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Abstract

Data-driven deep learning (DL) methods using convolutional neural networks (CNNs) dem-

onstrate promising performance in natural image computer vision tasks. However, their use

in medical computer vision tasks faces several limitations, viz., (i) adapting to visual charac-

teristics that are unlike natural images; (ii) modeling random noise during training due to sto-

chastic optimization and backpropagation-based learning strategy; (iii) challenges in

explaining DL black-box behavior to support clinical decision-making; and (iv) inter-reader

variability in the ground truth (GT) annotations affecting learning and evaluation. This study

proposes a systematic approach to address these limitations through application to the pan-

demic-caused need for Coronavirus disease 2019 (COVID-19) detection using chest X-rays

(CXRs). Specifically, our contribution highlights significant benefits obtained through (i) pre-

training specific to CXRs in transferring and fine-tuning the learned knowledge toward

improving COVID-19 detection performance; (ii) using ensembles of the fine-tuned models

to further improve performance over individual constituent models; (iii) performing statistical

analyses at various learning stages for validating results; (iv) interpreting learned individual

and ensemble model behavior through class-selective relevance mapping (CRM)-based

region of interest (ROI) localization; and, (v) analyzing inter-reader variability and ensemble

localization performance using Simultaneous Truth and Performance Level Estimation

(STAPLE) methods. We find that ensemble approaches markedly improved classification

and localization performance, and that inter-reader variability and performance level

assessment helps guide algorithm design and parameter optimization. To the best of our

knowledge, this is the first study to construct ensembles, perform ensemble-based disease

ROI localization, and analyze inter-reader variability and algorithm performance for COVID-

19 detection in CXRs.
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Introduction

Coronavirus disease 2019 (COVID-19) is caused by the new Severe Acute Respiratory Syn-

drome Coronavirus 2 (SARS-CoV-2) that originated in Wuhan, China. The World Health

Organization (WHO) declared this disease spread as an ongoing pandemic [1]. As of July

2020, the pandemic has resulted in over 14 million cases, and more than 600,000 deaths world-

wide. The disease commonly infects the lungs and results in pneumonia-like symptoms [2].

Reverse transcription-polymerase chain reaction (RT-PCR) analysis is the gold standard to

confirm infections. However, these tests are reported to exhibit varying sensitivity and are not

widely available [2]. Radiological imaging using chest X-rays (CXRs) and computed tomogra-

phy (CT) scans, though not currently recommended in the United States, are commonly used

radiological diagnostic support aids to manage COVID-19 disease progression [2]. While CT

scans are more sensitive in detecting pulmonary disease manifestations than CXRs, their use is

limited due to issues such as non-portability, repeated sanitation requirements for CT exami-

nation rooms and equipment, and exposing patients, hospital staff and technical personnel to

the infection. According to the American College of Radiology (ACR) recommendations [3],

CXRs are considered a viable alternative to CT scans in addressing some of these limitations.

However, the pandemic nature of the disease has compounded the existing shortage of expert

radiologists, particularly in third-world countries [4]. Under these circumstances, artificial

intelligence (AI) driven computer-aided diagnostic (CADx) tools have been considered as

potentially viable alternatives for facilitating swift patient referrals or aiding appropriate medi-

cal care [5]. Several studies using data-driven deep learning (DL) algorithms with convolu-

tional neural network (CNN) models in various strategies have been published for detecting,

localizing, or measuring progression of COVID-19 using CXRs and CTs [4, 6, 7]. While there

are scores of medical imaging CADx solutions that use DL approaches for disease detection

including COVID-19, there are significant limitations in existing approaches related to data

set type, size, scope, model architecture, and evaluation. We address these concerns and pro-

pose novel analyses to meet the urgent demand for COVID-19 detection using CXRs.

Modality-specific transfer learning and ensemble learning

Existing solutions tend to be disease-specific and require retraining on a large-collection of

expert-annotated data to ensure use in real-world applications. Generalization of these

approaches is challenged by available expert-annotations, their strength (i.e. weak image-level

labels versus strong region of interest (ROI) localizing the pathology), and necessary computa-

tion resources. Under these circumstances, transfer learning strategies are commonly adopted

[8] where the models are trained on a large-scale selection of stock photographic images like

ImageNet [9] and then fine-tuned for the specific task. A problem with this approach is that

the architecture and hyperparameters of these pre-trained models are optimized for natural

image computer vision applications. In contrast, medical image collections bearing the desired

pathology are significantly smaller in number. Therefore, using these models for medical visual

analyses often results in a covariate shift and generalization issues due to the difference in

source and target image modalities. Medical images are distinct in their characteristics such as

highly localized disease ROIs, and varying appearances for the same disease label and severity

[10]. Under these circumstances, the transferred knowledge from the natural image processing

domain may not be optimal for disease localization. We propose training deep learning (DL)

models with suitable depth on a large-scale selection of medical images of the same modality

to learn relevant feature representations that can be transferred and fine-tuned for related

medical visual recognition tasks. Such medical modality-specific transfer learning could

improve DL performance and generalization by learning the common characteristics of the
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source and target modalities. This could lead to a better initialization of model parameters and

faster convergence, thereby reducing computational demand, improving efficiency, and

increasing opportunity for successful deployment.

Data-driven DL models use non-linear methods and learn through stochastic error back-

propagation to perform automated feature extraction and classification. These models scale up

in performance by increasing the amount of training data and computational resources. Fur-

ther, their sensitivity to the training data specifics limits their generalization due to learning

different sets of weights at each instance of training. This stochastic learning nature results in

different predictions referred to as the variance error. Also, there are issues concerning bias

errors due to an oversimplified model that results in predictions that are different from the GT

thereby placing a higher demand on appropriate threshold selection for obtaining desired per-

formance. Ensemble learning methods including majority voting, averaging, weighted averag-

ing, stacking, and blending seek to address these issues by combining predictions of multiple

models and resulting in a better performance compared to that of any individual constituent

model [11].

ROI localization, observer variability, and statistical analysis

Data-driven medical DL models have often been maligned for their “black box” behavior, i.e.,

inability to make clear their decision-making process. This is often due to their massive archi-

tectural depth resulting in a large number of model parameters and lack of decomposability

into individual explainable components. Further, multiple non-linear processing units per-

form complex data transformations that can result in unpredictable behavior. This results in

an apparent opaque relationship between input and predictions which is a serious bottleneck

in their use in deriving understandable clinical interpretations.

Supervised learning requires a consistent label associated with the appearance of the pathol-

ogy in the image. However, in medical images, these labels can vary not only for disease stage

and shared appearance with other diseases but also with observer expertise and sensitivity to

assessment demands. A new pandemic, for example, may bias experts toward higher sensitiv-

ity, i.e. they will tend to associate non-specific features with the new disorder because they lack

experience with relevant disease manifestation in the image [1–3]. Therefore, an assessment of

observer variability, including analyzing (i) inter-reader, and (ii) intra-reader variability, con-

stitutes an essential part of AI-based classification and localization studies. It is reported that

inter-reader variability tends to be higher than intra-reader variability because multiple

observers may have a different opinion on the outlining disease-specific ROI depending on

their expertise or personal leanings toward recommending necessary clinical care [12]. Thus,

inter-reader variability is a major obstacle that may lead to misinterpretation through the

“inexact” region of interest (ROI) annotations and also affects supervised learning. Not only

can this lead to a false diagnosis or inability to evaluate the true benefit of accurately supple-

menting clinical-decision making, but it places a greater burden on the number of training

images needed to overcome these implicit biases. Thus, it is imperative to conduct inter-reader

variability analysis as part of evaluating AI performance. An obvious approach to overcome

this challenge might be to compare a collection of annotations by several radiologists using rel-

evant clinical data. However, quantifying expert performance in annotating disease-specific

ROI is difficult. This persistent challenge exists because of the difficulty in obtaining or esti-

mating a known true ROI for the task under study. While there exist automated tools to man-

age inter- and intra-reader variability, these algorithms need to be assessed to warrant their

suitability for the task under study. Additionally, it is imperative to determine an appropriate

measure for comparing individual expert annotations with each other and with the AI [13].
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Results and methods in a study need to be transparently reported to accurately communi-

cate scientific discovery. Statistical analyses are critical for measuring inherent data variability

and their impact on AI performance. They help in evaluating claims and differentiating rea-

sonable and uncertain conclusions. Statistical reporting helps to alleviate issues resulting from

incorrect data mining, biased samples, overgeneralization, causality, and violating the assump-

tions concerning analysis. However, a study of the literature reveals that scientific publications

are often limited in presenting statistical analyses of their results [14].

In this study, we address the aforementioned limitations through a stage-wise systematic

approach, as follows: (i) we explore the benefits of CXR modality-specific pretraining that

results in learning CXR modality-specific knowledge, which can be transferred and fine-tuned

to improve performance toward COVID-19 detection in CXRs; (ii) we compare the utility of

several ImageNet-pretrained CNN models truncated at their empirically determined interme-

diate layers to that of out-of-the-box ImageNet-pretrained CNNs toward the current task; (iii)

we use ensembles of fine-tuned models for COVID-19 detection that are created through vari-

ous strategies to improve performance compared to any individual constituent model; (iv) we

explain learned behavior of individual CNNs and their ensembles using class-selective rele-

vance mapping (CRM)-based localization [15] tools that identify discriminative ROIs involved

in detecting COVID-19 viral disease manifestations; (v) we perform ensemble localization to

improve localization behavior and compensate for the error due to neglected ROIs by individ-

ual CNNs; (vi) we perform exploratory studies to analyze variability in model localization

using annotations of two expert radiologists; (vii) we measure statistical significance in perfor-

mance metrics including Intersection over Union (IoU) and mean average precision (mAP);

and, (viii) we perform inter-reader variability analysis using Simultaneous Truth and Perfor-

mance Level Estimation (STAPLE) [13] that generates a reference consensus annotation from

the set of radiologists’ annotations. This is compared with individual radiologist annotations

and the predicted disease ROI by model ensembles to provide a measure of inter-reader vari-

ability and algorithm performance. To our best knowledge, this is the first study to construct

ensembles, perform ensemble-based disease ROI localization, and evaluate inter-reader reader

variability and algorithm performance toward COVID-19 detection in CXRs.

