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Abstract—Optical Coherence Tomography (OCT) is a non-
invasive test that takes cross-section pictures of the retina layer 
of the eye and allows ophthalmologists to diagnose based on the 
retina’s layers. Therefore, it is an important modality for the 
detection and quantification of retinal diseases and retinal 
abnormalities. Since OCT provides several images for each 
patient, it is a time consuming work for ophthalmologists to 
analyze the images. This paper proposes deep learning models 
that categorize patients’ OCT images into four categories such 
as Choroidal neovascularization (CNV), Diabetic macular 
edema (DME), Drusen, and Normal. Two different models are 
proposed. One is using three binary Convolutional Neural 
Network (CNN) classifiers and the other is using four binary 
CNN classifiers. Several CNNs, such as VGG16, VGG19, 
ResNet50, ResNet152, DenseNet121, and InceptionV3, are 
adapted as feature extractors to develop the binary classifiers. 
Among them, the proposed model using VGG16 for CNV vs. 
Other classes, VGG16 for DME vs. other classes, VGG19 for 
Drusen vs. Other classes, and InceptionV3 for Normal vs. other 
classes shows the best performance with 0.987 accuracy, 0.987 
sensitivity, and 0.996 specificity. The binary classifier for Normal 
class has 0.999 accuracy. These results show their potential to work 
as a second reader for ophthalmologists. 
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I. INTRODUCTION

Optical coherence tomography (OCT) is a non-invasive 
imaging technique that generates cross-sectional images of the 
retina layer of the eye. It uses light waves in the near-infrared 
spectral range which has a penetration depth of several hundred 
microns in the retina layer. Therefore, it is an important modality 
for ophthalmologist to detect/quantify retinal diseases and 
retinal abnormalities and to provide treatment guidance for 
glaucoma, age-related macular degeneration (AMD), diabetic 
retinopathy, choroidal neovascularization (CNV), and Diabetic 
macular edema (DME) [1, 2]. AMD has two types: Dry AMD 
and Wet AMD. Dry AMD patients have Drusen, and most Wet 
AMD patients have Choroidal Neovascularization (CNV) and 
associated manifestations in their retinas [3, 4, 5]. CNV is the 
growth of abnormal blood vessels in the choroid layer of retina 

[6]. DME is an accumulation of fluid in the macula part of the 
retina due to blood vessel leakage. About 25% of Diabetic 
Retinopathy patients develop to DME [7, 8]. However, it is a 
time-consuming work for ophthalmologists to analyze the OCT 
images since OCT provides several images for each patient. 

Deep learning algorithms have been adapted for the 
classification of OCT images recently. DenseNet201 [9] (and 
the other ten CNNs) are used for the classification of OCT 
images into the four classes [10]. Inception V3 [11] is adapted 
to classify OCT images into four classes such as CNV, DME, 
Drusen, and Normal [12]. Ensemble learning based on 
ResNet152 [13] are used to classify OCT images into the four 
classes [14]. Modified ResNet50 [13] and ensemble learning 
are used to classify the images into the four classes [15]. Image 
normalization and VGG16 [16] are used to train OCT images 
for the classification of the four classes [17]. Four binary 
classifiers based on ResNet101 [13] are trained to classify 
cystoid macular edema, macular hole, epiretinal membrane, and 
serous macular detachment from OCT images [18]. In training 
CNNs, pre-trained weights, provided by the ImageNet [19], are 
used as initial weights or feature extractors in most of above 
studies since the weights are obtained from training large image 
datasets. 

There are two types of deep learning (DL) models used in 
the above studies. One is using multi-class classifiers and the 
other is using multiple binary classifiers. To resolve multi-class 
classification cases, the DL model using a multi-class classifier 
(DLM) is more convenient than the DL model using binary 
classifiers (DLB) since DLM needs to train only one classifier. 
The DLB needs to train multiple classifiers for each class. 
However, there is an advantage in using the DLB when we try 
to update/improve the model to classify one or more new 
classes in the same dataset after developing the model. The 
DLB only needs to train new binary classifiers for new classes. 
However, the DLM needs to train the model again from the 
beginning. The DLB has more extensibility than the DLM. 
Multiple binary classifiers also show better performance than 
one multi-class classifier in image segmentation case [20].  

