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Abstract. Automated visual evaluation (AVE) of uterine cervix images is a deep 
learning algorithm that aims to improve cervical pre-cancer screening in low or 
medium resource regions (LMRR). Image quality control is an important pre-
step in the development and use of AVE. In our work, we use data retrospectively 
collected from different sources/providers for analysis. In addition to good im-
ages, the datasets include low-quality images, green-filter images, and post 
Lugol’s iodine images. The latter two are uncommon in VIA (visual inspection 
with acetic acid) and should be removed along with low-quality images. In this 
paper, we apply and compare two state-of-the-art deep learning networks to filter 
out those two types of cervix images after cervix detection. One of the deep learn-
ing networks is DeepSAD, a semi-supervised anomaly detection network, while 
the other is ResNeSt, an improved variant of the ResNet classification network. 
Specifically, we study and evaluate the algorithms on a highly unbalanced large 
dataset consisting of four subsets from different geographic regions acquired with 
different imaging device types. We also examine the cross-dataset performance 
of the algorithms. Both networks can achieve high performance (accuracy above 
97% and F1 score above 94%) on the test set. 

Keywords:  Cervical Cancer, Deep Learning, Highly Unbalanced Dataset, 
Cross-Dataset Evaluation, Anomaly Detection, Acetowhitening, Green-Filter, 
Lugol’s Iodine. 

1 Introduction 

Cervical cancer affects a significant majority of the developing world where access to 
clinical care is limited. Having an effective screening program in those regions would 
reduce the incidence and mortality of cervical cancer significantly. VIA (visual inspec-
tion with acetic acid) is a screening method often used in low resource settings. It is an 
inexpensive alternative to Pap smear and colposcopy test which are methods requiring 
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significantly higher medical resources with respect to personnel, infrastructure, and de-
vices. In VIA, the cervix before and after the application of a diluted (3-5%) acetic acid 
is examined by health care practitioners with the naked eye. Based on the visual evalu-
ation results, eligible positive patients can be treated in the same visit with ablation to 
reduce the loss to follow-up often encountered in low resource regions. While being 
simple, affordable, and able to provide immediate result and treatment, VIA, which 
relies on subjective visual evaluation, has moderate sensitivity, specificity, and inter-
observer reproducibility [1]. We have recently proposed Automated Visual Evaluation 
(AVE) using deep learning techniques as an adjunct or a complementary screening 
method to improve VIA performance [2-4]. AVE has demonstrated promising results 
on both a large longitudinal population-based dataset of cervigrams (captured using a 
now-obsolete cerviscope) collected in Guanacaste Costa Rica [2] and a small dataset of 
images taken by a smartphone enhanced device from several countries [3]. A pilot study 
has also demonstrated the promise of using deep learning to aid the decision-making 
process on whether to ablate or not among VIA positives [5]. These results have em-
boldened a large multi-organizational study initiated and led by the National Cancer 
Institute (NCI), aiming to improve VIA using automatic computerized algorithms on 
smartphones or a low-cost specialized handheld device. Due to the adverse impact of 
COVID-19 on acquiring new data from field studies and the desire of accumulating a 
large dataset as fast as possible, we have focused on collecting retrospective data from 
different sources around the world (mainly colposcopy clinics). A side effect of acquir-
ing such retrospective collection is that the data can be of poor visual quality and varied 
based on the local clinical protocols. Given the huge number of images being processed 
in the future, automatic handling, in particular, is of high interest. Our studies have 
aimed to address these using machine learning techniques for image quality control as 
well as data cleaning in these retrospectively collected datasets. We have developed 
new algorithms to filter out non-cervix images and blurry images [6,7]. In this paper, 
we present our work on separating green-filtered and Lugol’s iodine cervix images from 
regular color cervix images taken before or after the application of acetic acid under a 
white-light illumination.  

