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ABSTRACT 
Malaria is a life-threatening disease caused by the parasites 
transmitted through the bite of the female Anopheles 
mosquito. Thick and thin film microscopic examinations of 
blood smears are the most commonly used and reliable 
methods for diagnosis, however, its accuracy depends on the 
smear quality and human expertise in classifying the normal 
and parasitemic cells. Manual examination can be 
burdensome for large-scale diagnoses in endemic regions 
resulting in poor quality, unnecessary medication, leading to 
severe economic impact to the individual health program. 
Automated malaria screening using machine learning 
techniques, such as deep learning, offers the promise of 
serving as an effective diagnostic aid. In this study, we 
propose the advantages offered through visualizing the 
features and activations in a simple, customized deep 
learning model. We apply it to the challenge of malaria cell 
classification, and as a result the model achieves 98.61% 
classification accuracy with lower model complexity and 
computation time. It is found to considerably outperform the 
state of the art including other pre-trained deep learning 
models.   
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1. INTRODUCTION
Malaria is a life-threatening disease caused by the parasites 
transmitted through the bite of the female Anopheles 
mosquito. Different kinds of malaria parasite including P. 
falciparum, P. ovale, P. vivax and P. malariae can infect 
humans, of which P. falciparum is the deadliest. According 
to the 2016 World Health Organization (WHO) report, there 
were 212 million instances of the disease worldwide and the 
African region accounted for the majority of the disease 
cases, followed by south-east Asian and eastern 
Mediterranean regions [26]. Microscopic examination of 
thick and thin blood smears for infected erythrocytes is a 
commonly used method for malaria diagnosis. Depending 
on the local protocol, the examination includes: (i) 
classifying and counting the normal and infected 
erythrocytes in the thin smear images; and/or (ii) counting 
parasites in thick smear images as specified in the WHO 
guidelines [3]. Thus, the diagnostic accuracy is heavily 
dependent on manual expertise and can be adversely 
impacted by the burden posed by large scale analyses that 
are common in malaria endemic regions. Alternative 
techniques such as polymerase chain reaction (PCR) and 
rapid diagnostic tests (RDT) are also widely used. However, 
PCR tests are limited in their performance [12] while RDTs 

are less cost-effective in zones with high disease prevalence 
[10]. 

Machine learning (ML) techniques have been previously 
applied to detect the degree of parasitemia from Giemsa-
stained blood smear images [24, 18]. The study focused on 
developing a software to automatically compute the degree 
of parasitemia using hand-selected features from the stained 
blood smears containing P. falciparum parasites. However, 
the study did not explicitly classify normal and uninfected 
blood cells and the manual selection of features demanded 
human intervention. Another study to perform expert-level 
malaria diagnosis based on automated microscopy was 
proposed where a number of classifiers including a linear 
support vector machine (SVM), radial basis function SVM, 
multi-layer perceptron (MLP) and Gradient-Boosted 
Decision Trees (GBM) were used to classify the normal and 
parasitemic cells [5]. However, the study involved only 
fewer samples and the performance suffered with increase in 
data size. Diaz et al. proposed a SVM based classification 
method for detecting the infected red blood cells (RBC) in 
preprocessed blood smear images [7]. The algorithm 
performed well on a smaller dataset of 450 images, however, 
the performance decreased when applied to the blood images 
carrying infected cells.  

2. BACKGROUND
Dealing with input variances is one of the main concerns in 
classifying images, irrespective of its kind. It is difficult to 
account for the changes in size, background, angle and 
position of the objects inside images. In the process, state-
of-art image processing algorithms rely on cleverly hand-
engineered features for representing the underlying data. 
Extensive time is spend in this preprocessing step, 
demanding human expertise that severely limits the accuracy 
achievable by a training algorithm. Sufficient large training 
examples are needed to learn the appropriate invariances 
with minimal processing, just by using the low-level data 
representations such as raw pixels. Deep learning (DL), also 
known as deep machine learning (or hierarchical learning), 
is a class of ML algorithms that use a cascade of layers of 
non-linear processing units for end-to-end feature extraction 
and classification and are resilient to these variances [20]. 
DL using convolutional neural networks (CNN) has gained 
research interest because it offers the promise of delivering 
high quality classification without the need for hand 
selecting features. Unlike SVMs, the performance of DL 
models increases with the number of training examples, 
making them highly scalable [25].  

