
Cascading YOLO: Automated Malaria Parasite Detection for 

Plasmodium Vivax in Thin Blood Smears  
Feng Yanga, Nicolas Quizona, Hang Yua, Kamolrat Silamutb, Richard J Maudeb,c,d, Stefan Jaegera,  

Sameer Antania

aNational Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; bMahidol-

Oxford Tropical Medicine Research Unit, Bangkok, Thailand; cCentre for Tropical Medicine and 

Global Health, Nuffield Dept of Medicine, University of Oxford, Oxford, UK; dHarvard TH Chan 

School of Public Health, Harvard University, Boston, USA 

ABSTRACT 

Malaria, caused by Plasmodium parasites, continues to be a major burden on global health. Plasmodium falciparum (P. 

falciparum) and Plasmodium vivax (P. vivax) pose the greatest health threat among the five malaria species. Microscopy 

examination is considered as the gold standard for malaria diagnosis, but it requires a significant amount of time and 

expertise. In particular, the detection of P. vivax is more difficult due to the lower parasitemia levels as compared to P. 

falciparum. In this work, we develop a rapid and robust diagnosis system for the automated detection of P. vivax parasites 

using a cascaded YOLO model. This system consists of a YOLOv2 model and a classifier for hard-negative mining. 

Results from 2567 thin blood smear images of 171 patients show the cascaded YOLO model improves the mean average 

precision about 8% compared to the conventional YOLOv2 model. 
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1. INTRODUCTION

Malaria continues to be a major burden on global health, causing approximately half a million fatalities each year1. Malaria 

in humans is caused by parasites of five Plasmodium species, of which Plasmodium falciparum (P. falciparum) and 

Plasmodium vivax (P. vivax) pose the greatest health threat. Microscopy examination of peripheral blood smears is 

considered as the gold standard for malaria diagnosis2. However, it requires a significant amount of time and expertise. 

The objective of this work is to develop an automated diagnostic system for P. vivax malaria. Accurate automated detection 

of P. vivax is made difficult due to the lower parasitemia levels typically observed in these infections3, as compared to P. 

falciparum. This requires processing of large numbers of images and/or imaging of regions of thin blood smears that are 

dense with cells and challenging to segment. Examination of thick blood smears allows more parasites to be seen in fewer 

images but image analysis and speciation are far more difficult due to the high cell density. 

In recent years, some approaches have been reported for P. falciparum parasite detection in both thin and thick blood 

smears, and reviews of the published literatures may be found in 4–9. However, only a few works are reported on the 

identification/detection of P. vivax. Yunda et al.10 apply a gradient-technique-based segmentation in thick blood smear 

images to extract background from objects, and then extract wavelet-based features of the objects followed by a neural 

network classifier for parasite species identification. Evaluation on 112 images shows that the neural network classifier 

achieved a specificity of 71.6% for P. vivax identification. Ghosh et al.11 first crop thin blood smear images into 1000×800 

pixels, and then apply a fuzzy divergence based segmentation method on P. vivax infected region(s). Based on the pre-

segmentation objects, the authors extract four textural features (average intensity, skewness, uniformity and entropy) and 

a feature called fractal calculation and apply Support Vector Machine (SVM) and Bayesian classifiers for P. vivax 

identification12. Their classification model on cells from 100 normal patients and 100 infected patients achieves an 

accuracy of 95% for SVM classifier and 98% for Bayesian classifier respectively. Gitonga et al.13 apply an Artificial 

Neural Network (ANN) on segmented cells to classify the parasite species in thin blood smears images. The authors report 

that their ANN classifier achieves an accuracy of 96.2% in recognizing P. vivax from other plasmodium species on 205 

infected images. Maysanjaya et al.14 first manually crop parasite infected regions of 250×250 pixels from acquired thin 

blood smear images, and then segment P. vivax parasites by using color channel combination and Otsu method. Evaluation 

on 30 infected region images shows the method achieves an accuracy of 93.33%. Penas et al.15 first perform a parasite 

segmentation through connected components analysis, and then apply a Convolutional Neural Network (CNN) for parasite 



 

 
 

 

species classification in thin blood smears. Evaluation on 363 images shows that the classifier has achieved an accuracy 

of 87.9% for parasite species classification.  

We give in Table 1 an overview of the existing detection approaches for P. vivax parasites in thin and thick blood smears. 

In summary, the existing methods either use traditional image processing techniques for P. vivax segmentation or work 

directly on manually cropped P. vivax infected region images. Therefore, most of the quantitative experimental evaluations 

are performed for the classification stage instead of the segmentation stage. In addition, the evaluations are based on cell-

level; that is, the input sample is a single cell image and the evaluation is typically a cell classification accuracy. However, 

the ultimate goal for malaria patient diagnosis is to detect and classify all cells (both parasites and false positives) for a 

patient. A satisfying cell-level classification performance does not necessarily assure good performance to patient level. 