Cervical cancer is caused by persistent infection from certain high-risk types of HPV 
(Human Papillomavirus). One main key component in VIA as well as in colposcopy is 
to observe the color change of the epithelium of the cervix after the weak acetic acid 
application, a reaction termed as acetowhitening, as HPV infected abnormal tissues 
may appear more whitish than the neighboring normal squamous epithelium of the cer-
vix. Based on the extent of this reaction (e.g. density, quickness, opacity, thickness), 
and other visual characteristics, such as vascular patterns, health care providers may 
assess and grade the severity of the disease. A green filter is commonly used in col-
poscopy to enhance the visualization of cervical tissue vessels, making suspicious pat-
terns easier to recognize. These green filtered images can be captured by using a green 
light source, physically attaching a green filter to the camera lens, or created digitally 
by color manipulation algorithms [8]. Lugol’s iodine is another contrast agent applied 
with the aim of helping identify the lesions overlooked when using acetic acid. Precan-
cerous or cancerous lesions may have different reactions to the iodine solution and may 
appear in different shades of brown stain from normal tissues, for example, abnormal 
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tissues could appear to be thick mustard yellow or saffron-colored while normal epi-
thelium tissues would show brown or black color [9]. Fig. 1 shows examples of regular, 
green-filtered, and Lugol’s iodine cervix images respectively. 
 

   
(a) regular (b) green-filtered (c) Lugol’s iodine 

Fig. 1. Examples of regular, green-filtered, and Lugol’s iodine cervix images. 

 
Although green filter and iodine solution are not usually used in VIA, it is a common 

practice to use them in colposcopy examinations for visual evaluation of cervix. There-
fore, the multi-source datasets we have obtained also contain these two types of images 
(we call them both non-regular cervix images) and they need to be filtered out. It may 
appear that these three types of images have distinguished color difference and would 
be easy to separate, however, there exists a large variance within each type across da-
tasets and there are some images whose color differences across types are subtle and 
are difficult to differentiate. Further, there is significant variation in the saturation of 
the green filter which is sometimes also digitally applied as a post-acquisition step.  In 
addition to the goal of automatic cleaning of retrospectively collected data, we want to 
design the experiments to analyze and study the issues of learning from highly unbal-
anced dataset and cross dataset/device variance, two main challenges many applications 
in medical domain face. To the best of our knowledge, this is the first work aiming to 
investigate these topics for uterine cervix images. The insights gained from this work 
would help us on applying similar machine learning techniques to other more challeng-
ing tasks in AVE.  

2   Image Data  

We aim to investigate two main issues using these retrospective image datasets: 1) 
training a model using highly unbalanced data; and 2) examining the model perfor-
mance across datasets. To this end, in our experiments, we use four datasets which we 
call the China dataset, the Nigeria dataset, the MobileODT dataset and the Peru 
dataset which were collected from different geographic regions by different providers 
with different imaging devices. The images within each dataset or across datasets have 
a large appearance variance with respect to not only cervix or disease related factors 
(such as woman’s age, parity, and cervix anatomy and condition) but also non-cervix 
or non-disease related factors (such as illumination, focus, specular reflection, presence 
of clinical instruments, embedded pixel (or graphic) text, imaging device, and variable 
zoom and angle).  
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The China dataset is a public dataset shared by the authors of [10] on IEEE Data-
port. It contains cervix images of 475 patients collected from July 2013 to February 
2017 at the First Affiliated Hospital of Science and Technology of China. There are 
seven images for each subject: one image of pre acetic acid application, four post acetic 
acid application images taken at different times, one image taken using a green filter, 
and one image photographed after the application of iodine solution.  

The Nigeria dataset was collected at the colposcopy clinic of the Obafemi Awolowo 
University Teaching Hospitals Complex (OAUTHC) in Nigeria by a recent NCI study 
designed to evaluate the ultimate strategy of AVE triage with self-sampled HPV typing 
[11]. For each participating woman, multiple images of the cervix were captured using 
each of the following three image capture devices in order: 1) cellphone, 2) MobileODT 
EVA, and 3) colposcope mounted with a DSLR camera. MobileODT EVA is a 
smartphone enhanced device which contains a cross-polarized light source and an ex-
ternal magnifying lens. The images were taken at least one minute after the application 
of the acetic acid. The data used in this work is the one collected from December 2018 
to November 2019. There are no green-filtered images or images with iodine applica-
tion in this dataset. 