Small datasets are not adequate to train a DL model which 
has a multitude of parameters that need tuning. Transfer 
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Learning (TL) methods are commonly used to alleviate the 
problem where a pre-trained deep network is used to extract 
the features that are subsequently used in a conventional 
classifier like SVM [17]. These pre-trained models have 
already learned features that are useful for most computer 
vision (CV) problems, and visualizing such features 
provides a better understanding of the learning process and 
allows reaching a comparable accuracy to that of a 
customized model. Krizhevsky et al. (2012) proposed the 
AlexNet model, trained on ImageNet data, containing over 
15 million annotated images from a total of over 22,000 
categories [15]. The model used rectified linear units 
(ReLU) for imposing nonlinearity and data augmentation 
techniques that consisted of image translations and 
reflections. It also used dropout layers to combat the problem 
of overfitting to the training data and was trained using batch 
stochastic gradient descent (SGD) with specific values for 
momentum and weight decay. Simonyan and Zisserman 
from the University of Oxford proposed a simple and deep 
model in 2014 dubbed VGGNet that used only 3 x 3 sized 
filters all through the model [23]. Several variants of the 
VGG networks were proposed including VGG16 and 
VGG19, where “16” and “19” indicate the number of weight 
layers in the network. These models reinforced the notion 
that the combination of two 3 x 3 convolution layers has an 
effective receptive field of 5 x 5 that simulates a larger filter 
while keeping the benefits of smaller filter sizes and 
parameters. The model performed equally well on image 
classification and localization tasks.  

TL models reduce the training time at the cost of 
performance and may be suitable when larger training 
datasets are not available. They produce useful features so 
long as the domain under study does not deviate much from 
the data [6]. They tend to perform poorly on data on which 
they are not trained on before. Further, we are also 
constrained in terms of the network architecture. We can’t 
selectively modify the pre-trained network [4]. The other big 
difference lies in the formulation of the problem. TL models 
were designed for multiclass classification which means that 
they learn a lot of additional information that may not be 
needed in a binary classification problem such as ours. The 
issue can be resolved by fine-tuning a pre-trained model 
augmented with a few layers for binary classification with 
more number of epochs. This changes the intra-network 
information from multi-class to a binary-class problem. It is 
necessary to visualize the features extracted by the DL 
model and their activations in order to better understand its 
learning strategy. The downside of such a practice is that the 
amount of weights stored internally can be huge, requiring 
additional regularization. Also, the performance of fine-
tuned models relies on the initial pre-trained model and any 
improvement in performance is tied to the representation 
learned by the original model [21].  

These challenges can be overcome by using a customized 
model, trained on the domain of interest.  CNN based DL 
models gives promising results for perceptual applications 
like image classification [14]. A survey of literature revealed 
few comparable articles for malaria cell classification using 
DL models. A method based on CNN for classifying the 
parasitemic and uninfected cells from thin blood smear 
images was attempted that used 27,578 single cell images 

resulting in an average accuracy of 97.3% [16]. By 
comparison, a pre-trained model used for classifying the 
same data achieved 91.99% accuracy.  

In this article, we propose to use the advantages offered 
through visualizing extracted features and DL network 
activations in a simple, customized DL model for malaria 
cell classification. Our goal is to not only improve the state 
of the art in malaria classification, but also to understand the 
impact of various learned parameters on DL models at 
different stages of the deep network.  The remainder of this 
paper is organized as follows: Section 3 illustrates the 
materials and methods; Section 4 discusses the results; 
Section 5 gives the conclusion.  