Related works

CXR modality-specific transfer learning and ensemble learning

Yadav et al. [16] demonstrated the benefits of transferring knowledge learned from training on

a large-scale selection of CXR images and repurposing them toward tuberculosis (TB) detec-

tion. They constructed model ensembles and compared their performance with individual

models toward classifying CXRs as showing normal lungs or TB -like manifestations. Rajara-

man & Antani [17] proposed CXR modality-specific knowledge transfer by retraining the Ima-

geNet-pretrained CNN models on a large-scale selection of CXRs collected from various

institutions. This helped in improving generalization of the learned knowledge that was trans-

ferred and fine-tuned to detect TB disease-like manifestations in CXRs. The authors per-

formed ensemble learning using the best-performing CNNs to demonstrate better

performance in classifying CXRs as belonging to normal or TB-infected classes. At present, the

literature on CXR analysis benefiting from modality-specific knowledge transfer particularly

applied to detect COVID-19 viral disease manifestations is limited. This leaves room for prog-

ress toward evaluating the efficacy of these methods in improving the performance toward

COVID-19 detection. Lakhani & Sundaram [18] used model ensembles to classify CXRs as

showing normal lungs or TB-like radiological manifestations. It was observed that an ensemble

of custom CNN and ImageNet-pretrained models delivered superior classification
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performance with an AUC of 0.99. Rajaraman et al. [19] evaluated the efficacy of a stacked

model ensemble constructed from hand-crafted features/classifiers and DL models toward TB

detection in CXRs. CXRs collected from various institutions were used to improve the general-

ization of the proposed approach. It was observed that the model ensembles delivered better

performance than individual constituent models in all performance metrics. Ensemble learn-

ing has been applied to detect cardiomegaly in CXRs [20]. The authors observed that DL

model ensembles were 92% accurate as compared to 76.5% accuracy obtained with hand-

crafted features/classifiers. These results demonstrate the superiority of ensemble learning

over the traditional approach of evaluating the performance with stand-alone models. Applied

to COVID-19 detection in CXRs, Rajaraman et al. [5] iteratively pruned the DL models and

constructed ensembles to improve performance compared to individual constituent models.

To this end, the authors observed that the weighted average of iteratively pruned models dem-

onstrated superior classification performance with a 99.01% accuracy and AUC of 0.9972.

Otherwise, the literature available on applying ensemble learning toward COVID-19 detection

in chest radiographs is limited.

ROI localization, observer variability, and statistical analysis

Exploratory studies in developing explainable and transparent AI solutions toward clinical

decision-making are crucial to developing robust solutions for clinical use. Literature studies

reveal several works interpreting the learned behavior of DL models by highlighting pixels that

impact prediction scores, with varying intensities. Zeiler & Fergus [21] used deconvolution

methods to modify the gradients that resulted in qualitatively improving ROI localization.

Dosovitskiy & Brox [22] inverted image representations using up-CNN models to provide

insights into learned feature representations. Zhou et al. [23] generated class-activation maps

(CAM) by mapping the prediction class scores back to the deepest convolutional layer. Selvar-

aju et al. [24] generalized the use of CAM tools and proposed gradient-weighted CAM (Grad-

CAM) methods that can be applied to CNNs with varying architecture. Kim et al. [15] pro-

posed a class-selective relevance mapping (CRM) algorithm to visualize discriminative ROIs

in classifying medical image modalities. The authors measured both positive and negative con-

tributions of the feature map spatial elements in the deepest convolutional layer of the trained

models toward making class-specific predictions. It was observed that CRM methods delivered

superior localization toward classifying medical imaging modalities compared to CAM-based

methods. Applied to the task of localizing COVID-19 viral disease manifestations in CXRs and

CT scans, Li et al. [7] proposed a DL model called COVNet that learned the underlying feature

representations from volumetric CT scans. It was observed that the model showed better per-

formance with an AUC of 0.96 in detecting COVID-19 viral disease patterns and differentiat-

ing them from other non-COVID-19 pneumonia-related opacities. They used CAM-based

visualization tools to localize the suspicious ROIs toward detecting COVID-19 viral disease

manifestations. Karim et al. [25] proposed a custom DL model and used Grad-CAM tools to

explain their predictions toward COVID-19 detection. The model achieved a sensitivity of

83% in detecting COVID-19 disease patterns in CXRs. Rajaraman & Antani [6] proposed a

weakly-labeled data augmentation approach to increase training data size for recognizing

COVID-19 viral related pneumonia opacities in CXRs. They used a strategic approach to train

various DL models with non-augmented and weakly-labeled augmented training and evalu-

ated their performance. It was observed that the simple addition of CXRs showing COVID-19

viral disease manifestations to weakly labeled augmented training data improved performance.

This study revealed that COVID-19 viral disease patterns have a uniquely different presenta-

tion compared to non-COVID-19 viral pneumonia-related opacities. The authors used Grad-
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CAM tools to study the behavior of models trained with non-augmented and augmented data

toward localizing COVID-19 viral disease manifestations in CXRs. Otherwise, the literature is

limited concerning the use of visualization tools toward COVID-19 detection in CXRs.

Applied to CXR analysis, Balabanova et al. [26] performed an observational study among Rus-

sian clinicians in analyzing the variability toward interpreting abnormalities in CXRs. The

agreement was analyzed in different scales using the Kappa statistic for a set of 50 CXRs. It was

observed that there existed only a fair agreement in detecting and localizing abnormalities

with a Kappa value of 0.380 and 0.448, respectively. This demonstrated that limited agreement

on interpreting abnormalities resulted in sub-optimal population screening. Applied to CT

scans, Al-Khawari et al. [27] analyzed inter- and intra-radiologist variability in detecting

abnormal parenchymal lung manifestations on high-resolution CT scans. They used the

Kappa statistic to measure the degree of agreement toward these analyses. A clinically accept-

able agreement was observed between the radiologists, but the agreement rate declined when

the radiologists were not involved in the regular analysis of thoracic CT scans. Another study

[28] analyzed COVID-19 disease manifestations in high-resolution CT scans obtained from

patients at the North Sichuan Medical College, Nanchong, China. They assessed inter-observer

variability by having CT readers repeat the data analysis at intervals of three days. A compari-

son of a set of measurements by the same scan reader was used to assess intra-observer vari-

ability. They observed the existence of significant variability in inter- and intra-observer

analysis, concerning the extent and density of disease spread. At present, there is no available

literature on the analysis of inter- and/or intra-reader variability applied to COVID-19 detec-

tion in CXRs.

Diong et al. [14] conducted a cross-sectional study toward analyzing the quality of statistical

reporting in a random selection of publications in the Journal of Physiology and the British

Journal of Pharmacology. The study used samples before and after the publication of an edito-

rial, suggesting measures to adopt in reporting data and statistical analyses. The authors

observed no evidence of change in reporting these measures after the editorial publication.

They observed that 90–96% of papers were not reporting statistical significance measures

including p-values to identify the specific groups exhibiting these statistically significant differ-

ences in performance. Appropriate statistical analyses are included in the current study.

Materials and methods

Data collection

This retrospective study uses the following publicly available datasets:

i. Pediatric CXR dataset: Kermany et al. [29] made available a collection of 5,856 pediatric

CXRs showing normal lungs (n = 1,583) or bacterial (n = 2,780) or viral pneumonia

(n = 1,493) disease manifestations. The data were collected from children age 1 to 5 years at

the Guangzhou Children’s Medical Center, China. The radiological examinations were per-

formed as a part of routine clinical care. The CXR images are made available in JPEG for-

mat, and approximately 2000 × 2000 pixels resolution with 8-bit depth.

ii. RSNA CXR dataset: Shih et al. [30] made available a collection of 26,684 frontal CXRs for a

Kaggle challenge. The CXRs are grouped into to normal (n = 8,851) and abnormal

(n = 17,833) classes; the abnormalities include pneumonia or non-pneumonia related opac-

ities. The CXR images are made available in 1024 × 1024 8-bit pixels resolution and

DICOM format.
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iii. CheXpert CXR dataset: Irvin et al. [31] made available a collection of 191,219 frontal CXRs

showing normal lungs (n = 17,000) or other pulmonary abnormalities (n = 174,219). The

CXR images are collected from patients at Stanford University Hospital, California, and

are labeled for various thoracic disease manifestations by an automated natural language

processing (NLP)-based labeler. The labels are extracted from radiological texts and con-

form to the Fleischner Society glossary of terms for thoracic imaging.

iv. NIH CXR-14 dataset: Wang et al. [8] released a collection of 112,120 frontal CXRs, col-

lected from 30,805 patients at the NIH Clinical Center, Maryland. The collection includes

CXRs, labeled as showing pulmonary abnormalities (n = 51,708) or normal lungs

(n = 60,412). The CXRs were screened to remove personally identifiable information and

ensure patient privacy. The CXRs belonging to the abnormal category are labeled for mul-

tiple thoracic disease manifestations using the information extracted from radiological

reports using an automated NLP-based labeling algorithm.

v. Twitter-COVID-19 CXR dataset: A radiologist from a hospital in Spain made available a

collection of 134 CXRs exhibiting COVID-19 viral pneumonia manifestations, on Twitter

(https://twitter.com/ChestImaging). The data were collected from SARS-CoV-2 PCR+ sub-

jects and are made available at approximately 2000 ×2000 pixels resolution.

vi. Montreal-COVID-19 CXR dataset: Cohen et al. [32] manage a GitHub repository that

hosts a collection of CXRs and CT scans of SARS-CoV-2 + and/or suspected patients. The

images are pooled from publications and hospitals through collaboration with physicians

and other public resources. As of May 2020, the collection includes 226 CXRs showing

COVID-19 viral pneumonia manifestations. The authors didn’t provide complete meta-

data, however, the collection includes CXRs of 131 male patients and 64 female patients.

