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Abstract—Malaria is a major health threat caused by Plasmod-
ium parasites that infect the red blood cells. Two predominant
types of Plasmodium parasites are Plasmodium vivax (P. vivax)
and Plasmodium falciparum (P. falciparum). Diagnosis of malaria
typically involves visual microscopy examination of blood smears
for malaria parasites. This is a tedious, error-prone visual inspec-
tion task requiring microscopy expertise which is often lacking
in resource-poor settings. To address these problems, attempts
have been made in recent years to automate malaria diagnosis
using machine learning approaches. Several challenges need to
be met for a machine learning approach to be successful in
malaria diagnosis. Microscopy images acquired at different sites
often vary in color, contrast, and consistency caused by different
smear preparation and staining methods. Moreover, touching
and overlapping cells complicate the red blood cell detection
process, which can lead to inaccurate blood cell counts and thus
incorrect parasitemia calculations. In this work, we propose a
red blood cell detection and extraction framework to enable
processing and analysis of single cells for follow-up processes
like counting infected cells or identifying parasite species in thin
blood smears. This framework consists of two modules: a cell
detection module and a cell extraction module. The cell detection
module trains a modified Channel-wise Feature Pyramid Network
for Medicine (CFPNet-M) deep learning network that takes the
green channel of the image and the color-deconvolution processed
image as inputs, and learns a truncated distance transform image
of cell annotations. CFPNet-M is chosen due to its low resource
requirements, while the distance transform allows achieving more
accurate cell counts for dense cells. Once the cells are detected
by the network, the cell extraction module is used to extract
single cells from the original image and count the number of
cells. Our preliminary results based on 193 patients (including
148 P. Falciparum infected patients, and 45 uninfected patients)
show that our framework achieves cell count accuracy of 92.2%.

Index Terms—Malaria diagnosis, Plasmodium falciparum, Plas-
modium vivax, microscopy, thin blood smear, machine learning,
image analysis

I. INTRODUCTION

Malaria remains a global health threat with considerable
mortality rates. Diagnosis and monitoring of malaria have on-

going challenges particularly in resource-poor settings where
experts analyzing the microscopy images are often lacking,
and computational resources needed for automated analysis are
limited. Light-weight automated systems that can assist health
providers in diagnosis and monitoring of malaria disease is
a critical need to ensure rapid and accurate diagnosis and
treatment. Lately, thanks to the advances in computational
resources and availability of large amounts of annotated
data, supervised machine learning methods have started to
be used for automated malaria diagnosis from thin blood
smear microscopy images [1], [2]. However, there are still
several problems that are needed to be addressed to develop a
successful machine learning model that can segment and count
the red blood cells in a thin blood smear microscopy image for
malaria diagnosis. One of these problems is large appearance
variations between the blood smear images. The smear images
differ in color, contrast, and consistency due to different
smear preparation and staining procedures. This variety brings
generalization challenges making trained machine learning
models harder to use on blood smears that are prepared at
different locations. Another challenge is large numbers of
touching or overlapping cells in thin blood smear images
that lead to detection and segmentation problems. This is
an important issue for malaria diagnosis and monitoring that
require accurate counting of cells to calculate parasitemia (a
measure of parasite load).

In this paper, we present a pipeline called Channel-wise
Feature Pyramid Network for Medicine (CFPNet-M) [3] -
Detection, Extraction and Counting (CFPNet-M-DEC), to de-
tect, extract and count red blood cells in thin blood smear
microscopy images for automated malaria diagnosis and pa-
tient monitoring. To address the first problem caused by the
appearance variations in collected blood smear images, we
propose to use color deconvolution [4], [5], and the green
channel of the image as inputs to the network. To address the
second issue of distinguishing touching cells more accurately,
the model is trained as a regression model rather than a
binary segmentation model. The regression model learns a
processed distance transform of the binary ground truth mask.978-1-6654-2471-4/21/$31.00 ©2021 IEEE



Fig. 1. Flowchart of the proposed CFPNet-M-DEC framework.

