like features), showing the method predicted a Limit of
Detection (LoD) about 300 parasites/;:L at a specificity of 92%
on patient level. Quinn ef al. [23] propose a parasite detection
by training a four-layer CNN model on overlapping patches,
which are extracted from the downsampled RGB images. They
report an average precision of 97% on 1182 images. However,
the authors split the training dataset and testing dataset on image
level and not on patient level. That is, their training dataset and
testing dataset may include images from the same patient. The
performance is evaluated only on patch level. Mehanian et al.
[24] first detect WBCs by applying a Gaussian-kernel SVM on
thresholded candidates, then train another Gaussian-kernel SVM
on the parasite candidates, which are generated using a dynamic
local thresholding method, and finally use a CNN model for
feature extraction and classification. The authors report that their
method achieves a sensitivity of 91.6% and a precision of 89.7%
at a specificity of 94.1% on patch level, and a LoD of about 100
parasites/pL at a specificity of 90.0% on patient level based on
1452 images from 195 patients. However, a run time within
roughly 20 minutes (on a quad-core processor) for parasite
detection is not necessarily faster than human processing. Torres
et al. [25] test Autoscope (a prototype digital microscope device
with automated methods proposed in [24]) at two peripheral

health facilities, with routine microscopy and Polymerase Chain
Reaction (PCR) as reference standards. The authors conclude
that Autoscope’s performance (sensitivity of 72% at a specificity
of 85%) is close to that of routine microcopy (sensitivity of 68%
at a specificity of 100%) when the slides had adequate blood
volume; otherwise, its performance will be less than routine
microscopy.

Table I is an overview of the existing parasite detection
approaches that have been applied to thick blood smears. The
traditional parasite detection techniques in [10]-[13] use small
datasets and do not achieve high accuracies. Experimental
evaluations of the methods are either qualitative or on patch
level, which does not guarantee similar results on patient level.
Feature-based approaches [14]-[18] generally achieve a bet-
ter detection rate of parasites than the traditional techniques.
However, most of them [14]-[16], [18] use datasets with less
than 256 images, and all evaluations are on patch level. An
evaluation of such approaches on patient level may result in
a big performance drop. A big dataset has been used in [17];
however, the authors only achieve a sensitivity of 20%. So far,
only four papers [22]-[25] have used deep learning methods
for parasite detection on big datasets in thick blood smears,
and three of them [22], [24], [25] have performed evaluation
on patient level. In the literature mentioned above, only three
papers [17], [18], [23] have worked on smartphone-acquired
images for thick smears. Among these papers, [17], [23] use
the smartphone only for data acquisition with the intention to
process these images on a more powerful platform for remote
diagnosis. Reference [18] is the only work that has implemented
a screening application on a smartphone. The goal of our paper
is to develop a parasite detection application for smartphones
based on deep learning, which can provide a better performance
compared to the traditional SVM, as implemented in [18].
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Iterative Global Minimum Preselected Customized Detected
parasite malaria
Screening (IGMS) candidates CNN network parasites
Fig. 2. Pipeline of the proposed system for automated parasite detection.
Fig. 3. Example of WBC detection. (a) A sample slide image of a thick blood smear acquired with a smartphone. (b) Detected objects after using

Otsu thresholding. (c) Detected field of view ROl mask. (d) Detected WBCs including small areas of noise. (e) Detected WBCs after filtering noise

in (d).

B. Contributions

Compared to the existing work for thick blood smear pro-
cessing, we make the following contributions: First, we develop
a smartphone system for automated parasite detection in thick
blood smears based on our proposed intensity-based Iterative
Global Minimum Screening (IGMS) method for fast automatic
preselection of parasite candidates and our customized CNN
model [19]-[21], [26]-[28] for classification of parasite can-
didates as either parasites or background. To the best of our
knowledge, this is the first work designed for parasite detection
in smartphones for thick blood smears based on deep learning
methods. Second, our system is fast. It takes about 10 seconds
to detect parasites in a 3024 x 4032 image on a regular Android
smartphone. Third, we test our approach on a much larger
image set acquired from 150 patients, including 1819 thick
smear images and 84,961 annotated parasites, which we release
publicly together with this paper.

We organize the rest of the paper as follows: Section II
presents the details of our proposed method for automated
parasite detection. Section III introduces the dataset, the exper-
imental setup, and results. In Section IV, we discuss our results
followed by a conclusion in Section V.