In [3], we used a dataset provided by MobileODT to assess whether a deep learning 
AVE algorithm could perform well on smartphone images. The images were collected 
from various countries/regions in the world by different providers using MobileODT 
EVA devices. Each woman had only a single visit, but there were images of varying 
numbers taken during that visit. The dataset was reviewed for visual quality and images 
with acceptable/good quality were then annotated by a group of gynecologic oncolo-
gists at Rutgers University. The images used in this work are from a subset of the final 
dataset used to train and evaluate the AVE classifier in [3]. Similar to the Nigeria da-
taset, this MobileODT dataset has no green-filtered images and Lugol’s iodine images.  

The Peru dataset consists of images selected by the collaborating gynecologists in 
Peru for some of the teaching/training classes on colposcopic visual impression to res-
idents or students. These images were originally collected from the Peruvian Cancer 
Institute with three different colposcopes. Most of these images have lesions, polyps, 
or any other important features/characteristics suitable for teaching. Each patient in this 
dataset has a varied number of images. In addition to acetowhitening images, some 
patients may have green-filtered images and/or Lugol’s iodine images. Some example 
images in the four datasets are shown in Figure 2. 

3  Method 

As mentioned before, among these four datasets the Nigeria and MobileODT da-
tasets have no iodine and green-filtered images, and only the China and Peru datasets 
contain such images. To investigate deep networks on high data imbalance and cross-
dataset performance, in our experiments, we use China, Nigeria, and MobileODT da-
tasets to train and validate the model and use Peru dataset to test the model. We also set 
up the problem as separating white light images taken pre or post acetic acid application 
(named as “regular” images) from green-filtered images and iodine applied images 
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(named as “non-regular” images), that is, a two-class problem (“regular” vs “non-reg-
ular”), since the latter two types of images (“non-regular” images) are usually not used 
in VIA.  

As mentioned previously, there is a large variety in images across datasets and within 
each dataset. In some images, such as Figure 2(b), there is a significant area outside the 
cervix region. We have previously developed a cervix detector using RetinaNet [12]. 
The cervix detector was trained with a dataset other than the images used in this study. 
Some examples of cervix detection results are shown in Figure 3. 

 
Regular (the first one is pre-acetic acid and the rest are post acetic acid) 

      
                                                            Green-filtered               Iodine 

(a) China dataset  

      
      Cellphone            EVA                        Colposcope                  Cellphone            EVA           Colposcope    

(b) Nigeria dataset 

  
(c)MobileODT dataset 

 
             Regular              Regular         Green-filtered   Green-filtered           Iodine                Iodine 

(d) Peru dataset 
Fig. 2. Example images in each of four datasets: (a) the sequence of images of one patient in 
China dataset; (b) images of one patient taken by three devices in Nigeria dataset; (c) images in 
MobileODT dataset collected from multiple providers in the world; and (d) images of three types 
in Peru dataset. 
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Fig. 3. Cervix detection results shown as a green box overlaid on the images. 

 
Next, we classify the extracted cervix regions into two categories: (a) regular and (b) 

non-regular images. To this end, we apply and compare two types of deep learning 
networks. One was designed for anomaly detection (AD), the task of identifying unu-
sual or rare data samples that are significantly different from the majority of data. Our 
application fits the AD scenario naturally as there are a lot more regular images (“nor-
mal”) than non-regular images (“abnormal”) in our dataset and the non-regular images 
consists of two different types each of which is significantly different from the large set 
of regular images. Algorithms of AD [13] use many samples in the normal class to 
train, either without using any samples from the abnormal class or with using only a 
small number of abnormal samples. We select and apply Deep SAD [14], a semi-su-
pervised AD deep learning algorithm generalized from Deep SVDD [15] which is an 
unsupervised one-class classification algorithm. Deep SVDD learns a deep neural net-
work transformation that attempts to map the representations of the unlabeled data (as-
suming mostly normal) into a “hypersphere” of minimum volume, so that new samples 
belonging to the normal category would be mapped within this hypersphere whereas 
the samples belonging to the other category would be mapped outside. Deep SAD is an 
extension of Deep SVDD which includes a new loss term representing the influence of 
the additional small amount of labelled data to make the distance of labelled abnormal 
samples to the hypersphere center further away.  

