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Abstract

Background: Light microscopy is often used for malaria diagnosis in the field. However, it is time-consuming and
quality of the results depends heavily on the skill of microscopists. Automating malaria light microscopy is a
promising solution, but it still remains a challenge and an active area of research. Current tools are often expensive
and involve sophisticated hardware components, which makes it hard to deploy them in resource-limited areas.

Results: We designed an Android mobile application called Malaria Screener, which makes smartphones an
affordable yet effective solution for automated malaria light microscopy. The mobile app utilizes high-resolution
cameras and computing power of modern smartphones to screen both thin and thick blood smear images for P.
falciparum parasites. Malaria Screener combines image acquisition, smear image analysis, and result visualization in
its slide screening process, and is equipped with a database to provide easy access to the acquired data.

Conclusion: Malaria Screener makes the screening process faster, more consistent, and less dependent on human
expertise. The app is modular, allowing other research groups to integrate their methods and models for image
processing and machine learning, while acquiring and analyzing their data.

Keywords: Automated light microscopy, Smartphone application, Malaria, Machine learning, Convolutional neural
network

Background
Microscopic examination of stained blood smears is still
considered the gold standard for malaria diagnosis [1, 2].
It offers the ability to characterize parasite species, quan-
tify parasite density, and assess the effectiveness of anti-
malarial treatment. However, regions that are suffering
from the disease are often lacking in well-trained
personnel that can perform high-quality microscopy
examination due to the high costs to train such experts
[3, 4]. Besides, the examination process can be very
time-consuming and error-prone.
To address these issues, there have been attempts to

automate both image acquisition and image analysis for

the microscopic examination of blood smears. Gopaku-
mar, G.P. et al. [5] proposed a custom-built portable
slide scanner that automatically collects and analyzes
focus stacks of blood smear images. Muthumbi, A. et al.
[6] proposed a system that adds a programmable LED
array to the standard microscope, and uses a large-field-
of-view, low-resolution objective lens to capture thou-
sands of cells in one snapshot. While these methods
show great potential, they are often hard to test on a
large scale, especially in resource-limited settings, due to
the difficulty to replicate their sophisticated hardware
design. Other research work [7–9] concentrates on
image analysis algorithms. They tend to be lacking a
user interface to put their systems to use in real clinical
settings.
In this paper, we present a smartphone-based semi-

automated system that provides analysis of blood smear
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images for malaria screening, with an easy-to-use user
interface. Our Android smartphone application com-
bines multiple functions, including image acquisition,
image screening, and management of the acquired data.
The smartphone is used in combination with a micro-
scope adapter as shown in (Fig. 1), which is a very af-
fordable setup by design. Android smartphones and
microscopes are commonly available in malaria clinics,
and an adapter is usually inexpensive. For example, the
universal smartphone microscope adapter we use costs
less than $100 (from telescopeadapters.com, model:
USPA2). The low-cost design and easy-to-use interface
give the system great potential to assist malaria diagnosis
in resource-limited areas. Furthermore, the modular
architecture allows it to be adapted by fellow researchers
to advance their study.

Implementation
Software architecture
We designed Malaria Screener by following object-
oriented principles. A diagram of the application’s archi-
tecture is shown in Fig. 2. It consists of three independ-
ent modules, including: a slide screening module, a data
management module, and a data upload module. The
slide screening module, being the core of the system, has
three sub-modules that work sequentially to perform
image acquisition, parasite detection, and result
visualization, respectively. The data management module
stores the images and the corresponding metadata ac-
quired during slide screening sessions, giving user access
to previously screened slides. Finally, the data upload
module transfers the local data to an online repository
for record-keeping and further training of the system.
We implemented the front end user interface (UI) based
on Android API while the back-end of the application
is powered by a mix of different libraries including
OpenCV4Android (opencv.org/android/), TensorFlow
Lite [16], SQLite [18], and Box API [19].
Malaria Screener is designed to be easily extendable

and customizable. The source code is hosted on GitHub
as an open-source project; fellow researchers can modify

the code to suit their needs. For example, developers can
replace the parasite detection module to test their detec-
tion algorithm, or can add another classifier to detect
other malaria parasite species