As the segmentation network, CFPNet is used by modifying
the first and the last layers to convert it to a regression network
that takes a two channel input. CFPNet-M [3] is a light-
weight network that is specifically developed for biomedical
image segmentation. Due to its characteristics like the low
memory requirement, it is suitable for resource-poor settings.
The overall pipeline of the proposed red blood cell detection,
extraction and monitoring system is given in Fig. 1. The
original thin blood smear images are given as the input to
the pipeline. These original images are processed to get the
color deconvolution image and the green channel to be given to
the cell detection module. The model in the detection module
infers a truncated distance transform for each image, and the
inferenced images are given to the cell extraction module.
Finally, the cell extraction module uses a series of classical
image processing techniques to extract each cell as a separate
image and the cell count for further analysis.

II. RELATED WORK

Automating malaria diagnosis and monitoring using thin
blood smears is an active research area [2], [6], [7]. Thanks to
the advances in deep learning and availability of annotated
training data, recent works started to rely on supervised
deep learning techniques. Some works directly use the whole
microscopy image for tasks like segmentation and detection
[8]–[13], some use extracted cell images for tasks like classi-
fication [11], [13]–[15]. Moreover, some works evaluate cell
patches collected from multiple patients, and some others
evaluate the results on patient level. There are different studies
focusing on the detection of the red blood cells for further use
[16], and the detection of the infected cells directly [1], [12],
[17], [18]. Some studies classify red blood cells as infected vs.
uninfected, as a two class problem [19], [20], and other studies
approach the problem as a three or more class classification
task and include classes to differentiate different species of
parasites. Finally, there are studies that created a full pipeline
for the detection and classification tasks [13], [21], [22]. On
the other hand, the automated systems are often needed in
environments with limited computational resources or lack of
experts. In such environments, the most advanced tool on site
might be a smart phone, which is successfully used in some
recent works [23]–[26].

Like many other biomedical image analysis problems, there
are problem specific issues coming from the nature of the
data. Specifically, in malaria diagnosis, available data are
collected from many different places, with varying image qual-
ity. Common challenges of image detection and classification
in biomedical images include the variety of appearance of
the same class cells, touching and partially overlapping cells
[27]. Specifically, when accurate cell counts are important, as
they are for malaria diagnosis and monitoring, touching and
partially overlapping cells create even more critical issues. To
address this problem, some authors used distance transform
as ground truth for regression, instead of a binary mask in
convolutional neural networks, to highlight the center of the
cells or particles. This can lead to a better distinction of
touching cells [28]–[30].

This study proposes a processing pipeline to detect, count,
and extract red blood cells from thin blood smear images to be
used for identification of infected versus uninfected cells and
for classification of infecting parasite species. The proposed
pipeline uses a distance transform-based cell segmentation
approach to increase cell count accuracy, particularly in the
presence of touching and overlapping cells. The proposed
pipeline also involves a color deconvolution step [4], [5] to in-
crease the generalization capability of the trained deep learning
model to better adapt to processing of images collected from
different sites.

III. METHODS

We propose a framework, CFPNet-M-DEC, for detecting
and extracting red blood cells in thin blood smears, as shown
in Fig.1. It consists of two modules: cell detection module
and cell extraction module. The cell detection module takes
an original microscopy image as input and uses a modified
CFPNet-M model to detect cells. Once the cells are detected
by the network, the cell extraction module is used to extract
and count single cells.

A. Detection Module

The proposed detection module, illustrated in Fig. 2, in-
cludes three main steps: (i) image pre-processing, (ii) color
deconvolution; and (iii) deep learning-based detection.



Fig. 2. Different stages of the Cell Detection Module. The original image is pre-processed, then color deconvolution is done to get the dye-free image. The
green channel is taken together with the dye-free image as the inputs to the modified CFPNet-M, which learns a truncated, enhanced distance transform.