3. MATERIALS AND METHODS 
3.1 Data Collection and Preprocessing 
Red blood cells (RBCs) from Giemsa stained thin blood 
slides of images, obtained from the U.S. National Library of 
Medicine (IRB#12972) are used in this study. They were 
acquired from P. falciparum parasite infected and normal 
patients, in Chittagong Medical College hospital, 
Bangladesh. Cells were annotated as either parasitemic or 
normal, by an experienced professional slide reader. The 
visual region of the erythrocytes was segmented from the 
raw images by applying coupled edge profile active contours 
[8]. The dataset included 110,000 images of erythrocytes, 
with a 1:1 ratio of parasitemic and uninfected cells. Images 
were normalized to a median width and height of 32 x 32 
pixels. Several instances of normal and parasitemic cells 
were chosen to study the performance of the customized 
model and other models used in this study. Images were 
normalized to have zero mean to assist faster convergence 
and whitened to reduce data redundancy so that the 
algorithms train with instances having independent feature 
variable with unitary covariance. 

3.2 Configuring the customized Model 
The architecture of the CNN model strongly influences its 
performance. In this work, a 13-layer CNN model is 
proposed for the binary task of classifying the normal and 
parasitemic cells, as shown in Figure 1. The proposed model 
consists of five convolutional layers including the fully-
connected layers. The sandwich design with one 
convolutional layer and ReLU layer allow enhanced learning 
[22].  Additionally, 3 x 3 max-pooling layers with a stride 
length of 2 are used after the first and second ReLU layers. 
The final layer is a Softmax classifier that measures the 
prediction distribution between the two classes [2]. Proper 
initialization of weights is a key to network convergence. He 
et al. proposed a method for weight initializations for 
networks with ReLU non-linear activations [11]. It is a more 
sophisticated initialization than the regular method of weight 
initialization [9] that uses the Gaussian distribution; 
however, the Gaussian is rescaled according to the number 
of neurons connected to the input of a given layer. He’s 
formula for weight initialization is given by: 

௚௔௜௡݁ܪ ൌ ܤ ∗ 	ݐݎݍݏ ൬
2

݄ ∗ ݓ ∗ ݅݊
൰ 

 

where ‘B’ is a constant scaling factor, ‘h’ and ‘w’ are the 
height and width of the kernel and ‘in’ denotes the number 
of neurons connected to the input of the layer. The filters and 
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biases are rescaled to make the covariance unitary. Random 
samples from the normal and parasitemic datasets are 
presented to the model and the performance is evaluated 
against other pre-trained/fine-tuned models. The algorithms 
are coded in Matlab® R2017a and Keras wrapper with 
Python 2.7.5 and Tensorflow backend, in a Windows® 
system with NVIDIA GTX 1080 GPU and 24 GB internal 
random access memory (RAM). The convolutional part of 
the pre-trained models including AlexNet and VGG16 is 
instantiated. Everything up to the fully connected layers and 
the models are run on the training and validation data to 
record the last activation maps before the fully connected 
layers. A small fully connected model is trained on top of the 
stored features, and the performance of these models are 
compared with the customized model under study. The 
weights file for the pre-trained models are downloaded from 
Github repository [13]. 

 

 
 

Figure 1: Customized CNN model. 

 

3.3 Fine-tuning pre-trained models 
The last convolutional block of the pre-trained models is 
fine-tuned alongside the top-level classifier. Fine-tuning 
process consists of starting from a trained network and re-

training it using very small weight updates on the dataset 
under study [19]. Steps for fine-tuning include: (i) instantiate 
the convolutional base of the pre-trained models; (ii) load 
their weights; (iii) add the previously defined fully 
connected model on top; (iv) load their weights; and, (v) 
freeze the layers of the pre-trained models up to the last 
convolutional block. As the top-level classifier is trained, the 
convolutional weights are simultaneously fine-tuned with a 
very slow learning rate using the SGD optimizer to ensure 
the magnitude of the updates remains small. Finally, the 
validation accuracy is recorded.  