The demographic information provided by the data providers for the various datasets used

in this study are given in Table 1.

Lung ROI cropping and preprocessing

Input data characteristics directly impact DL model learning, which is significant in applica-

tions that involve disease detection. For example, clinical decision-making could be adversely

impacted by learning irrelevant features. In the case of COVID-19 and other pulmonary dis-

eases, it is vital to limit analysis to the lung ROI and train the models toward learning relevant

feature representations from within these pulmonary zones. Literature studies reveal that

U-Net-based semantic segmentation delivers commendable performance in segmentation

tasks using natural and medical imagery [33]. For this study, we use a custom U-Net with

Table 1. Demographic study.

Dataset Total Mean (age) Standard deviation (age)

Male Female Male Female Male Female

NIH [8] 63340 48780 47.04 46.6 17.19 16.27

Pediatric CXR [29] NA NA NA NA NA NA

RSNA [30] 17006 12888 NA NA NA NA

CheXpert [31] 132871 91007 60.83 60.43 18.19 18.19

Montreal-COVID-19 [32] 131 64 59.15 54.97 16.27 15.11

Twitter-COVID-19 17 11 13.43 19.61 8.75 8.38

The table shows the statistics such as patient count, age, and sex for the various datasets used in this study. NA denotes Not Available.

https://doi.org/10.1371/journal.pone.0242301.t001
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dropout [34] layers to segment the lung ROI from the background. Gaussian dropouts are

used in the encoder to reduce overfitting and provide restrictive regularization. A dropout

ratio of 0.5 is used after empirical pilot evaluations. Fig 1 shows the architecture of the custom

U-Net segmentation and its corresponding performance curves. This is the first step in train-

ing. The model is trained and validated on patient-specific splits (80/20 train/validation split)

of CXRs and their associated lung masks made available by Candemir & Antani [35]. Sigmoi-

dal activation is used at the deepest convolutional layer to restrict the mask pixels to the range

(0–1). The model is optimized to minimize a combination of binary cross-entropy and dice

losses given by,

Ln ¼ w1LBCEn
þ w2LDSCn

ð1Þ

where LBCEn
is the binary cross-entropy loss, LDSCn

is the Dice loss, and n is the batch number.

The losses are computed for each mini-batch. The final loss for the entire batch is determined

Fig 1. The architecture of the custom U-Net with dropout and its performance curves.

https://doi.org/10.1371/journal.pone.0242301.g001
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by the mean of loss across all the mini-batches. The expression for LBCEn
and LDSCn is given by:

LBCEn
¼ � ½tnlogðynÞ þ ð1 � tnÞlogð1 � ynÞ� ð2Þ

LDSCn ¼ 1 �
2
P

tn � ynP
tn þ

P
yn

ð3Þ

where t is the target and y is the output from the final layer. Here, we choose w1 = w2 = 0.5.

Callbacks are used to store model weights after each epoch only when there is a reduction in

the validation loss. This helps us select the “best model” at the end of the training phase. The

default value of 0.5 is used as the discrimination threshold to convert the predicted probability

into the class labels. The best model weights are used for lung mask generation. The model is

trained to generate lung masks at 256 × 256 pixel resolution for various datasets used in this

study. The lung boundaries are delineated using the generated masks and are cropped to a

bounding box containing the lung pixels. The lung bounding boxes are resized to 256 × 256

pixel dimensions and used for further analysis. The cropped lung bounding boxes are further

preprocessed as follows: (i) Images are normalized so that the pixel values are restricted to the

range (0–1). (ii) Images are passed through a median filter to perform noise removal and edge

preservation. (iii) Image pixels are centered through mean subtraction and are standardized to

reduce computational complexity. The segmentation workflow is shown in Fig 2.

Repeated CXR pretraining and fine-tuning

The steps in training that follow segmentation are shown in Fig 3. First (1), the images are pre-

processed to remove irrelevant features by cropping the lung ROI. The cropped images are

used for model training and evaluation. We perform repeated CXR-specific pretraining in

transferring modality-specific knowledge that is fine-tuned toward detecting COVID-19 viral

manifestations in CXRs. To do this, in the next training step (2) the CNNs are trained on a

large collection of CXRs to separate normals from those showing abnormalities of any type.

Next, (3) we retrain the models from the previous step, focusing on separating CXRs showing

bacterial pneumonia or non-COVID-19 viral pneumonia from normals. Next, (4) we fine-

tune the models from the previous step toward the specific separation of CXRs showing

COVID-19 pneumonia from normals. Finally (5) the learned features from this phase of train-

ing become parts of the ensembles developed to optimize the detection of COVID-19 pneumo-

nitis from CXRs.

Details of this step-wise training approach include that in the first stage of pretraining, a

custom CNN and selected ImageNet-pretrained CNN models are retrained on a large selection

of CXRs with sufficient diversity due to sourcing from different collections, to coarsely learn

the characteristics of normal and abnormal lungs. This CXR-specific pretraining helps in con-

verting the weight layers, specific to the CXRs, in subsequent steps. The motivation behind

Fig 2. Segmentation workflow showing UNet-based mask generation and lung ROI cropping.

https://doi.org/10.1371/journal.pone.0242301.g002
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this approach is to perform a knowledge transfer from the natural image domain to CXR-

domain and learn the characteristics of normal lungs and a wide selection of CXR-specific pul-

monary disease manifestations. During this training step, the datasets are split at the patient-

level into 90% for training and 10% for testing. We randomly allocated 10% of the training

data for validation.

During the second stage of repeated CXR-specific pretraining, the learned knowledge from

the first stage pretrained models is transferred and repurposed to classify CXRs as exhibiting

normal lungs, bacterial pneumonia, or non-COVID-19 viral pneumonia manifestations. This

pretraining is motivated by the biological similarity in non-COVID-19 viral and COVID-19

viral pneumonia. However, there exist distinct radiological manifestations between each other

as well as with non-viral pneumonia-related opacities [6, 29]. The motivation is to transfer the

learned knowledge and fine-tune for COVID-19 detection. For the normal class, we pooled

CXRs from various collections to introduce generalization and improve model performance.

During this pretraining stage, again, the datasets are split at the patient-level into 90% for train-

ing and 10% for testing. For validation, we randomly allocated 10% of the training data.

The learned knowledge from the second stage of pretraining is transferred and fine-tuned

to improve performance in classifying CXRs as showing normal lungs or COVID-19 viral

pneumonia disease manifestations. Table 2 shows the datasets and their distribution used in

various stages of learning proposed in this study. We compare this performance to that with-

out repeated CXR-specific pretraining, referred to as Baseline. In the Baseline data set the Ima-

geNet-pretrained CNNs are retrained out-of-the-box to categorize the CXRs as showing

normal lungs or COVID-19 viral disease manifestations. For the normal class, we pooled

CXRs in a patient-specific manner from various collections to introduce generalization and

improve model performance. During this training step, we performed a patient-level split of

the train and test data as follows: The CXRs from the Montreal-COVID-19 and Twitter-

COVID-19 collections are combined (n = 360) where n is the total number of images in the

collection. The data are split at the patient-level into 80% for training and 20% for testing. We

randomly allocated 10% of the training data for validation. The test set includes 72 CXRs, con-

taining 36 CXRs each from the Montreal-COVID-19 and Twitter-COVID-19 collections. The

Fig 3. The workflow of the proposed repeated CXR-specific pretraining and fine-tuning.

https://doi.org/10.1371/journal.pone.0242301.g003
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GT disease annotations for this test data are set by the verification of publicly identified cases

from two expert radiologists, referred to as Rad-1 and Rad-2 hereafter, with a combined expe-

rience of 60 years. The radiologists used the web-based VGG Image Annotator tool [36] to

independently annotate the test collection by manually setting boundary boxes for what they

believed to be COVID-19-related abnormalities. This was done in independent sessions in

which each radiologist was shown the chest radiographs in Portable Network Graphics format

with a spatial resolution of 1024 × 1024 pixels and was asked to annotate COVID-19 viral dis-

ease-specific ROI in the given test set.

It is well known that large amounts of high-quality data are imperative for DL model train-

ing and achieving superior performance. A challenge in the medical image-based DL is the

lack of sufficient data. Many studies limit their work to data sourced from a single site. Using

limited, single-site data toward model training may result in loss of generalizability and

degrade model performance when evaluated on unseen data from other institutions or diverse

imaging practices. Under these circumstances, generalizability and performance could be

improved by increasing the variability of training data. In this study, we use a diversified data

distribution from multiple CXR collections to enhance model generalization and performance

in repeated CXR-specific pretraining and fine-tuning stages. Class weights are used to reward

the minority classes to prevent biasing error and reduce overfitting. During model training,

data are augmented with random horizontal and vertical pixel shifts in the range (-5 to 5) and

rotations in the degree range (-9 to 9).

The following CNN-based DL models were trained and evaluated at various stages of learn-

ing performed in this study: (i) a custom wide residual network (WRN) [37] with dropout, (ii)

Table 2. Datasets and their distribution used in various stages of learning.