Critical components
Slide screening module
As mentioned above, three independent sub-modules
work sequentially to screen a slide for malaria parasites.
The image acquisition module is the first module in this
pipeline. For this module, we implemented a customized
camera function using the Android Camera API [10].
This includes a Camera object that controls the intrinsic
parameters of the camera hardware, and a CameraPre-
view object that displays the preview image to the user.
During a screening session, the user presses a button to
capture the image when a suitable field of view becomes
visible. To obtain the best image quality possible, the
Camera object requests the maximum resolution that
the smartphone camera offers and saves the captured
image as PNG, a lossless compression format.

Fig. 1 System Setup for Malaria Screener. During the (semi-) automated* screening process, the body of the smartphone is attached to an
adapter. The adapter holds the phone, and aligns its camera with the eyepiece of the microscope. * The system is semi-automated in that the
user needs to move the slide manually to search for an ideal field of view while capturing smear images

Fig. 2 Diagram of the application software architecture and
interfaces
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The captured image is then passed to the parasite
detection module as input. Malaria Screener can
examine both thin and thick smears with potential P.
falciparum infections. The performance evaluation of
the detection module can be found in previous publi-
cations [11–14]. Figure 3 illustrates how an image is
processed in this module. For a single thin smear
image, the goal is to detect the number of infected
red blood cells (RBCs) and the total number of RBCs
in the image. For a thick smear image, on the other
hand, the goal is to detect the number of parasites
and white blood cells (WBCs). The parasite detection
module has a ThinSmearProcessor class and a ThickS-
mearProcessor class to handle each of the two scenar-
ios. With ThinSmearProcessor, a thin smear image is
first segmented to detect RBCs. Small cell patches of
RBCs are cropped from the original image. With
ThickSmearProcessor, parasite candidate patches that
cover the typical size of a parasite are cropped from a
thick smear image. Both classes use pre-trained Con-
volutional Neural Network (CNN) models to make
binary classifications: infected vs uninfected RBC in
the case of a thin smear, or parasite vs background in
the case of a thick smear. The CNN models are pre-
trained on a PC with TensorFlow and Keras, which
outputs the trained models in HDF5 (.h5) format.
Next, the models are converted to Protocol Buffers
(.pb) format [15] and deployed to the app using Ten-
sorFlow Lite [16, 17].
The result visualization module uses ResultDisplayerAc-

tivity, a UI class that was implemented to present the de-
tection results to the user (Fig. 5 (a)(3)). This class
generates a down-sampled version of the captured image
with labels drawn on the infected RBCs (parasites for thick
smear images). In addition, it uses a table to show the nu-
merical results. Together, these two outputs visualize the
computational result of the input smear for the user.

Data management module
The app stores images and corresponding metadata locally
on the phone. Images are stored in a designated folder of
the internal storage. Within this folder, images from the
same screening session are grouped in their own sub-
folders. Metadata of the images is stored in a local SQLite
database [18]. The database includes four tables: a patient
table, a slide table, a thin smear image table, and a thick
smear image table. Figure 4 shows the structure of the data-
base in more detail. The data management module also of-
fers a UI to let the user browse the images and metadata
stored in the SQLite database, as shown in (Fig. 5 (a)(5)).

Data upload module
Images and metadata in the database can be exported
and uploaded to an online repository. The uploaded data
can be used to examine the app performance, and to im-
prove the classifier of the parasite detection module with
additional training.
An upload event can be initiated in two different ways.