Therefore, this paper proposes two DL models that classify 
patients’ OCT images into four categories such as CNV, DME, 
Drusen, and Normal. Four binary CNN classifiers (for CNV, 
DME, Drusen, and Normal classes) and three binary CNN 
classifiers (for CNV vs. DME, Drusen vs. Normal, and CNV-
DME vs. Drusen-Normal) are used to design the architectures of 
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the proposed models. A preprocessing algorithm is adapted to 
remove noises and crop retina layers from the images.  

The remainder of this paper is organized as follows. Section 
II describes the dataset and our methods to classify OCT images 
in detail. We discuss experimental results in Section III, and 
conclude in Section IV. 

II. METHODS 

A. OCT Image and Image Dataset 

An optical coherence tomography (OCT) image dataset is used 

in this experiment [12]. It is a publicly available and was collected 

from five institutes from 2013 to 2017. The dataset is composed of 

108,309 training images and 1,000 test images. It contains four 

classes as shown in Table 1; CNV class has 37,205 images, DME 

class has 11,348 images, Drusen class has 8,616 and Normal class 

has 51,140. In the test dataset, each class has 250 images.  

TABLE I.  TRAINING AND TESTING  DATASETS USED FOR THE EXPERIMENT 

Class       Train     Test 

CNV 37,205 250 

DME 11,348 250 

Drusen 8616 250 

Normal 51,140 250 

 

 Fig. 1 shows an OCT image in Normal class. Since OCT 

images are grey level images, image intensity is very important 

feature to classify the images into the four classes. There are 

three boundaries of interest in the image as shown in Fig. 1. 

They are Inner limiting Membrane (ILM) in yellow, Retinal 

Pigment Epithelium (RPE) in red, and Chorio-Scleral Interface 

(CSI) in green. Among the boundaries, RPE is one of the most 

important layers for the classification. It is the brightest layer in 

the middle. In the case of CNV, it consists of an abnormal 

growth of vessels from the choroidal vasculature to the 

neurosensory retina through the Bruch's membrane. Therefore, 

there are variation in below or above RPE or intra-retinal area 

(showing macular fluid in black color, bumpy RPE layer, and 

poor defined boundaries). In the case of DME, there is intra-

retinal fluids between ILM and RPE. The fluids are shown in 

dark color. In the case of Drusen, RPE layer has bumpy shape 

instead of a flat shape. 

 

 
Figure 1. An OCT image. There are three boundaries of interest in the images 

such as Inner limiting Membrane (ILM) in yellow, Retinal Pigment Epithelium 
(RPE) in red, and Chorio-Scleral Interface (CSI) in green. 

B. Image Normalization 

The images in the dataset have different sizes and qualities, 

and most images have black and white noise as shown in Fig. 

2. The first row is for CNV class, the second row is for DME 

class, the third row is for Drusen class, and the fourth row is for 

Normal class. In the case of the images in the first column, all 

images have a square shape. However, the images in the second 

column do not have a square shape and have white background. 

The images in the third column have black and white noises in 

the background. In addition, zoom rates are different to each 

other. The images in the second column have less zoom ratio 

compared with images in the first and third columns. The image 

in the first row third column has more zoom ratio than other 

images.  

 

   

   

   

    
Figure 2. Images in the dataset. First row is for CNV, second row is for DME, 

third row is for Drusen, and fourth row is for Normal. 