[I. METHODS

Splitting our problem into a screening and classification step
allows faster processing because we only need to predict on
a relatively small number of pixel patches, which reduces the
overall processing cost. We illustrate the pipeline of our method
in Fig. 2.

A. Parasite Candidate Screening

The screening stage reduces the size of the initial search space
and preselects a subset of most likely parasite candidates. Par-
asite candidates are selected according to the lowest intensities

in grayscale based on a histogram analysis, exploiting that the
nuclei of parasites and WBCs have darker intensities than the
background (Fig. 3(a)). To eliminate WBC distraction, we filter
out WBCs before performing the parasite candidate screening.
Therefore, our intensity-based screening method for parasite
candidate preselection consists of WBC detection and parasite
candidate generation. The WBC detection first filters all WBCs
present in the image. Then, the parasite candidate generation
produces regions of interest by localizing the lowest intensities
across a thick blood smear image.

1) WBC Detection: A sample smear image is shown in
Fig. 3(a). We first convert the RGB image into a grayscale
image. Then, we convert the grayscale image into a binary
mask M; using Otsu’s method [29]. In this binary mask M,
the large ROI area corresponding to the field of view is shown
as foreground (white) while WBCs are shown as background
(dark); see Fig. 3(b). By filling the holes inside the large field
of view ROI area, we obtain the field of view mask M5, shown
in Fig. 3(c). WBCs can then be separated out by subtracting
the binary mask M; from the ROI mask Ms (see Fig. 3(d)).
Clean WBCs are finally obtained by filtering small noisy areas.
Fig. 3(e) demonstrates the result of this step. The pixels of WBCs
are set to zeros for the following parasite detection step.

2) Parasite Preselection Using lIterative Global Minimum
Screening (IGMS): IGMS generates RGB parasite candidates by
localizing the minimum intensity values in a grayscale image.
If only one pixel is localized, a circular region centered at this
pixel location with a pre-defined radius of 22 pixels (average
parasite radius) is cropped from the original RGB image and is
selected as a parasite candidate (Fig. 5(a)). If more than one pixel
is localized, a new parasite candidate centered at the ith pixel is
added when all the distances between the ith pixel and previously
selected pixels are larger than 22. Once a parasite candidate is
selected, the intensity values inside this region of the grayscale
image will be replace by zeros to guarantee the convergence of
the IGMS method. The screening stage stops when the number of
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Fig. 4. Flowchart of parasite candidate screening (IGMS method).

parasite candidates reaches a given number. In our experiments,
we select 500 parasite candidates for each image to cover the
true parasites as much as possible. Experiments on our dataset of
150 patients show that we can achieve a sensitivity above 97%
on patch level, image level, and patient level when using this
number. Each parasite candidate is a 44 x 44 x 3 RGB patch
image, with pixels having a distance greater than 22 to the center
set to zero. Fig. 4 shows the processing flowchart for IGMS and
Fig. 5 shows examples of positive and negative patches extracted
by IGMS.

B. Parasite Classification

Once the parasite candidates are extracted, we use a CNN
model to classify them either as true parasites or background.
In this work, we customize a CNN model consisting of seven
convolutional layers, three max-pooling layers, three fully con-
nected layers, and a softmax layer as shown in Fig. 6. A batch
normalization layer is used after every convolution layer to allow
a higher learning rate and to be less sensitive to the initialization
parameters [29], followed by a rectified linear unit (ReLU) as
the activation function [19]. Max-pooling layers are introduced

after every two successive convolutional layers to select feature
subsets. The last convolutional feature map is connected to three
fully connected layers with 512, 50, and 2 hidden units, respec-
tively. Between the three fully connected layers, two dropout
layers [30] with a dropout ratio of 0.5 are applied to reduce
model overfitting. The network is derived from VGG19 [27] by
selecting the first six convolutional layers and three correspond-
ing max-pooling layers from the VGGI19 architecture to stop
the feature maps at 64@5 x 5, followed directly by the fully
connected and dropout layers. This shorter network structure
provides similar performance while being faster and requiring
less memory, which is important for smartphone applications.
The output of the CNN model is a score vector, which gives
the probabilities of the input image patch being either a parasite
or background. We can obtain a larger or smaller number of
predicted parasites by applying an adaptive probability threshold
to the score vector.