The other deep learning network we apply is a recent ResNet variant network called 
ResNeSt [16]. ResNet is one of the most popular deep classification networks and is 
frequently used as a backbone/base network in various networks for computer vision 
applications. ResNeSt is a variant of ResNet developed with aim of improving the clas-
sification performance of ResNet as well as downstream tasks such as object detection 
and segmentation with comparable computation cost. ResNeSt proposed and included 
a new block module named “split attention” block. Specifically, in each block, feature 
maps are first divided into several “cardinal groups”, as was done in one previous Res-
Net variant – ResNeXt [17]. Then, the feature maps in each cardinal group are separated 
channel-wise into subgroups (“splits”). The features across subgroup splits are com-
bined (“attention”) before being concatenated for all the groups. ResNeSt also applies 
network tweaks and several training strategies (such as augmentation, label smoothing, 
drop out regularization, and batch normalization) to improve its performance. In our 
experiments, we test the ResNeSt algorithm with different image input sizes, loss func-
tions and augmentation methods. 
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4 Experiments and Discussions 

As stated previously, four datasets are used for the task of non-regular cervix image 
filtering. Among them, the China and Peru datasets contain non-regular cervix images, 
respectively, while the Nigeria and MobileODT datasets contain regular cervix images 
only.  The training set consists of the Nigeria dataset and a part of the China dataset 
(the original China training set used by the authors for disease abnormality classifica-
tion in [10]). The validation set consists of the MobileODT dataset and the remainder 
of the China dataset.  The test set consists of the Peru dataset. Table 1 lists the number 
of patients in each dataset in the training, validation, and test set, respectively. Table 2-
Table 4 list the number of corresponding images in both classes in the training, valida-
tion, and test sets, respectively. As shown in Table 2, the ratio between the number of 
regular and non-regular images in the training set is 20746:760 ≈ 27.3, which is rela-
tively high. The images across datasets have varied sizes. All of them are resized to the 
same size before inputting to the networks.  
 

Table 1. Number of patients in the train-
ing/validation/test set 

Splits Dataset pa-
tients 

Train China 427 
Nigeria 988 

Validation China 48 
MobileODT 418 

Test Peru 79 
 

Table 2. Number of training images  
Regular Non-regular 

China 
(acetowhite) 1895 China 

(green) 380 

Nigeria 
(cellphone) 8402 China  

(iodine) 380 

Nigeria (EVA) 4815   
Nigeria 

(colposcope) 5634   

Total: 20746 Total: 760 
 

 
Table 3. Number of validation images  

Regular Non-regular 
China 

(acetowhite) 240 China 
(green) 48 

MobileODT 812 China 
(iodine) 48 

Total: 1052 Total: 96 
 

 
Table 4. Number of test images  
Regular Non-regular 

Peru  
(acetowhite) 307 Peru 

(green) 58 

  Peru 
(iodine) 43 

Total: 307 Total: 101 
 

 
For Deep SAD, we adopt the same network architecture used in [14] as the starting 

point, specifically, the LeNet type CNN for CIFAR-10 in [14] which consists of three 
modules of 32×(5×5)-filters, 64×(5×5)-filters, and 128×(5×5)-filters, followed by a fi-
nal dense layer of 128 units. The inverse squared norm loss function is used. For train-
ing, the weights are initialized using pretrained autoencoder. The batch size is 4. Adam 
optimizer with a learning rate of 10-4 and weight decay regularization with value 0.5e-
6 are used. The number of epochs is set as 150. Figure 4 shows the box plot of the 
output scores (radius to the hypersphere center) of the images in the validation set, and 
Figure 5 shows images with high scores and low scores and regular images with high 
scores after sorting, respectively. Based on the results on the validation set, the thresh-
old for the radius to the hypersphere center is set to be 10. Even though the input image 
size is small (32 × 32), the model obtains high classification performance on the test 
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set, achieving sensitivity (recall) 93.1%, specificity 100%, precision 100%, F1 score 
96.4%, and accuracy 98.3%, with the cropped cervix images (Non-regular is the posi-
tive class). Table 5 lists the corresponding confusion matrix. Figure 6 shows several 
images misclassified by Deep SAD. They are green-filtered images but are classified 
as regular images. These images have only a very subtle greenish tone and are hard to 
distinguish visually unless compared with the regular images from the same patient. 
Please note, there are some images in the dataset that were zoomed in by the providers 
to see the region-of-interest when taking the photos and the original images only cover 
part of the cervix (not due to the failure of cervix detection). 