Dataset Normal Abnormal Bacterial pneumonia Non-COVID-19 viral pneumonia COVID-19+

First stage of repeated CXR-specific pretraining

RSNA 8331 17833 - - -

CheXpert 16480 17000 - - -

NIH 59892 51708 - - -

Total 84703 86541 - - -

Second stage of repeated CXR-specific pretraining

RSNA 400 - - - -

CheXpert 400 - - - -

NIH 400 - - - -

Pediatric CXR 1583 - 2780 1493 -

Total 2783 - 2780 1493 -

COVID-19 detection

RSNA 120 - - - -

CheXpert 120 - - - -

NIH 120 - - - -

Montreal-COVID-19 - - - - 226

Twitter-COVID-19 - - - - 134

Total 360 - - - 360

In the first stage of repeated CXR-specific pretraining, a custom CNN and a selection of ImageNet-pretrained CNNs are retrained on a large selection of CXRs to learn

CXR-specific features to categorize them as showing normal or abnormal lungs. During the second stage of repeated CXR-specific pretraining, the first-stage pretrained

models are retrained on a collection of CXRs to categorize them as showing normal lungs, bacterial pneumonia, or non-COVID-19 viral pneumonia manifestations.

Note that the pediatric CXR dataset predates the onset of the SARS-CoV2 virus, and therefore the viral pneumonia is of non-COVID-19 type. During the COVID-19

detection stage, the second-stage pretrained models are fine-tuned to classify CXRs into showing normal lungs or COVID-19 viral patterns.

https://doi.org/10.1371/journal.pone.0242301.t002
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ResNet-18 [38], (iii) VGG-16 [39], (iv) VGG-19 [39], (v) Xception [40], (vi) Inception-V3

[41], (vii) DenseNet-121 [42], (viii) MobileNet-V2 [43], (ix) NasNet-Mobile [44]. The models

are selected with an idea of increasing the architectural diversity, thereby increasing the repre-

sentation power, when used in ensemble learning. All computation is done on a Windows1

system with Intel Xeon CPU E3-1275 v6 3.80 GHz processor and NVIDIA GeForce1GTX

1050 Ti. We used Keras DL framework with Tensorflow backend, CUDA, and CUDNN librar-

ies to accelerate GPU performance.

Residual CNNs having depths of hundreds of layers suffer from diminishing feature reuse

[37]. This occurs due to issues with gradient flow, which results in only a few residual blocks

learning useful feature representations. A WRN combats diminishing feature reuse issues by

reducing the number of layers and increasing model width [37]. The resultant networks are

found to exhibit shorter training times with similar or improved accuracy. In this study, we

use a custom WRN with dropout regularization. Dropouts provide restrictive regularization,

address overfitting issues, and enhance generalization. After empirical observations, we used

5 × 5 kernels for the convolutional layers, assigned a dropout ratio of 0.3, a depth of 16, and a

width of 4, for the custom WRN used in this study. Fig 4 shows a WRN block with the dropout

used in this study. The output from the deepest residual block is average pooled, flattened, and

appended to a final dense layer with Softmax activation to predict class probabilities.

As mentioned before, ImageNet-pretrained CNNs have been developed for computer

vision tasks using natural images. These models have varying depth and learn diversified fea-

ture representations. For medical images that are often available in limited quantities, deeper

models may not be optimal and can lead to overfitting and loss of generalization. During the

first stage of pretraining, the CNNs are instantiated with their ImageNet-pretrained weights

and are truncated at empirically determined intermediate layers to effectively learn the under-

lying feature representations for CXR images and improve classification performance. The

truncated models are appended with (i) zero-padding, (i) a 3 × 3 convolutional layer with 1024

feature maps, (ii) a global average pooling (GAP) layer, (iii) a dropout layer with an empirically

determined dropout ratio of 0.5, and (iv) a final dense layer with Softmax activation to output

prediction probabilities. These customized models learn CXR-specific feature representations

Fig 4. A custom wide residual network (WRN) with dropout regularization.

https://doi.org/10.1371/journal.pone.0242301.g004

Fig 5. The architecture of the CNNs used in the first stage of repeated CXR-specific pretraining. I/P = Input, I-PCNN = truncated ImageNet-pretrained

CNNs, ZP = Zero-padding, CONV = Extra convolution layer, GAP = Global Average Pooling, DO = Dropout, D = Final dense layer with Softmax activation.

https://doi.org/10.1371/journal.pone.0242301.g005
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to classify CXR images as showing normal or abnormal lungs. The custom WRN is initialized

with random weights. Fig 5 shows the architecture of the pretrained CNNs used during the

first stage of repeated CXR-specific pretraining.

In the second stage, pretrained models from the first stage are truncated at their deepest

convolutional layer and appended with (i) GAP layer, (ii) dropout layer (ratio = 0.5), and (iii)

dense layer with Softmax activation to output class probabilities for CXRs showing normal

lungs, bacterial pneumonia, or non-COVID-19 viral pneumonia. Fig 6 shows the architecture

of the customized models used during the second stage of pretraining.

Next, the second-stage pretrained models are truncated at their deepest convolutional layer

and appended with (i) GAP layer, (ii) dropout layer (ratio = 0.5), and (iii) dense layer with

Softmax activation. The resultant models are fine-tuned to classify the CXRs as belonging to

COVID-19+ or normal classes where ‘+’ symbolizes COVID-19-positive cases. Fig 7 shows the

architecture of the models used toward COVID-19 detection.

The models in various learning stages are trained and evaluated using stochastic gradient

descent (SGD) optimization to estimate learning error and classification performance. We

used callbacks to check the internal states of the models and store model checkpoints. The

model weights delivering superior performance with the test data are used for further analysis.

The performance of the models at various learning stages is evaluated using the following met-

rics: (i) Accuracy; (ii) Area under curve (AUC); (iii) Sensitivity; (iv) Specificity; (v) Precision;

(vi) F1 score; (vii) Matthews correlation coefficient (MCC); (viii) Kappa statistic; and (ix) Diag-

nostic Odds Ratio (DOR). The following ensemble strategies are applied to the fine-tuned

models for COVID-19 detection to improve performance: (i) Majority voting; (ii) Simple aver-

aging; and (iii) Weighted averaging. In majority voting, the predictions with maximum votes

are considered as final predictions. The average of the individual model predictions is consid-

ered the final prediction in a simple averaging ensemble. For a weighted ensemble, we

Fig 6. The architecture of the CNNs used in the second stage of pretraining. I/P = Input, CXR-Pre-CNN = CXR-specific CNNs from the

first stage of pretraining, truncated at their deepest convolutional layer, GAP = Global Average Pooling, DO = Dropout, D = Final dense

layer with Softmax activation.

https://doi.org/10.1371/journal.pone.0242301.g006

Fig 7. The architecture of the CNNs fine-tuned toward COVID-19 detection. I/P = Input, CXR-Pre-CNN = CXR-pretrained CNNs from

the second stage of pretraining, truncated at their deepest convolutional layer, GAP = Global Average Pooling, DO = Dropout, D = Final

dense layer with Softmax activation.

https://doi.org/10.1371/journal.pone.0242301.g007
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optimized the weights for the model predictions that minimized the total logarithmic loss.

This loss decreases as the prediction probabilities converge to GT labels. We used the Sequen-

tial Least Squares Programming (SLSQP) algorithmic method [45] to perform several itera-

tions of constrained logarithmic loss minimization to converge to the optimal weights for the

model predictions.

Inter-reader variability analysis

Fig 8 shows examples of COVID-19 viral disease-specific ROI annotations on CXRs made by

Rad-1 and Rad-2. In this study, we used the well-known Simultaneous Truth and Performance

Level Estimation (STAPLE) algorithm [13] to arrive at a consensus reference ROI annotation

and use it to evaluate the performance of the top-N ensembles and to simultaneously assess the

performance against each radiologist.

STAPLE methods are widely used in validating image segmentation algorithms and com-

paring the performance of experts. Segmentation solutions are treated as a response to a pixel-

wise classification problem. The algorithm uses an expectation-maximization (EM) approach

Fig 8. Examples showing inter-reader variability in annotating COVID-19 disease ROI. (A) and (B) show the annotations (bounding boxes in blue) of Rad-1 and Rad-

2, respectively, for a given COVID-19 disease labeled image; (C) and (D) shows the GT annotations of Rad-1 and Rad-2, respectively for another COVID-19 disease

labeled image.

https://doi.org/10.1371/journal.pone.0242301.g008

Table 3. Performance metrics achieved during the first-stage of CXR-specific pretraining.