Compared with pre-trained networks such as VGG [27],
GoogLeNet [28], ResNet-50 [26], our customized CNN model
has several advantages: 1) runtime is reduced by using a smaller
set of customizable parameters, with the input size of the model
being determined by the average parasite size in thick smear
images (44 x 44 x 3), which is much smaller than the input
size used by the other networks (224 x 224 x 3); 2) our
smaller network structure with fewer layers is more suitable for
smartphones. Since the input size is smaller, our network should
in fact be less deep to avoid feature maps that are too small.
A smaller network structure with less parameters also avoids
over-training on the smaller input space. Compared to the pre-
trained networks mentioned above, our customized CNN model
achieves a better accuracy, despite having less network layers,
and a shorter runtime. For an input image of 4032 x 3024 x 3
pixels, our system can complete the parasite detection within ten
seconds (about eight seconds for candidate screening and two
seconds for classification) on a standard Android smartphone.
Both the smaller set of parameters and the smaller network
structure contribute to the reduced runtime.

C. Smartphone-Based Application

Based on the IGMS method and customized CNN model for
parasite detection, we develop a smartphone-supported auto-
mated system to diagnose malaria in thick blood smears. We
implement this system as a smartphone app for the Android
mobile operating system. When using this app, the camera of the
smartphone is attached to the eyepiece of the microscope. The
user adjusts the microscope to find the target field in the blood
smear and takes pictures with the app. The app then detects and
counts parasites, records parasite numbers in a patient database,
and displays the results in the user interface. Users will take
several images until they have collected enough data to meet the
requirements of their local protocols. The app will aggregate
the parasite counts across all images taken. We implemented all
algorithms using the OpenCV4Android SDK library.

After the image acquisition and processing stage, the app will
go through a series of input masks for the user to fill in the
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Fig. 5. Parasite candidates generated by the IGMS method. (a) 20 positive patches. (b) 20 negative patches.
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Fig. 6.

Architecture of the customized CNN model for parasite classification. Conv, Max-pool and BatchNorm denote convolution, max-pooling

and batch normalization, respectively. The numbers above the cuboids indicate the dimensions of the feature maps. The numbers below the green
dotted line represent the convolutional kernel sizes and the sizes of the max-pooling regions. The hidden layers include three fully connected layers
and two dropout layers with a dropout ratio of 0.5. The output softmax layer computes the probabilities of the input image being either a parasite or

background.
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Fig. 7.
detection.

Smartphone-based malaria data acquisition and parasite

information associated with the current patient and smear. This
information is saved in the local database of the app, which
we build with the SQLite API provided by Android. The app
offers a user interface to the database where the user can view
the data and images of previous smears, allowing hospital staff
to monitor the condition of patients. Fig. 7 shows a smartphone
running our app connected to a microscope (left-hand side) and a
sample screenshot displaying a thick smear image with parasite
counts (right-hand side).

[lI. DATA PREPARATION AND EXPERIMENTAL RESULTS
A. Dataset

We photographed Giemsa-stained thick blood smear slides
from 150 P. falciparum infected patients at Chittagong Medi-
cal College Hospital, Bangladesh, using a smartphone camera
for the different microscopic field of views. Fig. 7 shows the
smartphone-microscope setup and a screenshot of the phone
displaying a thick smear image. Images are captured with
100x magnification in RGB color space with a 3024 x 4032
pixel resolution. An expert slide reader manually annotated
each image at the Mahidol-Oxford Tropical Medicine Research
Unit (MORU), Bangkok, Thailand. We de-identified all images
and their annotations, and archived them at the National Li-
brary of Medicine (IRB#12972). In this work, we use 1819
thick blood smear images from these 150 patients. We publish
the data here: ftp://lhcftp.nlm.nih.gov/Open- Access-Datasets/
Malaria/Thick_Smears_150.

B. Statistics of the Dataset

We first perform a statistical analysis on the whole dataset of
150 patients. There are in total 84,961 annotated parasites, whose
radius varies from two to 96 pixels, with an average radius of
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-

J

Set B
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Fig. 9. Data division strategy used in the experiments.