Our main contribution in this paper is two-fold: First, we propose a cascaded YOLO model consisting of a YOLOv2 model 

and an AlexNet classifier for hard-negative mining to reduce the false positive errors of the parasite detection. The 

automated detection model achieves a mean average precision of 79% for P. vivax detection on 171 patients. To the best 

of our knowledge, we are the first to detect P. vivax parasites using deep learning methods. Second, this is the first work 

to evaluate the performance of P. vivax detection on patient-level. We organize the rest of the paper as follows: Section 2 

presents the details of our method. Section 3 introduces the dataset and the experimental results. In Section 4, we discuss 

our results and conclude the work. 

 

Table 1. Existing approaches applied to P. vivax detection in thin and thick blood smears. 

Authors Methods Images Patients  
Thick/Thin 

smear 
Results 

Yunda et al., 

201210 

Perform a segmentation to extract background 

from objects, and then extract wavelet-based 

features of objects for the following 

classification of different parasite species. 

112 - Thick 

71.6% 

specificity for 

classification 

Ghosh et al., 

201311,12 

Apply a fuzzy divergence based segmentation 

method on P. vivax infected region(s), then 

extract four textural features and a fractal 

calculation feature and apply SVM/Bayesian 

classifier to identify P. vivax parasites from 

normal erythrocytes. 

- 200 Thin 

95%  accuracy 

for SVM 

classifier and 

98% accuracy 

for Bayesian 

classifier 

Gitonga et al., 

201413 

Apply an ANN on segmented cells for parasite 

species classification.  
205 - Thin 

96.2% accuracy 

for ANN 

classifier 

Maysanjaya 

et al., 201614 

Apply Otsu threshold to the combination of 

color channels (red and saturation channels) to 

segment P. vivax. 

30 - Thin 

93% accuracy on 

manually 

cropped ROI 

images 

Penas et al., 

201715 

Perform a parasite segmentation through 

connected components analysis and apply a 

CNN model for parasite species classification. 

363 - Thin 
87.9% accuracy 

for classification 

 

2. METHODS 

2.1 YOLO model 

The You Only Look Once (YOLO)16 model was introduced to create a one-step processing for simultaneous object 

detection and classification. It uses a single CNN operating directly on an image and outputting bounding box coordinates 

and class probabilities. It is fast enough for real-time object detection. The idea of YOLO differs from two-stage object 

detection models, such as RCNN17, Fast-RCNN18, Faster-RCNN19, in that bounding box prediction and class prediction 

are performed simultaneously. An input image is first divided into a S×S grid, and then B bounding boxes are predicted in 

each grid cell, along with confidence scores for those boxes. Simultaneously, C conditional class probabilities are also 



 

 
 

 

predicted. These probabilities are conditioned on the grid cells containing an object, and only one set of class probabilities 

is predicted per grid cell. 

The YOLO model has been improved in different versions. YOLOv220 makes a large improvement in the reduction of 

localization errors and increase of mean Average Precision (mAP) 21,22. YOLOv323 improves the model for large-scale and 

multi-label object detection. In our work, we choose YOLOv2 instead of YOLOv3 since YOLOv2 achieves better mAP 

on our dataset. 

2.2 Cascaded YOLO model 

We developed a rapid and robust diagnosis system for the automated detection of P. vivax parasites using a cascaded 

YOLO model. This system consists of a YOLOv2 model and a transferred AlexNet classifier for hard-negative mining. 

We illustrate the flowchart of our cascaded YOLO model in Fig. 1(a). YOLOv2 model is used to get a rough detection of 

P. vivax parasites that may include false positives, while the transferred AlexNet classifier is used to reduce false positives. 

     
                                           (a)  (b) 

Figure 1. (a) Flowchart of the proposed cascaded YOLO model. GT indicates ground-truth. (b) Network structure of the 

YOLOv2 model in (a). Note that conv indicates a convolutional layer, BN indicates a batch normalization layer, and relu 

represents a rectified linear unit (ReLU). 

For training, we first split images of 4032×3024×3 pixels into regions of 672×504×3 pixels. Manual ground-truth 

annotations are also mapped to corresponding region space. Based on the regions along with annotations (Training set 1 

in Fig. 1(a)), we train a YOLOv2 model, whose network structure is listed in Fig. 1(b). The trained YOLOv2 model is 

then applied to new region images (Training set 2 in Fig. 1(a)), and bounding boxes are predicted for parasites. By 

comparing the bounding boxes with ground-truth annotations, we can get the false positives generated by the YOLOv2 

model. These false positives are considered as hard-negatives since they are too similar to P. vivax-infected regions to be 

detected correctly. In order to reduce false positive errors, we train an AlexNet classifier with those hard-negatives and 

annotated parasites from ground truth. For testing, we also split blood smear images into regions of 672×504×3 pixels, 

which are then screened for parasites using our cascaded model of YOLOv2 and AlexNet classifier. The detected parasite 

coordinates are finally re-projected to the original image space for visualization and evaluation.  