Models Acc. AUC (CI) Sens. Spec. Prec. F1 MCC Kappa DOR

Custom WRN 0.6696 0.722 (0.7153, 0.7287) 0.6566 0.6828 0.6763 0.6663 0.3395 0.3393 4.12

VGG-16 0.6874 0.7397 (0.7331, 0.7463) 0.6641 0.711 0.6988 0.6810 0.3755 0.3750 4.87

VGG-19 0.6913 0.7435 (0.7374, 0.7506) 0.6651 0.7178 0.704 0.6840 0.3833 0.3827 5.06

Inception-V3 0.6842 0.7375 (0.7309, 0.7441) 0.6186 0.7506 0.7145 0.6631 0.3723 0.3689 4.89

Xception 0.6727 0.7287 (0.7220, 0.7354) 0.6364 0.7094 0.6885 0.6614 0.3466 0.3456 4.28

DenseNet-121 0.6827 0.7416 (0.7350, 0.7482) 0.7589 0.606 0.6603 0.7062 0.3692 0.3650 4.85

NasNet-Mobile 0.6820 0.7347 (0.7281, 0.7413) 0.5802 0.7849 0.7313 0.6471 0.3728 0.3647 5.05

MobileNet-V2 0.6844 0.7426 (0.7360, 0.7492) 0.7007 0.668 0.6805 0.6904 0.3688 0.3686 4.72

ResNet-18 0.6821 0.7338 (0.7272, 0.7404) 0.7307 0.6332 0.6679 0.6979 0.3657 0.3640 4.69

The custom WRN is initialized with random weights. Data in parenthesis are 95% CI for the AUC values measured as the exact Clopper–Pearson interval corresponding

to separate 2-sided CI with individual coverage probabilities of
ffiffiffiffiffiffiffiffiffi
0:95
p

. (Acc. = Accuracy, AUC = Area under curve, Sens. = Sensitivity, Spec. = Specificity, Prec. =

Precision, F1 = F1 score, MCC = Matthews correlation coefficient, DOR = Diagnostics odd ratio). Bold numerical values denote best performances in the respective

columns. None of these individual differences are statistically significant.

https://doi.org/10.1371/journal.pone.0242301.t003
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that computes a probabilistic estimate of a reference segmented image computed from a col-

lection of expert annotations and weighing them by an estimated level of performance for each

expert. It incorporates this knowledge to spatially distribute the segmented structures while

satisfying homogeneity constraints. The details pertaining to the algorithm and the perfor-

mance measures including Kappa statistic, sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) used to analyze inter-reader variability and assess

program performance are summarized in Section A of the S1 File.

Disease ROI localization

In this study, we use CRM [15] visualization to evaluate the effectiveness of CRM-based

ensemble localization. Details of the CRM algorithm are provided in Section B of the S1 File.

First, we use CRM-based ROI localization to interpret predictions of individual CNNs and

compare against the GT annotations provided by each expert. Next, we select the top-3, top-5,

and top-7 performing models, construct ensemble CRMs through an averaging process and

compare against each radiologists’ independent annotations, and the STAPLE-generated con-

sensus annotation. Finally, we quantitatively compare the ensemble localization performance

with each other and against individual CRMs in terms of IoU and mean average precision

(mAP) metrics. The mAP score is calculated by taking the mean of average precision (AP)

over various IoU thresholds [46].

Statistical analysis

Statistical tests were conducted to determine significance in performance differences between

the models. We used confidence intervals (CI) to measure model discrimination capability

and estimate its precision through the error margin. We measured 95% CI as the exact Clop-

per–Pearson interval for the AUC values obtained by the models in various learning stages.

Statistical packages including StatsModels and SciPy are used in these analyses. We performed

a one-way analysis of variance (ANOVA) [47] on mAP values obtained with the top-N (N =

(3, 5, 7)) model ensembles to study their localization performance and determine statistical sig-

nificance among them and against the annotations of each of the radiologist and also the STA-

PLE-generated consensus ROI annotation. One-way ANOVA tests are performed only if the

assumptions of data normality and homogeneity of variances are satisfied for which we per-

formed Shapiro-Wilk and Levene’s analyses [47]. Statistical analyses are performed using R

statistical software (Version 3.6.1).

Results

Recall that in the first stage of CXR-specific pretraining, we truncated the ImageNet-pretrained

CNNs at their intermediate layers to empirically determine the layers that demonstrated supe-

rior performance. These empirically determined layers for the various models are listed in Sec-

tion C of the S1 File. The performance achieved through truncating the models at the selected

intermediate layers and appending task-specific heads toward classifying the CXRs is shown in

Table 3.

From Table 3, we observe that the AUC values are not statistically significantly different

across the models (p> 0.05). The DOR provides a measure of diagnostic accuracy and estima-

tion of discriminative power. A high DOR is obtained by a model that exhibits high sensitivity

and specificity with low FPs and FNs. A model with higher AUC indicates that it is more capa-

ble of distinguishing TNs and TPs. Considering DOR and AUC values, VGG-19 demonstrates

somewhat better performance followed by NasNet-Mobile in classifying CXRs into normal or

abnormal categories. Also considering MCC and Kappa metrics, VGG-19 outperformed other
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models. The confusion matrix, ROC curves, and normalized Sankey flow diagram obtained

using the VGG-19 model toward this classification task are shown in Fig 9. We used a normal-

ized Sankey diagram [48] to visualize model performance. Here, weights are assigned to the

classes on the truth (left) and prediction (right) side of the diagram to provide an equal visual

Fig 9. Performance achieved using the VGG-19 model during the first-stage of CXR-specific pretraining. (A) Confusion matrix; (B) ROC curves; (C) Normalized

Sankey flow diagram.

https://doi.org/10.1371/journal.pone.0242301.g009

Table 4. Performance metrics achieved by the models during the second stage of CXR-specific pretraining.

Models Acc. AUC (CI) Sens. Spec. Prec. F1 MCC Kappa DOR

Custom WRN 0.7007 0.8589 (0.8332, 0.8846) 0.7007 0.8068 0.74 0.671 0.5326 0.5136 9.78

VGG-16 0.8879 0.9735 (0.9616, 0.9854) 0.8879 0.9298 0.896 0.8773 0.8312 0.8214 104.91

VGG-19 0.8922 0.9739 (0.9621, 0.9857) 0.8922 0.9304 0.906 0.8825 0.8389 0.8281 110.64

Inception-V3 0.9135 0.9792 (0.9699, 0.9895) 0.9135 0.9518 0.9120 0.9110 0.8656 0.8644 180.97

Xception 0.905 0.9714 (0.9590, 0.9838) 0.905 0.943 0.9064 0.9017 0.8532 0.8503 157.61

DenseNet-121 0.9177 0.9835 (0.9740, 0.9930) 0.9177 0.9519 0.9187 0.9141 0.8736 0.8704 220.68

NasNet-Mobile 0.9163 0.9819 (0.9720, 0.9918) 0.9163 0.9477 0.9222 0.9106 0.8674 0.8674 198.38

MobileNet-V2 0.9121 0.9812 (0.9711, 0.9913) 0.9121 0.952 0.9113 0.9098 0.8637 0.8621 205.81

ResNet-18 0.8936 0.9738 (0.9620, 0.9856) 0.8936 0.9329 0.8997 0.8849 0.8383 0.8309 116.77

Bold numerical values denote best performances in the respective columns. None of these individual differences are statistically significant.

https://doi.org/10.1371/journal.pone.0242301.t004
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representation for the classes on either side. The strips width changes across the plot so that

the width of each at the right side represents the fraction of all objects which the model predicts

as belonging to a category that truly belongs to each of the categories.

Recall that during the second stage of CXR-specific pretraining, the learned representations

from the first-stage pretrained models are transferred and fine-tuned to classify CXRs as

Fig 10. Performance achieved using the DenseNet-121 model during the second stage of CXR-specific pretraining. (A) Confusion matrix; (B) ROC curves; (C)

Normalized Sankey flow diagram.

https://doi.org/10.1371/journal.pone.0242301.g010

Table 5. Performance metrics achieved with fine-tuning the second-stage pretrained models for COVID-19 detection.

Models Acc. AUC (CI) Sens. Spec. Prec. F1 MCC Kappa DOR

D-WRN 0.8333 0.9043 (0.8562, 0.9524) 0.9028 0.7639 0.7927 0.8442 0.6732 0.6667 30.06

VGG-16 0.8681 0.9302 (0.8885, 0.9719) 0.8473 0.8889 0.8841 0.8653 0.7368 0.7361 44.4

VGG-19 0.8611 0.9176 (0.8726, 0.9626) 0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17

Inception-V3 0.8611 0.9123 (0.8660, 0.9586) 0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17

Xception 0.8681 0.9297 (0.8879, 0.9715) 0.8334 0.9028 0.8956 0.8634 0.7379 0.7361 46.47

DenseNet-121 0.875 0.9386 (0.8993, 0.9779) 0.9028 0.8473 0.8553 0.8784 0.7512 0.75 51.54

NasNet-Mobile 0.8542 0.911 (0.8644, 0.9576) 0.8612 0.8473 0.8494 0.8552 0.7085 0.7083 34.43

MobileNet-V2 0.875 0.925 (0.8819, 0.9681) 0.8473 0.9028 0.8971 0.8715 0.7512 0.75 51.54

ResNet-18 0.8958 0.9490 (0.9132, 0.9854) 0.8612 0.9306 0.9254 0.8921 0.7936 0.7917 83.2

Bold numerical values denote best performances in the respective columns. Overall, ResNet-18 showed the best performance but individual metrics are not statistically

different from other models.

https://doi.org/10.1371/journal.pone.0242301.t005
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showing normal lungs, bacterial proven pneumonia, or non-COVID-19 viral pneumonia. The

performance achieved by the second-stage pretrained models is shown in Table 4.

We observed no statistically significant difference in AUC values achieved with the models

during this pretraining stage (p> 0.05). Considering DOR, DenseNet-121 demonstrated bet-

ter performance (220.68) followed by MobileNet-V2 (205.81) in categorizing the CXRs as

showing normal lungs, bacterial pneumonia, or non-COVID-19 viral pneumonia. Consider-

ing MCC and F1 score metrics that consider both sensitivity and precision to determine model

generalization, DenseNet-121 outperformed other models. The confusion matrix, ROC curves,

and normalized Sankey flow diagram obtained using the DenseNet-121 model toward this

classification task are shown in Fig 10.

The second stage pretrained models are truncated at their deepest convolutional layer,

appended with task-specific heads, and fine-tuned to classify the CXRs as belonging to

COVID-19+ or normal categories. Table 5 shows the performance metrics achieved by the

models toward this task.