22 pixels (Fig. 8(a)). Each image includes one to 341 parasites,
with an average number of 47 parasites (Fig. 8(b)). Each patient
set contains three to 22 images with an average number of 12
images (Fig. 8(c)), and contains eight to 3,130 parasites with an
average number of 522 parasites (Fig. 8(d)).

C. Data Partitioning

We divide the data on patient level into two sets: Set A and
Set B, by a ratio of 4:1. Our data division strategy is shown
in Fig. 9. Set A includes 120 patients with 1443 images and

Negative patches:
generated using
IGMS

Preselection of
parasite candidates
using IGMS

CNN classifier

) training and
- five folds evaluation

Partitioning into

s \
‘4 CNN model H Parasite
detection

\. N J

72,184 parasites, and is used for the CNN model training and
evaluation. Set B includes 30 patients including 375 images and
12,777 parasites, and is used for the performance evaluation of
our method for automated parasite detection using screening
and classification. We further split Set A into training sets
and test sets on patient level, and evaluate the CNN model
performance based on five-fold cross evaluation. To achieve
a better performance for the CNN model, we use a balanced
training set with an equal number of positive and negative
patches. For each image in Set B, we generate 500 patches using
IGMS.
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Fig. 10. IGMS sensitivity of parasite preselection for 120 patients in Set B on image level (a) and patient level (b).
TABLE Il 1
CLASSIFICATION PERFORMANCE ON FIVE FOLDS FOR SET A 0.9 ~Fold1
. m— F0old2 [|
Fold3
P e .. 08 Fold4||
Accuracy  F-score Specificity ~ Sensitivity Precision Neg-pred Fold5
0.7 I
93.46% 93.40% 94.33% 92.59% 94.25%  92.74%
+0.32% £033%  +125%  £127%  £1.13%  £1.09% 06

Note: Neg_pred is the negative predictive value.

D. Preselection Performance

We evaluate the performance of IGMS as follows: We con-
sider a parasite candidate generated by IGMS as a truly identified
parasite if the overlap between it and the corresponding manually
annotated parasite is larger than 50%. This overlap ratio is cho-
sen empirically based on the balance of preselection sensitivity
and classification accuracy. Then, we compute the sensitivity
of IGMS as the ratio of the number of truly identified parasites
to the total number of annotated parasites. Fig. 10 presents the
sensitivity of IGMS on both image level and patient level for
Set B. For parasite preselection, the proposed IGMS method
achieves a sensitivity of 97.04% on patch level, 97.49% =+ 5.40%
onimage level (Fig. 10(a)), and 96.59% =+ 5.52% on patient level
(Fig. 10(b)), respectively.

E. Performance of the Customized CNN model

We evaluate the performance of the customized CNN model
on Set A using five-fold cross evaluation. Each fold contains
24 patients. Table IT and Fig. 11 present the classification perfor-
mance and receiver operating characteristic (ROC). According
to Fig. 11, our customized CNN model achieves an average AUC
score of 98.39%, and a standard deviation of 0.18%, showing
its robustness and effectiveness. The average accuracy, F-score,
specificity, sensitivity, precision, and negative predictive values
for our customized CNN model are 93.46%, 93.40%, 94.33%,
92.59%, 94.25%, and 92.74%, respectively.

F. Evaluation on Patch, Image and Patient Level

For the evaluation of our automated parasite detection method,
we apply IGMS and CNN classifier to the 30 patients in Set B

True positive rate
o o o o
N w S o

o
N

o

0 01 02 03 04 05 06 07 08 09 1
False positive rate

Fig. 11.  ROC curves of the customized CNN model with five-fold cross
evaluation for Set A on patch level (AUC = 98.39% + 0.18%).

including 375 images and 12,777 parasites. Using IGMS, we
generate 187,500 patches, among which 13,066 patches are
considered positive because they overlap more than 50% with
the ground truth annotations. Applying the customized CNN
model to the 187,500 patches, we predict 13,687 patches as
parasites, using a threshold of 0.6 for the classifier score. This
threshold achieved the highest accuracy during the five-fold
cross validation on Set A according to the ROC curve. For
this threshold, we obtain the following performance metrics on
patch level: accuracy 97.26%, AUC 97.34%, sensitivity 82.73%,
specificity 98.39%, precision 78.98%, and F-score 80.81%. The
corresponding ROC curve and confusion matrix are illustrated
in Fig. 12 and Table III. From the ROC curve in Fig. 12, we see
that we can achieve a sensitivity of 93% for a specificity of 90%
by reducing the threshold of the classifier score.