 

As we discuss in Section II.A, white pixels are very important 

features in OCT images for classification. However, several 

images are contaminated by white background noises and black 

and white noises. If the majority of the images in a class have 

white background noises, CNNs can misuse the noises as strong 

features for the class during the training process. This dataset 

has 108,309 images; therefore, it is hard to check the status of 

all images and trim mislabeled images before training.  

Therefore, the following procedure is adapted to normalize the 

images in the dataset as shown in Fig. 3 [14]. This procedure 

allows CNN classifiers to easily estimate features from images 

for training. First, read an input image. Second, replace the 

white colored background with a black color background, and 

make a square image. Third, estimate retina layers using a Fully 

Convolutional Networks (FCN) having a U-Net architecture 
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[21]. Fourth, remove the black and white noise using the FCN 

result. Fifth, adjust the rotated retina layer by using a histogram 

estimated by projecting an image into vertical axis. Sixth, crop 

only retina layer from the image. Inputs of the FCN are 

224×224×3 images and outputs are 224×224×1 grey images. 

1,000 images (250 images from each class) are used to train the 

FCN. Python with Tensorflow Keras [22, 23] is used for the 

implementation of the FCN.  

 
Figure 3. Workflow of image normalization using the FCN with a U-Net 

architecture. 

C. Proposed CNN for Binary Classification 

Fig. 4 shows the architecture of the proposed binary CNN 
classifier. Six different CNN models, such as VGG16, VGG19, 
ResNet50, ResNet152, DenseNet201, and InceptionV3, are used 
as feature extractors for the classification. Following the CNN 
feature extractor, a global average pooling layer, dense layer, 
dropout layer, dense layer, dropout layer, and output softmax 
layer are added in this sequence. The size of the dense layers is 
1×1,024, and dropout ratio = 0.5 is used for the two dropout 
layers to resolve overfitting issues. We use pre-trained weights 
of the ImageNet [19] as initial weights of the feature extractors 
and train all layers in the architecture including the layers in the 
CNN feature extractor. 

D. Proposed Deep Learning Models 

 We propose two deep learning models based on the proposed 
binary classifier (Fig. 4).  

The first model (Model 1) uses three binary CNN classifiers as 
shown in Fig 5. Classifier 1 is for the (CNV and DME) vs. 
(Drusen and Normal) classes, Classifier 2 is for CNV vs. DME 
class, and Classifier 3 is for Drusen vs. Normal class. CNV and 
DME are more serious conditions than Drusen and Normal. 
Therefore, we first categorize the images into the two classes, 
(CNV and DME) vs. (Drusen and Normal), using Classifier 1. 
Then we label the class of each image using Classifier 2 and 3. 

The second model (Model 2) uses four binary CNN classifiers 
as shown in Fig 6. Classifier 1 is for the CNV class, Classifier 2 
is for the DME class, Classifier 3 is for the Drusen class, and 
Classifier 4 is for the Normal class. We call Classifier 1 as 
Classifier-CNV, Classifier 2 as Classifier-DME, Classifier 3 as 
Classifier-Drusen, and Classifier 4 as Classifier-Normal from 
now on. Classifier-CNV classifies input images into two classes 
(CNV class vs. Other class). Therefore, the other class includes 

images that belong to DME, Drusen, and Normal classes. 
Similar rules are applied to the other classifiers. Classifier-DME 
is for DME class vs. Other class. Classifier-Drusen is for Drusen 
class vs. Other class. Classifier-Normal is for Normal class vs. 
Other class. 