We observed no statistically significant difference in AUC values (p> 0.05) achieved by the

fine-tuned models. Considering DOR, ResNet-18 demonstrated better performance (83.2) fol-

lowed by DenseNet-121 (51.54) in categorizing the CXRs as showing normal lungs or mani-

festing COVID-19 viral disease. The custom WRN, Inception-V3, and DenseNet-121 are

Fig 11. Performance achieved using the ResNet-18 model during fine-tuning for COVID-19 detection. (A) Confusion matrix; (B) ROC curves; (C) Normalized

Sankey flow diagram.

https://doi.org/10.1371/journal.pone.0242301.g011
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found to be equally sensitive (0.9028) toward this classification task. However, the ResNet-18

fine-tuned model demonstrated better performance with other performance metrics including

accuracy, AUC, specificity, precision, F1 score, MCC, and Kappa. The confusion matrix, ROC

Table 6. Performance metrics achieved during fine-tuning the second-stage pretrained models for COVID-19 detection is compared with the baseline.

Models Method Acc. AUC (CI) Sens. Spec. Prec. F1 MCC Kappa DOR Para. Reduction (%)

Custom WRN Baseline 0.7897 0.8014 (0.7362, 0.8666) 0.6742 0.8675 0.8396 0.7478 0.5611 0.5433 14.34 -

Fine-tuned 0.8333 0.9043 (0.8562, 0.9524) 0.9028 0.7639 0.7927 0.8442 0.6732 0.6667 30.06 0

VGG-16 Baseline 0.7708 0.7993 (0.7338, 0.8648) 0.6667 0.875 0.8422 0.7442 0.5539 0.5416 14.01 -

Fine-tuned 0.8681 0.9302 (0.8885, 0.9719) 0.8473 0.8889 0.8841 0.8653 0.7368 0.7361 44.4 0

VGG-19 Baseline 0.7847 0.8176 (0.7545, 0.8807) 0.8334 0.7362 0.7595 0.7948 0.5722 0.5694 13.97 -

Fine-tuned 0.8611 0.9176 (0.8726, 0.9626) 0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17 0

Inception-V3 Baseline 0.8472 0.9285 (0.8864, 0.9706) 0.8473 0.8473 0.8473 0.8473 0.6945 0.6944 30.79 -

Fine-tuned 0.8611 0.9123 (0.8660, 0.9586) 0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17 42.36

Xception Baseline 0.8472 0.9215 (0.8775, 0.9655) 0.9028 0.7917 0.8125 0.8553 0.6988 0.6944 35.31 -

Fine-tuned 0.8681 0.9297 (0.8879, 0.9715) 0.8334 0.9028 0.8956 0.8634 0.7379 0.7361 46.47 37.57

DenseNet-121 Baseline 0.8333 0.9153 (0.8698, 0.9608) 0.9028 0.7639 0.7927 0.8442 0.6732 0.6667 30.06 -

Fine-tuned 0.8750 0.9386 (0.8993, 0.9779) 0.9028 0.8473 0.8553 0.8784 0.7512 0.75 51.54 54.51

NasNet-Mobile Baseline 0.7778 0.8502 (0.7919, 0.9085) 0.8473 0.7084 0.744 0.7923 0.561 0.5556 13.48 -

Fine-tuned 0.8542 0.911 (0.8644, 0.9576) 0.8612 0.8473 0.8494 0.8552 0.7085 0.7083 34.43 11.85

MobileNet-V2 Baseline 0.8681 0.9325 (0.8915, 0.9735) 0.8473 0.8889 0.8841 0.8653 0.7368 0.7361 44.4 -

Fine-tuned 0.8750 0.925 (0.8819, 0.9681) 0.8473 0.9028 0.8971 0.8715 0.7512 0.75 51.54 37.38

ResNet-18 Baseline 0.8542 0.9302 (0.8885, 0.9719) 0.9167 0.7917 0.8149 0.8628 0.714 0.7083 41.83 -

Fine-tuned 0.8958 0.9477 (0.9130, 0.9850) 0.8612 0.9306 0.9254 0.8921 0.7936 0.7917 83.2 46.05

The Baseline refers to retraining out-of-the-box ImageNet-pretrained CNNs toward this task. Bold numerical values show the models that achieved a significantly better

AUC compared to baseline and the models that showed a reduction in the number of parameters.

https://doi.org/10.1371/journal.pone.0242301.t006

Fig 12. COVID-19 viral disease ROI CRM-based localization achieved using the fine-tuned models and their baseline counterparts. (A) Original CXR with STAPLE-

generated consensus ROI (shown as blue box ROI); (B) Baseline VGG-16; (C) Baseline VGG-19; (D) Baseline MobileNet-V2; (E) Baseline ResNet-18; (F) Baseline

Inception-V3; (G) Fine-tuned VGG-16; (H) Fine-tuned VGG-19; (I) Fine-tuned MobileNet-V2; (J) Fine-tuned ResNet-18; (K) Fine-tuned Inception-V3.

https://doi.org/10.1371/journal.pone.0242301.g012
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curves, and normalized Sankey flow diagram obtained using the ResNet-18 model toward this

classification task are shown in Fig 11.

We visualized the deepest convolutional layer feature embedding for the ResNet-18 fine-

tuned model, using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm [49],

which is shown in Section D of the S1 File. The performance obtained with the fine-tuned

models is compared to the Baseline, as shown in Table 6. The Baseline refers to out-of-the-

box ImageNet-pretrained CNNs that are retrained toward this classification task. The custom

WRN is initialized with randomized weights for the Baseline task.

As observed in Table 6, the fine-tuned models achieved better performance compared to

their baseline counterparts. The AUC metrics achieved with the fine-tuned custom WRN,

VGG-16, VGG-19, and NasNet-Mobile models are shown in bold type and are observed to be

statistically better than (p< 0.05) their baseline, untuned counterparts. We also observed a

marked reduction in the number of trainable parameters for the fine-tuned models. The fine-

tuned DenseNet-121 model showed a 54.51% reduction in the number of trainable parameters

while delivering better performance as compared to its baseline counterpart. The same holds

true for ResNet-18 (46.05%), Inception-V3 (42.36%), Xception (37.57%), MobileNet-V2

(37.38%), and NasNet-Mobile (11.85%) with the added benefit of improved performance com-

pared to their baseline models.

We performed visualization studies to compare how the fine-tuned models and their base-

line counterparts localize the ROIs in a CXR manifesting COVID-19 viral patterns. Fig 12

shows the following: (i) a CXR with COVID-19 disease consensus ROI obtained with STAPLE

using Rad-1 and Rad-2 annotations, and (ii) the ROI localization achieved with various fine-

tuned models and their baseline counterparts.

We extracted the features from the deepest convolution layer of the fine-tuned models and

their baseline counterparts. We used CRM tools to localize the pixels involved in predicting

the CXR images as showing COVID-19 viral disease patterns. As observed in Fig 12, the base-

line models demonstrated poor disease ROI localization, compared to the fine-tuned models.

We observed that the fine-tuned models learned salient ROI feature representations, matching

the experts’ knowledge about the disease ROI. The localization excellence of the fine-tuned

models can be attributed to (i) CXR-specific knowledge transfer that helped to learn modality-

specific characteristics; the learned feature representations are transferred and repurposed for

the COVID-19 detection task, and (ii) optimal architecture depth to learn the salient ROI fea-

ture representations to classify CXRs to their respective categories. These deductions are sup-

ported by poor localization performance of deeper, out-of-the-box ImageNet-pretrained

Table 7. Performance achieved with an ensemble of top-3, top-5, and top-7 fine-tuned models toward COVID-19 detection.

Ensemble method Top-N models Acc. AUC (CI) Sens. Spec. Prec. F1 MCC Kappa DOR

Majority voting 3 0.9028 0.9097 (0.8628, 0.9566) 0.8612 0.9167 0.9155 0.8986 0.8084 0.8055 102.22

5 0.8819 0.8819 (0.8291, 0.9347) 0.8612 0.9028 0.8986 0.8795 0.7646 0.7639 57.63

7 0.8889 0.8889 (0.8375, 0.9403) 0.875 0.9028 0.9000 0.8874 0.7781 0.7778 65.02

Simple averaging 3 0.8958 0.9483 (0.9121, 0.9845) 0.8889 0.9028 0.9015 0.8952 0.7918 0.7917 74.32

5 0.8819 0.9462 (0.9093, 0.9831) 0.8612 0.9028 0.8986 0.8795 0.7646 0.7639 57.63

7 0.8819 0.9453 (0.9081, 0.9825) 0.875 0.8889 0.8874 0.8812 0.764 0.7639 56.01

Weighted averaging 3 0.9097 0.9508 (0.9118, 0.9844) 0.9028 0.9445 0.9394 0.9091 0.8196 0.8194 105.6

5 0.9028 0.9493 (0.9134, 0.9852) 0.875 0.9306 0.9265 0.9000 0.8069 0.8055 93.87

7 0.8889 0.9459 (0.9089, 0.9829) 0.8889 0.8889 0.8889 0.8889 0.7778 0.7778 64.02

Bold numerical values denote best performances in the respective columns. Top-3 weighted averaging looks best but the AUC differences are not statistically significant.

https://doi.org/10.1371/journal.pone.0242301.t007
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baseline CNNs like ResNet-18, Inception-V3, and MobileNet-V2, which possibly suffered

from baseline overfitting that resulted in poor learning and generalization.

Fig 13. Performance achieved through weighted averaging of the top-3 fine-tuned CNNs toward COVID-19 detection. (A) Confusion matrix; (B) ROC curves; (C)

Normalized Sankey flow diagram.

https://doi.org/10.1371/journal.pone.0242301.g013

Table 8. Performance achieved in terms of CRM-based IoU and mAP values by the individual fine-tuned CNNs using the radiologists’ annotations and STAPLE-

generated ROI consensus annotation.