4. RESULTS AND DISCUSSION 
4.1 Visualizing the features 
Analyzing the extracted features helps in understanding the 
impact of the learned parameters at various stages of the 
network. Study of literature reveals insufficient discussion 
on the impact of problem-specific features learned or the 
activations at different layers of the network. This study aims 
to analyze the features and activations learned by the 
proposed model that are specific to identifying the normal 
and parasitemic cells to aid in malaria screening. The 
features learned at different stages (layers) of the model are 
investigated to visualize the parameters learned from the 
training examples. This is done by generating images that 
strongly activate a particular channel of the network layers. 
The first convolution layer learns 20 features which are 
visualized in Fig. 2a. The images mostly contain colors and 
edges, indicating that the channels are color filters and edge 
detectors. This allows the proposed model to construct 
useful complex features in the deeper layers. The features on 
the second convolutional layer are crafted using the features 
from the first convolutional layer. The first 30 features 
learned by this layer are visualized as shown in Fig. 2b, 
where we observe that the model begins to learn high-level 
features including the shape and location of the parasites 
along with the color and texture information. The third 
convolutional layer learns the features by combining the 
low-level features from the first and second convolutional 
layers. It is observed that this layer, deeper into the network, 
yields detailed information on the shape, color and texture of 
the features as shown in Fig. 2c. An instance of the 
uninfected and parasitemic cells is shown in Fig.2d. The 
fully connected layer towards the end of the network learns 
high-level abstractions of the features learned by the earlier 
layers and outputs two channels corresponding to the normal 
and parasitemic cell classes respectively and are visualized 
as shown in Fig. 2e. A closer look into the features learned 
by this layer shows that they resemble the uninfected and 
parasitemic classes, respectively.  

4.2 Visualizing the activations 
The activations of the different layers of the network are 
visualized to understand the model learning strategy. The 
features learned by the network are evaluated by examining 
the activations and comparing them with the original image. 
A parasitemic cell image is read into the model for 
visualizing the activations at different layers of the network. 
The first convolutional layer performs convolutions with the 
input and the features are investigated by observing the areas 
where the layer activates on the input image and comparing 
them with the corresponding areas in the original image.  
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Figure 2: Visualizing filters at (a) 1st convolution layer (b) 2nd convolution layer (c) 3rd convolution layer (d) an instance 

of uninfected and parasitemic cells (e) fully connected layer 2. 

 
The activations are returned as a three-dimensional array 
where the third dimension represents the number of channels 
in a given layer. A montage for activations in each layer is 
shown in Fig. 3a, one for each channel in the layer.  The 
output channel in the first convolutional layer is displayed as 
squares in the montage of activations. Strong positive 
activations are represented by white pixels and negative 
activations, by black pixels. A gray channel does not activate 
as strongly on the original input. The position of a pixel in a 
given activation corresponds to the same position in the 
original image, e.g., a white pixel at a given location in a 
channel activation indicates that the channel is strongly 
activated at that position. This is correlated with the original 
image to verify location of the parasites. Fig. 3b shows the 
original images and the activations for the 11th channel for 
an example image. The channel activations are resized to 
have the same size as the original image.  The highest 
channel activation, identified as white pixels, corresponds to 
the location of the parasites in the original image. This 

cumbersome manual process of identifying interesting 
channels can be alleviated by programmatically 
investigating the channels for activations with large values. 
This automation results in a greater throughput in the 
analysis resulting in a better understanding of the learned 
parameters. The proposed model learns to detect features 
like colors and edges in its first convolution layer and more 
complex (and abstract) concepts in deeper layers. These 
deep layers extract this information by developing their 
features by combining the features from the early-stage 
layers. We demonstrate this by investigating the third 
convolutional layer in a manner similar to the first 
convolutional layer. The activations are displayed as a 
montage in Fig. 4a.  In the montage of all channels, the 40th 
channel activates strongly on the location of the parasites. 
The channel contains both positive and negative activations 
but only positive activations are used because of the 
presence of ReLU non-linearity, following the convolutional 
layers.

 

 
Figure 3: Visualizing activations: (a) 1st convolutional layer (b) comparing original image with 11th channel activation. 
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Figure 4: Visualizing activations of (a) 3rd convolutional layer (b) comparing the activations with the third ReLU layer. 

 

 
Figure 5: Channel activations at parasite locations. 