 Since all classifiers are binary classifiers, outputs of the 
classifiers have a two dimensional format (1 × 2). The outputs 
are converted to a four dimensional format. (1 × 4). In the case 
of Model 1, when Classifier 1, 2, and 3 have outputs [(CNV and 
DME), (Drusen and Normal)] = [0.8, 0.2], [CNV, DME] = [0.8, 
0.2], and [Drusen, Normal] = [0.6, 0.4], the multiplication 
results of Classifier 1 and 2, and Classifier 1 and 3 have [CNV, 
DME] = 0.8 × [0.8, 0.2] = [0.64, 0.16] and [Drusen, Normal] = 
0.2 × [0.6, 0.4] = [0.12, 0.08]. Therefore, the final result becomes 
[CNV, DME, Drusen, Normal] = [0.64, 0.16, 0.12, 0.08]. In the 
case of Model 2, when a Classifier-CNV output is [CNV, Other] 
= [0.8, 0.2], the output is converted to [CNV, DME, Drusen, 
Normal] = [0.8, 0.2, 0.2, 0.2]. The similar rules are applied to 
the outputs of the remaining three classifiers. Afterwards, all 
four (four-dimensional) outputs are multiplied to estimate the 
final probabilities of each class. For example, to estimate final 
probability of CNV for an input image, four CNV probabilities 
from the four classifiers are multiplied. Similar rules are applied 
to estimate probabilities of DME, Drusen, and Normal.  

We also trained the weights for each classifier to combine the 

results of all classifiers in Model 1 and 2. However, we did not 

find any performance differences compared with our methods 

based on probability theory.  

 Python with Tensorflow Keras [22, 23] is used to 

implement the proposed deep learning model.  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

We generate a training set by sampling 8,616 images from 

each class. The training dataset has an unbalanced number of 

images in between classes. Class weight is commonly used in 

training process to resolve the unbalanced class issue. However, 

this does not improve the classification accuracy in our case. 

Therefore, we collect 8,616 images from each class using a 

random sampling method. In addition, we normalize OCT 

images by cropping the retina layers using the FCN as shown 

in Fig. 3. Therefore, we do not use image augmentation 

technique to increase the training data.  

 

 
Figure 4. Architecture of the proposed binary CNN classifier. 

 
 

44



 

 

 

Figure 5. Architecture of the proposed deep learning model 1 (Model 1).  

 

 
Figure 6. Architecture of the proposed deep learning model 2 (Model 2).  

 

To train the classifiers, we use stochastic gradient descent 

(SGD) with learning rate = 0.001, decay=1e-6, momentum = 

0.9, nesterov momentum = True, and epochs = 50 and 100. The 

hardware configuration used for this experiment is 2 × Intel 

Xeon Gold 5218 processors 2.3 GHz, 64 hyper-thread 

processors, 8 × RTX 2080 Ti, and Red Hat Enterprise Linux 7. 

Original dataset (Table 1) contains the test dataset with 250 

images for each class. Several deep learning algorithms use this 

test dataset for their evaluation. Therefore, we use the same 

original test dataset to evaluate our performance with others. 

Table II shows the comparison of the two types of OCT 

images: original and normalized. We train four binary 

classifiers using the two types of images. The classifiers using 

the normalized images always show better performance. We 

assume the normalized images make the CNN classifiers focus 

on features in the images more accurately during training time. 

This result proves the benefit of using the proposed image 

normalization process. 
Table III shows our classification results of the proposed 

Model 1. We train the three binary classifiers using the six 
different CNN feature extractors. Among them, the model using 
three InceptionV3 classifiers shows the best performance with 
0.9770 accuracy. When we use the best three classifiers 
(ResNet152 for Classifier 1, InceptionV3 for Classifier 2, and 

VGG19 for Classifier 3), the proposed Model 1 shows the best 
performance with 0.9810 accuracy.  

Table IV shows our classification results of the proposed 
Model 2. Among them, the model using four VGG19 classifiers 
shows the best performance with 0.9780 accuracy. When we use 
the best four classifiers (VGG16 for Classifier-CNV and 
Classifier-DME, VGG19 for Classifier-Drusen, and 
InceptionV3 for Classifier-Normal), the proposed Model 2 
shows the best performance with 0.9870 accuracy. The Model 2 
shows a better performance than the Model 1.  