Annotations Parameters Xception Inception-V3 DenseNet-121 VGG-19 VGG-16 MobileNet-V2 ResNet-18 NasNet-Mobile

Rad-1 IOU 0.0678 0.1174 0.0799 0.0854 0.1076 0.0644 0.0972 0.1000

mAP@[0.1:0.7] 0.0571 0.1142 0.0697 0.0645 0.0986 0.0712 0.0593 0.075

Ranking 8 1 5 6 2 4 7 3

Rad-2 IOU 0.2146 0.2567 0.2398 0.2183 0.2230 0.1825 0.2293 0.2569

mAP@[0.1:0.7] 0.146 0.206 0.1858 0.1643 0.1882 0.1467 0.1742 0.2186

Ranking 8 2 4 6 3 7 5 1

STAPLE IOU 0.0670 0.1337 0.0916 0.0951 0.1267 0.0713 0.1126 0.1095

mAP@[0.1:0.7] 0.0603 0.1213 0.0792 0.073 0.1068 0.0775 0.0648 0.0851

Ranking 8 1 4 6 2 5 7 3

Bold numerical values denote best performances in the respective rows.

https://doi.org/10.1371/journal.pone.0242301.t008
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We constructed ensembles of the top-3, top-5, and top-7 performing fine-tuned CNNs to

evaluate for an improvement in predicting the CXRs as showing normal lungs or COVID-19

viral disease patterns. We used majority voting, simple averaging, and weighted averaging

strategies toward this task. In weighted averaging, we optimized the weights for the model pre-

dictions to minimize the total logarithmic loss. We used the SLSQP algorithm to iterate

through this minimization process and converge to the optimal weights for the model predic-

tions. The results achieved with the various ensemble methods are shown in Table 7. We

observed no statistically significant difference in the AUC values achieved by the various

ensemble methods (p> 0.05). We observed that the performance with top-3 ensembles is bet-

ter than that of top-5 and top-7 ensembles. It is observed that the weighted averaging of top-3

fine-tuned CNNs viz. ResNet-18, MobileNet-V2, and DenseNet-121 demonstrated better per-

formance when their predictions are optimally weighted at 0.6357, 0.1428, and 0.2216, respec-

tively. This weighted averaging ensemble delivered better performance in terms of accuracy,

AUC, DOR, Kappa, F1 score, MCC, and other metrics, as compared to other ensembles. The

confusion matrix, ROC curves, and normalized Sankey flow diagram obtained with the

weighted averaging of the top-3 fine-tuned CNNs are shown in Fig 13.

Table 8 shows the performance achieved in terms of CRM-based IoU and mAP scores by

the individual fine-tuned CNNs using the annotations of Rad-1, Rad-2, and STAPLE-gener-

ated consensus ROI. For Rad-1, the fine-tuned Inception-V3 model demonstrated higher val-

ues for the average IoU and mAP metrics. For Rad-2, we observed that the fine-tuned NasNet-

Mobile outperformed other models. With STAPLE-generated consensus ROI, the Inception-

V3 model outperformed other models in localizing COVID-19 viral disease-specific ROI.

The precision-recall (PR) curves of the best performing models using Rad-1, Rad-2, and the

STAPLE-generated consensus ROI are shown in Section E of the S1 File. These curves are gen-

erated for varying IoU thresholds in the range (0.1–0.7). This range is empirically determined

from the PR curves to alleviate issues due to poor and high sensitivity and precision rates and

ensure measuring mAP scores to appropriately reflect the models’ localization ability. The con-

fidence score threshold is varied to generate each curve. For a given fine-tuned model, we

define the confidence score as the highest heat map value in the predicted ROI weighted by the

classification score at the output nodes. We considered the ROI predictions as TP when the

IoU and confidence scores are higher than their corresponding thresholds. For a given PR

curve, we computed the AP score as the average of the precision across all recall values.

The following are the important observations from this localization study: The accuracy of

a model is not related to disease ROI localization. From Table 6, we observed that the fine-

tuned ResNet-18 model is highly accurate, followed by DenseNet-121 and MobileNet-V2, in

classifying the CXRs as belonging to the COVID-19 viral category. However, while localizing

Table 9. IOU and mAP values obtained with top-3, top-5, and top-7 ensembles using annotations of Rad-1, Rad-2, and STAPLE-generated consensus ROI

annotations.

Annotations Parameters Top-3 Top-5 Top-7

Rad-1 IOU 0.1343 0.0994 0.1236

mAP@[0.1:0.7] 0.1264 0.0767 0.0753

Rad-2 IOU 0.2673 0.2955 0.2865

mAP@[0.1:0.7] 0.2179 0.2352 0.2292

STAPLE IOU 0.1518 0.1193 0.1350

mAP@[0.1:0.7] 0.1352 0.0924 0.0916

Bold numerical values denote best performances in the respective rows.

https://doi.org/10.1371/journal.pone.0242301.t009
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disease-specific ROI, the Inception-V3, VGG-16, and NasNet-Mobile fine-tuned models deliv-

ered superior ROI localization performance compared to other models. This underscores the

fact that the classification accuracy of a model is not an optimal measure to interpret its

learned behavior. Localization studies are indispensable to understand the learned features

and compare them to the expert knowledge for the problem under study. These studies pro-

vide comprehensive qualitative and quantitative measures of the learning capacity of the

model and its generalization ability.

Next, we constructed an ensemble of CRMs through averaging the ROI localization by the

top-3, top-5, and top-7 fine-tuned models. We ranked the models based on the IoU and mAP

scores. The localization performance achieved with the various ensemble CRMs is shown in

Table 9. We observed that the ensemble CRMs delivered superior ROI localization perfor-

mance compared to that achieved with the individual models. However, the number of models

in the top-performing ensembles varied. While using the annotations of Rad-1, we observed

that the ensemble of the top-3 models demonstrated higher values for IoU and mAP than

other ensembles. However, for Rad-2, the ensemble of the top-5 models demonstrated supe-

rior localization with IoU and mAP values of 0.2955 and 0.2352, respectively. The ensemble of

top-3 fine-tuned models demonstrated higher values for IoU and mAP scores compared to

other models while using STAPLE-generated ROI consensus annotation. Considering this

study, we observed that averaging the CRMs of more than top-5 fine-tuned models didn’t

Fig 14. Sample CXRs from two different patients (rows A-D and E-H, respectively) show ROI annotations generated. (A) and (E) Rad-1 (in blue); (B) and (F) Rad-2

(in green); (C) and (G) Top-3 ensemble using STAPLE-generated consensus ROI (program) (in yellow); (D) and (H) STAPLE-generated consensus ROI annotation (in

red).

https://doi.org/10.1371/journal.pone.0242301.g014
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improve performance but rather it saturates ROI localization. PR curves resulting from this

observation are shown in Section F of the S1 File.

Fig 15. Instances of ensemble CRMs combining top-N ensemble ROI predictions. (A) top-3 CNNs using STAPLE-generated consensus ROI annotation; (B) top-5

CNNs using Rad-2 annotations. The green box denotes reference ROI annotation and the blue box denotes ensemble CRM localization.

https://doi.org/10.1371/journal.pone.0242301.g015

Fig 16. Statistical analyses. (A) Mean plot for the mAP scores obtained by the top-N ensembles using Rad-1, Rad-2, and STAPLE-generated consensus ROI annotations;

Error bars represent standard errors. The differences are not statistically significant; (B) Residual plot showing the data follow the normal distribution.

https://doi.org/10.1371/journal.pone.0242301.g016
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Instances of CXRs showing ROI annotations of Rad-1, Rad-2, top-3 ensemble using STA-

PLE-generated ROI consensus (referred to as program hereafter), and the STAPLE-generated

ROI consensus annotation are shown in Fig 14.

Fig 15 shows the following: (A) an ensemble CRM generated with the top-3 fine-tuned

models that delivered superior localization performance using STAPLE-generated ROI con-

sensus annotation, and (B) an ensemble CRM generated with the top-5 fine-tuned models that

delivered superior localization performance using the annotations of Rad-2.

We observe that the CRMs obtained using individual models in the top-N ensemble high-

light ROI to varying extents. The ensemble CRM averages the ROIs localized with individual

CRMs to highlight the disease-specific ROI involved in class prediction. The ensemble CRMs

have a superior IoU value, compared to that of individual CRMs; the ensemble CRM improved

localization performance as compared to individual ROI localization. This underscores the

fact that ensemble localization improves performance and ability to generalize, conforming to

the experts’ knowledge about COVID-19 viral disease manifestations.

To perform a one-way ANOVA analysis, we investigated whether the assumptions of data

normality and homogeneous variances are satisfied. We used the Shapiro–Wilk test to investi-

gate for normal distribution of the data and Levene’s test, for homogeneity of variances, using

mAP scores obtained with the top-N ensembles. We plotted the residuals to investigate if the

assumption of normal residual distribution is satisfied. Fig 16 shows the following: (A) The

mean plot for the mAP scores obtained by the top-N ensembles using Rad-1, Rad-2, and STA-

PLE-generated consensus ROI annotations, and (B) a plot of the quantiles of the residuals

against that of the normal distribution.

It is observed from the residual plot shown in Fig 16 that all the points fall approximately

along with a 45-degree reference. This underscores the fact that the assumption of normal dis-

tribution of data is satisfied. Table 10 shows the consolidated results of Shapiro–Wilk, Levene,

and one-way ANOVA analyses.