We also evaluate our method on both image level and patient
level using linear regression, as shown in Fig. 13. Onimage level,
we predict an average of 35 parasites in each image, with each
image in the ground truth containing 34 parasites on average.
A high correlation coefficient of R = 0.98 demonstrates the
strong correlation between the number of predicted parasites
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Fig. 12. ROC curve of the proposed method on automatic parasite
detection for Set B on patch level (AUC = 97.34%).

TABLE IlI
CONFUSION MATRIX FOR SET B ON PATCH LEVEL

Predicted Positive Predicted Negative
Parasites 5.8% 1.2%
Non-parasites 1.5% 91.5%

and the ground truth Fig. 13(a). On patient level, we predict an
average of 456 parasites for each patient, with an average of
426 parasites for each patient in the ground truth. We obtain a
correlation coefficient of R = 0.99, which demonstrates a strong
correlation on patient level as well, Fig. 13(b).

For an RGB image of 4032 x 3024 x 3 pixels, parasite
detection takes about 10 seconds, including screening and clas-
sification, when implemented with TensorFlow Mobile on a
Samsung Galaxy S6 (Exynos 7 Octa 7420 Processor, Android
version 7.0).

Fig. 14 shows a practical example of parasite detection using
the proposed method. In Fig. 14(a), parasites annotated in the
ground truth are marked by yellow circles, whereas red and
green circles indicate the screened parasite candidates (using
IGMS) that overlap more than 50% with the parasites in the
ground truth. Red circles indicate the screened candidates that
are finally predicted as parasites (positives) by the customized
CNN model, and green circles denotes those that are predicted
as non-parasites (negatives) by the CNN model. In the enlarged
rectangular region in Fig. 14, we observe five annotated par-
asites (yellow circles), and seven parasite candidates (red and
green circles). Five of the parasite candidates are predicted as
parasites by the customized CNN model. In Fig. 14(b), we list
the probabilities for each candidate as given by the CNN.

G. Comparison With Pre-Trained Networks

We perform evaluations on Set B to compare the performance
between our method and pre-trained networks, such as AlexNet,
VGGI19, and ResNet50. First, we extract patch candidates us-
ing IGMS, and then apply different models to detect the true

TABLE IV
PERFORMANCE OF DIFFERENT NETWORKS ON SET B

Network  Accu  Sensi  Speci  Preci  F-score AUC  Sensil
ilcil;/ll\lsetso 93.88% 81.34% 94.82% 54.04% 64.94% 95.48% 59.97%
IGMS+

VGG19 93.72% 87.31% 94.20% 52.99% 65.95% 96.99% 67.26%
ﬁle\:lds\;t 96.33% 82.15% 97.39% 70.23% 75.73% 96.97% 77.77%
IGMS+

Our CNN 97.26% 82.73% 98.39% 78.98% 80.81% 97.34% 82.73%

Note: Accu, Sensi, Speci, and Preci indicate accuracy, sensitivity, specificity and
precision, respectively. Sensil is the sensitivity for a given specificity of 98.39%.

parasites. We compare performances in terms of accuracy, sen-
sitivity, specificity, precision, F-score, AUC, and sensitivity for
a given specificity. As listed in Table IV, the accuracy of our
customized CNN model is about 1% higher than AlexNet, and
about 4% higher than VGG19 and ResNet50. The F-score of our
customized CNN model is about 5%, 15%, and 16% higher than
the F-score of AlexNet, VGG19, and ResNet50, respectively.
For a specificity of 98.39%, the sensitivity of our customized
CNN is about 5%, 15%, and 23% higher than the sensitivity of
AlexNet, VGG19, and ResNet50, respectively.

IV. DISCUSSION

In this work, we develop a smartphone-supported parasite
detection application based on our IGMS method and deep
learning. In Section III, we show that our application achieves
an accuracy of 97.26% and an AUC of 97.34% on patch level,
while obtaining a correlation coefficient above 98% on both
image level and patient level. This is mainly due to two factors:
First, the preselection of parasite candidates by IGMS covers
parasites in the ground truth quite well. Second, our CNN model
with the customized input size and network layers can classify
the preselected candidates with high accuracy.