TABLE II.  COMPARISON OF THE TWO OCT IMAGE TYPES USING THE 

PROPOSED FOUR BINARY CLASSIFIERS USED IN THE PROPOSED MODEL 2 

Image Type Classifier CNNs Acc. 

 CNV  VGG16  0.967 

Original  DME  VGG16  0.993 

OCT Images Drusen VGG19  0.976 

 Normal  InceptionV3   0.995 

 CNV  VGG16  0.976 

Normalized  DME  VGG16  0.997 

OCT Images Drusen VGG19  0.981 

 Normal  InceptionV3   0.999 
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Fig. 7 shows ROC curves of the four binary CNN classifiers 
used in the proposed model (Model 2) in the last row in Table IV. 
The curve of each classifier uses different color. Green is for 
Classifier-CNV, blue is for Classifier-DME, red is for Classifier-
Drusen, and yellow is for Classifier-Normal. The left figure 
shows ROC curves and the right figure shows the curves zoomed 
in the top left corner of the ROC curves. Among the classifiers, 
Classifier-Normal shows the best performance. Fig. 8 shows 
ROC curves of the proposed Model 2. The left figure shows a 
ROC curve and the right figure shows the curve zoomed in the 
top left corner of the ROC curve.  
 Fig. 9 shows the confusion matrices of the binary classifiers 
used in the proposed methods. Fig. 9(a) shows the confusion 
matrices of the best three classifiers for Model 1. Among the 
classifiers, Classifier 3 for Drusen vs. Normal (right) shows the 
best performance. One Drusen and three Normal class images 
are misclassified. Classifier 1 for CNV-DME vs. Drusen-
Normal (left) shows the largest error ratio. Two CNV-DME and 
25 Drusen-Normal class images are misclassified. Fig. 9(b) 
shows the confusion matrices of the best four classifiers for 
Model 2. Among the classifiers, Classifier-Normal shows the 
best performance. It misclassifies only one Normal image as 
Other. Classifier-CNV shows the largest errors. It misclassifies 
two CNV images as Other and twenty-two Other images as 
CNV. The matrices also show the classifiers can classify Normal 
and DME class images accurately. 

Fig. 10 shows two confusion matrices of the proposed deep 
learning methods. Fig. 10(a) is for Model 1 and Fig. 10(b) is for 
Model 2. As shown in both matrices, CNV, DME, and Normal 
class images are labeled accurately with minor error. However, 
most major errors occur in the Drusen class. Twelve and ten 
Drusen class images are labeled as CNV in Model 1 and Model 
2, respectively.  
Table V shows the comparison of the proposed methods with 

other existing deep learning methods. We focus on comparing 
the results between multiple binary classifiers and a multi-class 
classifier. Among the methods, the method using ResNet101 
[18] and our proposed methods use multiple binary classifiers. 
The remaining methods use one or more multi-class classifiers. 
Our proposed models shows good performance compared to the 
other methods. Especially, when comparing multi-class 
classifiers using DenseNet101 [10], InceptionV3 [12], and 
ResNet152 [14], the proposed method (Model 2) shows better 
performance. It shows that the proposed two models show 
relatively better performance than models using a single multi-
class CNN classifier.  

TABLE III.  ACCURACY OF THE PROPOSED MODEL 1 USING THREE BINARY 

CLASSIFIERS  

Classifier-
(Normal Drusen) VS. 

(CNV & DME) 
(Classifier 1) 

Classifier-       
(CNV vs. DME)       

 (Classifier 2) 

Classifier-    
(Drusen vs. Normal) 

 (Classifier 3) 

Accuracy 

VGG16 VGG16 VGG16 0.964 

VGG19 VGG19 VGG19 0.970 

ResNet50 ResNet50 ResNet50 0.969 

ResNet152 ResNet152 ResNet152 0.966 

DenseNet201 DenseNet201 DenseNet201 0.972 

InceptionV3 InceptionV3 InceptionV3 0.977 

    
ResNet152 InceptionV3 VGG19 0.981 

TABLE IV.  ACCURACY OF THE PROPOSED MODEL 2 USING FOUR BINARY 

CLASSIFIERS 

Classifier-

CNV 
(Classifier 1) 