The first option is to start an upload event from the data-
base UI. With this option, the app will scan for all data that
has not been uploaded yet, which will then be uploaded.
However, this type of bulk upload can be a very heavy task,
which can take a long time since there might be several
gigabytes of images to be uploaded. Therefore, we imple-
mented another upload option in which the app attempts
to trigger an upload event after each screening session. As
long as a Wi-Fi connection can be detected, this event will
try to upload the data from the current session.
The back-end of this module is implemented with a

mixture of both Android and Box API [19]. Android
Service class and Thread class [20, 21] are used to im-
plement the upload function which executes the upload
tasks in a separate thread. It allows the user to continue
with other things while the upload tasks proceed in the

Fig. 3 Diagram of the parasite detection module for a thin smear input. The original image is first segmented using a watershed algorithm to
extract single-cell patches. These cell patches are then classified by a customized CNN model, which has been pre-trained using TensorFlow
framework, and deployed on the smartphone with TensorFlow Lite
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background. Box API is used to implement functions to
execute upload tasks to a Box repository.

Results
A fast and effective mobile app is developed as a light-
weight solution to automated malaria light microscopy.
This section describes its workflow during a slide screen-
ing session. Due to space constraints, this section only il-
lustrates the important parts of the screening pipeline. For
more details, readers should refer to the user manual,
which can be downloaded together with the source code,
see download link in Availability of Data and Materials.
The workflow proceeds in six steps as follows, with each
step corresponding to a panel in (Fig. 5 (a)):

(1) Once the smartphone is setup on top of the
microscope, using an adapter, the user can start a
session from the main page of the app.

(2) A preview screen of the camera is presented to
the user at the beginning of a session, and the user
can use the button at the top of the screen to set the
smear type (thin or thick) at this point. Then, the
user can search for a suitable field of view on the

slide, and press the camera button to capture the
image.

(3) The app will then start to process the captured image,
and will display a result visualization page on the
screen where it shows the detection results. For
example, in thin smear mode, the number of infected
and total RBCs are shown as well as a running total.
The app also shows a result image with the infected
RBCs marked in red. Step (2) and (3) are repeated
(Fig. 5 (b)) while the user captures more smear
images. The iteration stops when the total number of
RBCs reaches a user-determined maximum.

(4) Next, the app goes through several screens to let
the user enter relevant information about the
slide, such as slide ID, staining method, and
hematocrit value.

(5) Then, the session ends. Both the images and
metadata are saved locally, and can be
viewed through the database UI at a later
time.

(6) Finally, the app triggers an upload event to send
the saved data to the central Box repository.
Meanwhile, a floating widget hovers over the
app screen to show the upload progress.

Fig. 4 Diagram of the local SQLite database. PK: primary key. Each line that connects two tables indicates the one-to-many relationship between
them. For example, the patient table has a one-to-many relationship with the Slide table, meaning one patient can have multiple slides. Fields
with an asterisk symbol (*) are either mandatory inputs by the user or automatically generated data; other fields are optional inputs by the user. a

Name of the slide preparer. b Name of the user performing the screening. c App outputs and manual counts for thin smears: RBC counts, infected RBC
counts, manual RBC counts, manual infected RBC counts. d App outputs and manual counts for thick smears: parasite counts, WBC counts, manual
parasite counts, manual WBC counts
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Fig. 5 a UI screens during a slide screening session. b The workflow of a session
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Testing
Tests were performed with the algorithms we imple-
mented for the slide screening module. We acquired and
annotated Giemsa-stained thick and thin blood smear
images from 150 patients infected with P. falciparum,
and from 50 normal patients, at Chittagong Medical
College Hospital, Bangladesh.
For thick smear, we evaluated the performance of our

system with five-fold cross validation, using 2967 thick
blood smear images from these 200 patients: 1819 im-
ages from 150 infected patients and 1148 images from
50 normal patients. Table 1 shows the mean perform-
ance of our system on five folds at both patch and pa-
tient level [12].
For thin smear, we also performed five-fold cross val-

idation at both patch and patient level [14]. We com-
pared our results with the state-of-the-art on patch level,
as shown in Table 2. To the best of our knowledge, we
could find no comparable literature that performed
cross-validation studies on patient-level.
More details can be found in our previous publications

[11–14, 27]. We are currently in the process of field test-
ing our app with collaborators around the world.