Our IGMS method generates false positive patches (negative
patches) that are very similar to parasites (positive patches) so
that our CNN model learns to reduce false positives. We have
also performed experiments with negative patches randomly
selected from the background. However, the accuracy decreased
to less than 75% on Set B. This is because the random selection
of negative patches generates too many clean negative patches.
Therefore, training the CNN model on such patches leads to
many false positives.

We have compared the performance of our method using
three different input patch sizes: 36 x 36 x 3,44 x 44 x 3
and 52 x 52 x 3. We observe that with a small patch size
of 36 x 36 x 3, too many false positives are detected. Using
this patch size, the method does not work because the patch
size is too small to include enough information for identifying
parasites. When using an increased patch size of 52 x 52 x 3,
the AUC value on patch level is 97.30%, which is very close to
our reported results for a patch size of 44 x 44 x 3. However, the
correlation coefficients decrease to 0.96 and 0.97 on the image
and patient levels. This is because more background noise is
introduced when the patch size increases.
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Fig. 14. Parasite detection on an example image using our proposed method. (a) Parasites annotated in the ground truth (yellow circles) and
screened parasite candidates that overlap more than 50% with the parasites in the ground truth (red and green circles). Red circles indicate
candidates that are finally predicted as parasites (true preselected parasites), and green circles indicates those that are predicted as non-parasites
(false preselected parasites). (b) Probabilities of parasite candidates that overlap more than 50% with parasites in the ground truth. The number
under each patch denotes the output probability of the CNN. Red and green numbers indicate probabilities larger than 0.6 and smaller than 0.6,

respectively.
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE CUSTOMIZED CNN MODEL
AND DL MODELS IN THE LITERATURE ON SET A

Network ~ CPU or GPU  Learning rate Training time Accuracy
ResNet50 CPU 0.001 47382 92.55%
VGGI19 GPU 0.001 13698 91.72%
AlexNet GPU 0.001 1613 92.21%
Our CNN GPU 0.001 1487 93.46%

A comparison between the customized CNN model and a
traditional SVM classifier based on HOG features shows that
our customized CNN model outperforms the SVM classifier
by about 6% in accuracy, 8% in sensitivity, 4% in specificity,
5% in precision, 6% in negative prediction, and 6% in F-score,
respectively.

Based on the comparison between our customized CNN
model and the three pre-trained networks Alexnet, VGG19,
and ResNet50 (on a CPU), in Tables IV and V, we find:
1) our customized CNN model is more than ten times faster
than VGG19 and ResNet50 (see Table V); 2) the accuracy of
our customized CNN network is significantly better on Set A,
between one and two percent, than the accuracy of a pre-trained
VGG19 (p < 0.001) and AlexNet (p < 0.01), with a larger
difference on Set B (Table IV). ResNet50 achieves an accuracy
around 92.50% on Set A. However, ResNet50 is too big and too
slow for our smartphone application; 3) according to the ROC
curve, our customized CNN outperforms AlexNet, VGG19, and
ResNet50 from 5% to 23% in terms of sensitivity for the given
specificity. We have also applied object detection networks,
such as faster-RCNN [31] and YOLO [32], to detect parasite
candidates. However, these object detection networks do not
work well for very small objects like parasites, with an average
size of 44x44 pixels in an image of 4032 x 3024 pixels, resulting
in many false negatives.

V. CONCLUSION

In this paper, we implement a deep learning application for
smartphones to detect malaria parasites in thick smear images.
Our processing pipeline for automated parasite detection con-
sists of two stages: parasite screening and classification. An
intensity-based Iterative Global Minimum Screening (IGMS)
first performs a fast screening of an entire thick smear image
to generate parasite candidates. A customized CNN model then
classifies each candidate as either parasite or background. Our
experimental results demonstrate the practicality of our method
for automatic detection of malaria parasites. To the best of our
knowledge, our paper is the second paper that has developed a
smartphone application for thick blood smear screening [18],
and the first paper that has applied deep learning techniques
for parasite detection in thick smears on smartphones, with
evaluation on patient level. We make our dataset of 1819 images
from 150 patients publicly available, as a service to the research
community, which will mitigate the problem of lacking training
data for automated malaria diagnosis in thick blood smears. Our
future work is to improve the performance of our automated

parasite detection method using network ensemble techniques
and to improve its runtime on smartphones.
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