Classifier-

DME 
(Classifier 2) 

Classifier-

Drusen 
(Classifier 3) 

Classifier-

Normal 
(Classifier 4) 

Accuracy 

VGG16 VGG16 VGG16 VGG16 0.975 

VGG19 VGG19 VGG19 VGG19 0.978 

ResNet50 ResNet50 ResNet50 ResNet50 0.972 

ResNet152 ResNet152 ResNet152 ResNet152 0.972 

DenseNet201 DenseNet201 DenseNet201 DenseNet201 0.968 

InceptionV3 InceptionV3 InceptionV3 InceptionV3 0.972 

     
VGG16 VGG16 VGG19 InceptionV3 0.987 

 

 
Figure 7. ROC curves of the four binary CNN classifiers used in the proposed 

deep learning model (Model 2). The left figure shows ROC curves and the right 
figure shows the curves zoomed in the top left corner of the ROC curves. 
 

 
Figure 8. ROC curves of the proposed deep learning model (Model 2) using the 
four CNN classifiers. The left figure shows ROC curves and the right figure 
shows the curves zoomed in the top left corner of the ROC curves. 

 
(a) 

 
(b) 

Figure 9. Confusion matrices of the binary CNN classifiers used in the proposed 
two deep learning models. (a) Model 1. (b) Model 2. 

4646



 

 

 
(a)   (b) 

Figure 10. Confusion matrices of the proposed deep learning models. (a) Model 
1. (b) Model 2. 

TABLE V.  PERFORMANCE COMPARISION OF THE PROPOSED METHODS 

WITH OTHER DEEPL LEARNING ALGORITHMS 

Method CNN 

Type 

CNNs Acc. Sen. Spec. 

Islam et al. 

[10]  

Multi 

Class 

DenseNet101  0.986 - 0.995 

Kermany et 

al. [12]  

Multi 

Class 

Inception V3  0.966 0.978 0.974 

Kim et al. 

[14] 

Multi 

Class 

ResNet152  0.981 0.981 0.994 

Li et al. [15]  Multi 

Class 

ResNet50   0.979 0.968 0.994 

Lu et al.   

[18]  

Binary 

Class 

ResNet101 0.959 0.942 0.964 

Proposed 

Method 1 

Binary 

Class 

ResNet152, 

VGG19, 

InceptionV3  

0.981  0.981 0.994 

Proposed 

Method 2 

Binary 

Class 

VGG16, VGG19, 

InceptionV3  

0.987  0.987 0.996 

IV. CONCLUSIONS 

This paper proposes deep learning models to categorize OCT 
images into four classes using binary CNN classifiers. Preprocessing 
algorithms are used to remove noise in the images using a FCN and 
to crop retina layers from the images. Binary CNN classifiers are 
adapted using six different pre-trained CNN models as feature 
extractors to make classifiers for CNV, DME, Drusen, and Normal 
classes. The proposed models multiply the outputs of the three or 
four binary CNN classifiers to estimate the final outputs. Among 
them, the model using VGG16 for Classifier-CNV, VGG16 for 
Classifier-DME, VGG19 for Classifier-Drusen, and InceptionV3 for 
Classifier-Normal shows the best performance with 0.9870 
accuracy, 0.987 sensitivity, and 0.996 specificity. Among the four 
binary classifiers, Classifier-Normal has the best performance with 
0.999 accuracy. These results prove that the multiple binary 
classifiers can have better performance than multi-class classifiers. It 
also shows their potential to work as a second reader for 
ophthalmologists when screening abnormalities among OCT 
images. In future work, we plan to further investigate new 
architectures of the deep learning model and handcrafted 
features to improve classification accuracy. 
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