Discussion
Malaria Screener is a step towards automating malaria
light microscopy. It provides a solution to improve mal-
aria point-of-care diagnosis in the field. To the best of
our knowledge, Malaria Screener is the first
smartphone-based system that can screen thin and thick
smears. In addition to the basic slide screening func-
tions, which are based on computational image analysis

and machine learning, we try to integrate additional
functions into our mobile app to support the daily work
of malaria field workers. In particular, the data manage-
ment function can be very helpful. Users can enter pa-
tient information directly into the app’s database, thus
avoiding the trouble of using a separate system to man-
age the data.
For malaria research, the app offers a powerful and ef-

ficient tool for field tests and data collection, which are
usually done through a collaboration between medical
imaging research groups and hospitals. Coordinating the
protocols typically requires a considerable effort, involv-
ing data processing and formatting. Malaria Screener
solves this problem by integrating a slide screening mod-
ule, a database module, and a data upload module into
the same smartphone application, making slide screen-
ing and data collection a streamlined process that gener-
ates and delivers ready-to-use data.
Finally, with the release of the current codebase of the

software as an open-source project, we anticipate it to
serve groups that are new to this field of research. The
modular design allows other developers to build upon
the current implementation. For example, our parasite
detection algorithm can be easily swapped, allowing
other groups to test their own algorithms. By making
Malaria Screener an open-source project, we are hoping
to provide a platform for the scientific community to
work together and to advance the automation of malaria
diagnosis.

Conclusions
We present a fast, low-cost smartphone application for
malaria screening. We demonstrate that the app offers
important functionalities with an intuitive user interface
to (a) screen slides and count infected red blood cells
and parasites in thin and thick smear images automatic-
ally for P. falciparum malaria, and (b) to manage the im-
ages and metadata generated throughout the screening
process, which can be used to further optimize the
image analysis model.

Table 1 System mean performance on five folds for thick
smears

Accuracy AUC Sensitivity Specificity Precision

Patch-level
[12]

96.89% 98.48% 90.82% 97.43% 74.84%

Patient-level
[12]

78.00% 84.90% 79.33% 74.00% 90.42%

Table 2 Classification module mean performance on five folds for thin smears compared to the state-of-the-art

Accuracy AUC Sensitivity Specificity F1-score

Proposed Module (Patch-level) [14] 98.6% 99.9% 98.1% 99.2% 98.7%

Proposed Module (Patient-level) [14] 95.9% 99.1% 94.7% 97.2% 95.9%

Gopakumar et al. (2018) [5] 97.7% – 97.1% 98.5% –

Bibin, Nair & Punitha (2017) [22] 96.3% – 97.6% 95.9% –

Dong et al. (2017) [23] 98.1% – – – –

Liang et al. (2017) [24] 97.3% – 96.9% 97.7% –

Das et al. (2013) [25] 84.0% – 98.1% 68.9% –

Ross et al. (2006) [26] 73.0% – 85.0% – –
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Based on the promising results from previous tests,
and interest shown by the research community, we an-
ticipate this project to serve as a code base for future de-
velopments in this area.

Availability and requirements
Project name: Malaria Screener.
Project home page: https://lhncbc.nlm.nih.gov/project/

malaria-screener
Operating System: Android.
Programming language: Java, C++ (for Android Native

development).
Other requirements: Android Lollipop/5.0 and above.
License: Open Source Software.
Any restrictions to use by non-academics: N/A.

Abbreviations
GUI: Graphical user interface; API: Application programming interface;
RBC: Red blood cell; WBC: White blood cell; CNN: Convolutional neural
network; PK: Primary key
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