 
 

The analysis is repeated to visualize the activations of the 
third ReLU layer to investigate the positive activations and 
is shown in Fig. 4b. The activations of the third ReLU layer 
clearly demonstrate areas of the image having strong 
parasitemic features in comparison to the activations of the 
third convolutional layer. The 40th channel of the third ReLU 
layer is then evaluated for getting activated on the location 
of the parasites. Both normal and parasitemic cells are input 
to the trained model and the resulting activations are 
compared with the activations of the original image as 
shown in Fig. 5. It is observed that the 40th channel activates 
only on the location of the parasites but not on the uninfected 
cell. The network has never been told to learn about the 
parasites, but it has discovered that the characteristics of the 
parasites are useful features to distinguish between the 
classes.  
Conventional ML algorithms use handcrafted features 
specific to the problem, but the proposed CNN model learns 
useful features by itself. Learning to identify parasites helps 
the model to distinguish between a normal and parasitemic 
cell in malaria diagnosis.  The customized model and the 
pre-trained models are optimized for the hyper-parameters, 
for the dataset used in this study, by a randomized grid 
search method [1]. The hyper-parameters used in this study 
for the different models are tabulated as shown in Table 1.  
 

 

Table 1: Hyper-parameter optimization 

 
The convolutional part of the pre-trained models including 
AlexNet and VGG16 is instantiated, everything up to the 
fully connected layers. The models are run on the training 
and validation data to record the last activation maps before 
the fully connected layers. The dataset is randomly split into 
70% for training and 30% for validation. A small fully 
connected model is trained on top of the stored features and 
the performance is compared with that of the customized 
model for various sample sizes. The validation accuracy, 
sensitivity and specificity of the customized model and that 
of pre-trained models are graphically shown in Figure 6.  As 
observed, the customized model outperforms the pre-trained 
models in terms of computational accuracy. 

Model Optimizer Momentum Learning 
Rate 

Decay 

Customized 
model 

SGD 0.9 1e-2 0.0 

AlexNet SGD 0.9 1e-2 0.0 

VGG16 SGD 0.9 1e-2 0.0027 
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Figure 6: Performance comparison of the customized model and pre-trained models. 

 

Figure 7: Performance comparison of the customized model and fine-tuned models. 
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Figure 8: Comparison of computation time 

 
The model does reasonably well, irrespective of the number 
of samples which implies that the performance is due to  the 
allocation of capacity to the important features and the 
specificity of the outputs to the task. The pre-trained models 
are further fine-tuned to evaluate if an additional increase in 
the computational accuracy is observed. Fine-tuning is done 
with a very slow learning rate of 1e-4 for 1000 epochs with 
the SGD optimizer to ensure the magnitude of the updates 
remains small. The validation accuracy, sensitivity and 
specificity are recorded and graphically shown in Figure 7. 
As observed, the fine-tuned models performed below par in 
comparison to the customized model. The customized model 
is compared to the pre-trained and fine-tuned models in 
terms of computation time and the results are shown in 
Figure 8. The customized model is noticeably faster than the 
pre-trained and fine-tuned models. Fine-tuned models are far 
more expensive in terms of computation time for the reason 
that the customized model devotes its entire capacity to the 
relevant features of the problem under study whereas the 
pre-trained and fine-tuned models devote their capacity to a 
huge number of irrelevant features and hence take a long 
time to retrain everything and get to a useful result.  
 

5. CONCLUSION 
The study reveals that, unlike pre-trained/fine-tuned models, 
a simple and customized CNN based DL model is 
considerably the best solution for task-specific classification 
like classifying the normal and parasitemic cells as an 
effective aid in malaria screening. DL models offer the 
promise of serving as an effective diagnostic aid where 
manual examination can be burdensome for large-scale 
diagnoses. The model understands a probabilistic mapping 
between the combinations of filters and the given set of  
labels. The filters in each layer form the basis vectors that 
are used to encode the layer's input in a compact way. In 
comparison to the pre-trained/fine-tuned  models, the 
customized model learns task-specific features for the 
problem under study and exhibits a superior performance 
with lesser model complexity and computation time. The 
proposed model can be adopted to significantly improve the 
accuracy of screening for other health-related applications. 
Next steps in our work aim to expand our analysis of pre-
trained networks for various image types.      
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