 
Fig. 4. DeepSAD output scores on val. set 

Table 5. Confusion matrix for Deep SAD on 
the test set 

Peru → GT Non-Regular Regular 
Non-Regular 94 0 

Regular 7 307 
 

 

  
(a) lowest of all val. images (b) highest of all val. images 

 
(c) highest of regular images in val. set 

Fig. 5. Images in the validation set with DeepSAD low/high scores 
 

     
Fig. 6. Misclassified images by DeepSAD 
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For ResNeSt (specifically, ResNeSt50), we first use the same image size as the one 
for Deep SAD: 32 × 32. The model is initialized with weights from ImageNet pretrained 
model. The augmentation methods are random resized crop, random rotation, random 
horizontal flip and center crop. The loss function is binary cross entropy weighted by 
the class weight (the total sample size divided by (two times the number of regular/non-
regular images)). The optimizer is Adam (β1 = 0.9, β2 = 0.999) with a learning rate of 
5x10-4. The batch size is 256. The model is trained for 100 epochs and the one with the 
highest performance on validation set is selected. We also train a model with input 
images of larger size: 224 × 224. For this model, all the above parameters remain the 
same except the batch size is 64. The performance metrics of all the models on the test 
set are listed in Table 6. For image size 32 × 32, the performance of ResNeSt model is 
significantly lower than that of Deep SAD. After increasing the input image size to 224 
× 224, the performance (e.g., sensitivity) improves considerably and the F1 score im-
proves to 0.948 from 0.764. The confusion matrix of the ResNeSt models for input size 
32 × 32 and 224 × 224 are given in Table 7 and 8, respectively. We also extract the 
features from the average pooling layer of the ResNeSt models and plot the t-SNE of 
those features with ground truth labels. As shown in Figure 7 and 8, the ResNeSt (224 
× 224) model features in the two categories are separated much better than those from 
ResNeSt (32 × 32) model.  

 
Table 6. Performance of models 

 Sens./recall Spec. Prec. F1 Acc. 
ResNeSt, 32 × 32  0.624     0.997     0.984     0.764     0.904 
ResNeSt, 224 × 224  0.901     1.000     1.000     0.948     0.976 
Deep SAD, 32 × 32 0.931 1.000 1.000 0.964 0.981 

 
Table 7. Confusion matrix for ResNeSt (32 

× 32) on the test set  
Peru → GT Non-regular  Regular 
Non-Regular  63 1 
Regular 38 306 

 

Table 8. Confusion matrix for ResNeSt (224 
× 224) on the test set  

Peru → GT Non-regular  Regular 
Non-Regular  91 0 
Regular 10 307 

 

 

 

 
Fig. 7. The t-SNE plot of ResNeSt (32 x 32) 
features (GT labels) 

Fig. 8. The t-SNE plot of ResNeSt (224 x 
224) features (GT labels) 
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5 Conclusion and Future Work 

In this paper, we present an approach to filter out two non-regular types of images sel-
domly used in VIA screening of cervical cancer: green-filtered images and iodine-ap-
plied images. We are interested in studying data imbalance issue and cross-dataset gen-
eralization capacity besides the goal of cleaning retrospectively collected data. To 
achieve this, we use a combination of several datasets that contain images obtained 
from four different sources. In the combined dataset, there is large variation with re-
spect to imaging device, patient demography, image quality, illumination source, and 
existence of clinical obstruction. In addition, there is high imbalance between the num-
ber of regular and non-regular images in the combined dataset. To evaluate the model’s 
performance and robustness across multiple datasets, we use images from different 
sources to train and test in the experiments. We first use an object detection network to 
identify cervix region. For classification, we apply and compare two types of state-of-
the-art deep learning networks: 1) Deep SAD, a semi-supervised anomaly detection 
network; and 2) ResNeSt, a variant of ResNet. Options such as input image size and 
loss weighting are compared. High performance can be achieved by both networks (F1 
score above 94%). Future work includes testing the model on more datasets, developing 
a customized Deep SAD network for larger image input size, and removal of other 
unusable images such as post-treatment cryotherapy images and poor-quality regular 
images. 
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