 

 
 

 

3. EXPERIMENTS AND RESULTS 

3.1 Data acquisition 

We photographed Giemsa-stained thin blood smears from 171 P. vivax infected patients in Bangkok, Thailand, using a 

smartphone camera that we attached to the eyepiece of a microscope. We captured 2567 images with 100x magnification 

in RGB color space with a 3024×4032 pixel resolution. An expert blood smear reader manually annotated each image at 

the Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand. We de-identified all images and their 

annotations, and archived them at the National Library of Medicine (NIH IRB#12972). 

3.2 Data Partitioning 

We split a dataset of 171 patients into ten folds at patient-level. Each fold includes 17 P. vivax infected patients. The 

system performance is evaluated with ten-fold cross validation. For each run, the YOLOv2 model is first trained on region 

images of 119 patients, then an AlexNet classifier for hard-negative mining is trained on 34 patients, and finally the 

cascaded YOLO model is evaluated on the 17 patients of the test fold.  

3.3 Evaluation Metric 

To evaluate the system performance, we calculate the average precision (AP)21,22, which summarizes the shape of the 

precision-recall curve and which is defined as the mean precision at a set of eleven equally spaced recall levels  𝑟 ∈[0, 0.1, 

… , 1]: 

 𝐴𝑃 =
1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)𝑟∈[0,0.1,…,1] .  (1) 

To compute 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟), the precision at each recall level 𝑟 is interpolated by taking the maximum precision measured for 

our method for which the corresponding recall exceeds 𝑟: 

 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max(𝑝(𝑟)) , 𝑟: 𝑟 ≥ 𝑟,  (2) 

where 𝑝(𝑟) is the measured precision at recall 𝑟. 

3.4 Experimental results 

We perform experiments on thin blood smear images from 171 patients with ten-fold cross validation. The Precision-

Recall curve for the cascaded YOLO model with ten-fold cross validation is shown in Fig. 2. Mean average precision 

(mAP) values of the cascaded YOLO model and of the conventional YOLOv2 model are listed in Table 2. We observe 

that the cascaded YOLO model improves the mAP value by about 8% compared to the conventional YOLOv2 model. Fig. 

3 shows a practical example of P. vivax parasite detection using the conventional YOLOv2 model and our proposed 

cascaded YOLO model. The number of false positives generated by YOLOv2 has been effectively reduced by cascading 

the AlexNet classifier trained on the mined hard-negatives. 

 

 

Figure 2. Precision-Recall curve for the cascaded YOLO model with ten-fold cross validation. 



 

 
 

 

Table 2. Mean average precision for the cascaded YOLO model and the plain YOLOv2 model. 

Model mean Average Precision (mAP) Std of Average Precision 

YOLOv2 71.34% 3.38% 

Cascaded YOLO 79.22% 4.15% 
 

  

Figure 3. An example of P. vivax parasite detection using the conventional YOLOv2 model (left) and the cascaded YOLO 

model (right). Yellow bounding boxes are the ground truth. Red boxes indicate P. vivax parasites detected by the conventional 

YOLOv2 model, including false positives. Green boxes indicate the detected P. vivax parasites detected by our cascaded 

YOLO model. 

 

4. DISCUSSION AND CONCLUSION 

In this work, we develop an automated system for P. vivax detection based on a cascaded model of YOLOv2 and AlexNet 

classifier for hard-negative mining. In Section 3, we show that, by cascading a hard-negative mining classifier, the mean 

average precision on patient-level has been improved by about 8%.  

In our cascaded YOLO model, YOLOv2 model achieves better results than YOLOv3 model. This may be due to two 

factors. First, YOLOv3 both extracts features in multi-scales and predicts bounding boxes in different scales, and thus is 

better for detection of objects in large scales. However, in our case, the size of P. vivax parasites stays in a very narrow 

range (about 200×200×3 pixels). Second, YOLOv3 improves the average precision for multi-label object detection, which 

is not our case.  

In our experiments, we split images of 4032×3024×3 pixels into regions of 672×504×3 pixels for training the YOLOv2 

model. We have also compared the performance of splitting images into regions of 504×378×3 pixels and of 288×216×3 

pixels. We observe that YOLOv2 model achieves best detection results when the object size is about 10-15% of the input 

image. In this case, detailed features can still be preserved after down-sampling process with the network. 

Our system can be used in resource-limited regions without the need for specific malaria expertise. It also provides a 

reliable and standardized interpretation of thin blood smears. Future work will improve the average precision by integrating 

the model in one network structure and refining the loss function.  
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