To compute one-way ANOVA, we measure the variance between group means, the vari-

ance within the group, and the group sizes. This information is combined to measure statistical

significance from the test statistic F. In our study, we have three groups (Rad-1, Rad-2, and

STAPLE) of 10 observations each, hence the distribution is mentioned as F (2, 27). As observed

from Table 10, the p-values obtained with the Shapiro-Wilk test are not significant (p> 0.05)

and reveal that the normality assumption is satisfied. The result of Levene’s test is not statisti-

cally significant (p> 0.05). This demonstrates that the variance across the mAP values

obtained with the annotations of Rad-1, Rad-2, and STAPLE-generated consensus ROI are not

statistically significantly different. Since the conditions of data normality and homogeneity of

variances are satisfied, we performed one-way ANOVA to explore the existence of a statisti-

cally significant difference in the mAP scores. To this end, we observed no statistically signifi-

cant difference in the mAP scores obtained with Rad-1, Rad-2, and STAPLE-generated

consensus ROI (F (2, 27) = 1.678, p = 0.2060). This smaller F-value underscores the fact that

the null hypothesis (H0), i.e., that all groups demonstrate equal mAP scores, holds good.

We used the STAPLE-generated consensus ROI as to the standard reference and measured

its agreement with that generated by the program and the radiologists. The consensus ROI is

estimated from the set of ROI annotations provided by Rad-1 and Rad-2. STAPLE assumes

Table 10. Consolidated results of Shapiro–Wilk, Levene, and one-way ANOVA analyses.

Metric Shapiro–Wilk (p) Levene’s test (p) ANOVA (F) ANOVA (p)

mAP 0.1014 0.3365 1.678 0.2060

https://doi.org/10.1371/journal.pone.0242301.t010
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that Rad-1 and Rad-2 individually annotated ROIs for the given CXRs so that the quality of

annotations are captured. We determined the set of TPs, FPs, TNs, and FNs for 10 different

IoU thresholds in the range (0.1–0.7) and provided a measure of inter-reader variability and

program performance using the following metrics: (i) Kappa statistic; (ii) Sensitivity; (iii) Spec-

ificity; (iv) PPV; and (v) NPV. These parameters depend on the relative proportion of the dis-

ease-specific ROI. An ROI provided by a radiologist or predicted by the program is considered

as a TP if the IoU with the consensus ROI is greater than or equal to a given IoU threshold.

Each radiologist or program ROI that produces an IoU less than the threshold or falls outside

the consensus ROIs is counted as FP. The FN is defined as a radiologist or program ROI that is

completely missing when there is a consensus ROI. If there is an image with no ROIs on both

Fig 17. Assessing inter-reader variability and program performance. The following performance metrics are measured and plotted for 10 different IoU thresholds in

the range (0.1–0.7): (A) Kappa statistic; (B) Sensitivity; (C) Specificity; (D) PPV.

https://doi.org/10.1371/journal.pone.0242301.g017

Table 11. Performance level assessment and inter-reader variability analysis using STAPLE-generated consensus ROI.

Annotations Kappa Sensitivity Specificity PPV NPV

Rad—1 0.1805 1.0 0.1384 0.7140 1.0

Rad—2 0.0080 1.0 0.0121 0.2877 1.0

Program 0.0740 0.9037 0.1467 0.5154 0.6

Bold numerical values denote the best performances in respective columns.

https://doi.org/10.1371/journal.pone.0242301.t011
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the ROI annotations under test, it is considered as TN. Fig 17 shows the variability in Kappa,

sensitivity, specificity, and PPV values observed for the Rad-1, Rad-2, and the program.

The estimated Kappa, sensitivity, specificity, PPV, and NPV values that are averaged over

10 different IoU thresholds in the range (0.1–0.7) are shown in Table 11.

The performance assessment as observed from Table 11 indicated that Rad-1 is more spe-

cific than Rad-2. The same holds good for the Kappa and PPV metrics. We observed that NPV

is 1 for Rad-1 and Rad-2. This is because the number of FNs = 0, which signifies that none of

the radiologists ROI completely missed when there is an ROI in the STAPLE-generated con-

sensus annotation. However, the NPV achieved with the program is 0.6 which underscores the

fact the predicted ROIs missed a marked proportion of ROIs in the STAPLE-generated con-

sensus. This assessment indicated that Rad-1 generated annotations similar to that of STA-

PLE-generated consensus by demonstrating higher values for Kappa, sensitivity, and PPV as

compared to Rad-2. We also observed that the program is performing with higher specificity

but with lower sensitivity as compared to Rad-1 and Rad-2. These assessments provided feed-

back indicating the need for program modifications, parameter tuning, and other measures, to

improve its localization performance.

Discussion

There are several salient observations to be made from the analyses reported above. These

include (i) the kind of data used in training, (ii) the size and variety of data collections, (iii)

learning ability of various DL architectures informing their selection, (iv) need for customizing

the models for improved performance, (v) benefits of ensemble learning, and (vi) the impera-

tive need for localization to measure conformity to the problem.

We observed that repeated CXR-specific pretraining and fine-tuning resulted in improved

performance toward COVID-19 detection as compared to the baseline, out-of-the-box, Ima-

geNet pretrained CNNs. This highlights the need to use task-specific modality training result-

ing in improved model adaption, convergence, reduced bias, and reduced overfitting. This

approach may have helped the DL models differentiate distinct radiological manifestations

between COVID viral pneumonia and other non-viral pneumonia-related opacities. An added

benefit is that this approach resulted in reductions in both computations and the number of

trainable parameters.

It is well-known that neural networks develop or learn implicit rules to convert input

data into features for making decisions. These learned rules are opaque to the user and the

decisions are difficult to interpret. However, an interpretable model explaining its predic-

tions related to model accuracy doesn’t necessarily guarantee those accurate predictions are

for the right reasons. Localization studies help observe if the model has learned salient ROI

feature representations that agree with expert annotations. In our study, we demonstrate

that CRM visualization tools show superior localization performance in localizing COVID-

19 viral disease-specific ROIs, particularly for the fine-tuned models compared to the Ima-

geNet-pretrained CNNs.

Model ensembles further improved qualitative and quantitative performance in COVID-19

detection. Ensemble learning compensated mislabeling in individual models by combining

their predictions and reduced prediction variance to the training data. We observed that the

weighted averaging ensemble of the top-3 performing fine-tuned models delivered better per-

formance compared to any individual constituent model. The results demonstrate that the

detection task benefits from an ensemble of repeated CXR-specific pretrained and fine-tuned

models. Ensemble learning also compensates for localization errors in CRMs and missed ROIs

by combining and averaging the individual CRMs. Empirical evaluations show that ensemble
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localization demonstrated superior IoU and mAP scores and they significantly outperform

ROI localization by individual CNN models.

It is difficult to quantify individual radiologists’ performance in annotating ROIs in medical

images. Not only are they the truth standard, but this “truth” is impacted by inherent biases

related to a pandemic event like COVID-19 and their clinical exposure and experience. This

complexity is compounded further because CXRs offer lower diagnostic sensitivity than CTs

for example. So, a conservative assessment of the CXR is likely to result in smaller and more

specific truth annotation ROIs. We used STAPLE to compute a probabilistic estimate of expert

ROI annotations for the two expert radiologists who contributed to this study. STAPLE

assumes these annotations are conditionally independent. The algorithm discovers and quanti-

fies the bias among the experts when they differ in their opinion of the disease-specific ROI

annotation. We use STAPLE-generated annotations as GT to assess the variation for every

annotation for each expert, where the DL model is also considered as an expert. We observed

that the Kappa values obtained using the STAPLE-generated consensus ROI are in a low range

(0–0.2). This is probably because of the small number of experts and their inherent biases in

assessing COVID-19 cases. Particularly, we note that Rad-1 was very specific in marking the

ROIs, whereas Rad-2 annotated larger regions that sometimes accommodated multiple smaller

regions into a single ROI. This led to lower IoU value that in turn affected the Kappa value.

The pandemic is an evolving situation and CXR manifestations often exhibit biological simi-

larity to non-COVID-19 viral pneumonia. The CXR is not a definitive diagnostic tool and

expert views may differ in referring a candidate patient for further review. It would be helpful

to conduct a similar analysis with a larger number of experts on a larger patient population.

We remain hopeful that health agencies and medical societies will make such image collections

available for future research. As more reliable and widely available COVID testing becomes

available, the results of that testing could be used with CXRs as an additional important indica-

tor of GT.

Regarding the limitations of our study: (i) The publicly available COVID-19 data collections

used are fairly small and may not encompass a wide range of disease pattern variability. An

appropriately annotated large-scale collection of CXRs with COVID-19 viral disease manifes-

tations is necessary to build confidence in the models, improve their robustness, and generali-

zation. (ii) The study is evaluated with the ROI annotations obtained from two expert

radiologists. However, it would help to have more radiologists contribute independently in the

annotation process and then arrive at a consensus that could reduce annotation errors. (iii)

We used conventional convolutional kernels toward this study, however, future research could

propose novel convolutional kernels that reduce feature dimensionality and redundancy and

result in improved performance with reduced memory and computational requirements. (iv)

Ensemble models require markedly high training time, memory, and computational resources

for successful deployment and use. However, recent advancements in storage and computing

solutions and cloud technology could lead to improvements in this regard.

Conclusions

In this study, we have demonstrated that a combination of repeated CXR-specific pretraining,

fine-tuning, and ensemble learning helped in (a) transferring CXR-specific learned knowledge

that can be subsequently fine-tuned to improve COVID-19 detection in CXRs; and (b)

improving classification generalization and localization performance by reducing prediction

variance. Ensemble-based ROI localization helped in improving localization performance by

compensating for the errors in individual constituent models. We also performed inter-reader

variability analysis and program performance assessment by comparing them with a STAPLE-
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based estimated reference. This assessment highlighted the opportunity for improving perfor-

mance through ensemble modifications, requisite parameter optimization, increased task-spe-

cific dataset size, and involving “truth” estimates from a larger number of expert collaborators.

We believe that the results proposed are useful for developing robust models for tasks involv-

ing medical image classification and disease-specific ROI localization.
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