1) Pre-processing: This step aims to detect and crop the
circular image region seen through the microscope from the
rest of the image. The original images (of size 5312× 2988)
include a dark background surrounding the blood smear image
seen through the microscope. We used Otsu thresholding
[31] to generate binary masks that differentiate blood smear
regions from the surrounding background. Bounding boxes
computed from these masks are then used to crop regions
of interest from the original images. This step reduces image
size to approximately 3000 × 3000. Cropped images and
the corresponding ground truth segmentation masks are then
resized to 800× 800.

Color Deconvolution: Color deconvolution is an algorithm
designed to extract the dyes of different stains from RGB
images [4], [5]. Color deconvolution can be used to extract
single or multiple stains from an image. The extraction of
different dyes gives us a stain free, common color ground
for a variety of images collected from different sources.
Since the microscopy images are acquired from different labs

and hospitals, the output image varies a lot in color and
consistency. In the detection module, to exclude the unwanted
effects of this variety, a color deconvolution image of the
original microscopy image is used as one of the input channels.
In our experiments, an extraction for Giemsa dye is done, but
this method can be generalized to different dyes, therefore is
applicable to other images prepared with different types of
dyes.

2) Training: To detect and extract individual cells for fur-
ther analysis, we modified a recent light-weight segmentation
network Channel-wise Feature Pyramid Network for Medicine
(CFPNet-M) [3]. We modified the first and last layers of
the network to allow processing of two channel (dye-free
image and green channel of the original image) input; and
to perform regression rather than classification. The network
is trained to map its input to a processed distance transform
of the binary segmentation mask as shown in Fig. 2. The
CFPNet-M network [3] is an improved version of the classical
U-Net [32] segmentation network. The number of trainable



parameters of CFPNet-M is drastically less compared to the
U-Net network, which reduces the resources needed for both
training and inference phases. This property is important for
malaria diagnosis in resource-poor settings. Adam optimizer
and mean squared error loss function are used for training
the network. The model is trained using the dye free image
and the green channel of the original image as inputs, and
truncated distance transform of the binary ground-truth cell
segmentation mask as output. The training image is generated
as follows: (i) a binary cell segmentation mask is created
using manual polygon annotations generated for the cells in
the input image; (ii) distance transform operation is applied
to the binary segmentation mask; (iii) contrast enhancement is
applied to the distance transform output to better highlight the
cell centers; (iv) enhanced distance transform is truncated to a
minimum distance to decrease the number of possible values
for the regression process. The resulting truncated enhanced
distance transform map is used to train the modified CFPNet-
M network.

B. Cell Extraction Module
Once the truncated distance map of the cells is generated

by the modified CFPNet-M network, post-processing steps are
performed to extract individual cells for further analysis (i.e.
infected vs. not infected classification). Given the network out-
put, single cell image patches are extracted using the following
steps: (i) A binarized version of the network output is used to
remove background noise from the enhanced distance map; (ii)
Gaussian smoothing is applied to the enhanced distance map to
reduce false detections; (iii) extended-maxima transform [33]
is applied to the smoothed distance map to detect inner cell
regions; (iv) morphological erosion operation is applied to the
extended-maxima map to reduce merging of neighboring cells;
(v) individual cells are identified using connected component
labeling; (vi) the labeled image is resized back to the original
resolution (3000× 3000 pixels); (vii) Fixed sized (200× 200
pixels) image patches are extracted around the centroids of the
connected components from the original resolution images.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed system was trained, tested, and evaluated
using data from 193 patients (including 148 P. Falciparum
infected patients, and 45 uninfected patients). Out of 955
microscopy images in total, 100 images were selected for the
validation set, 100 images were selected for the test set, and
the remaining 755 images were used for training. Training was
done using the default parameters of CFPNet-M, and for 25
epochs. Sample input images, corresponding inference results,
and cell center markers obtained from these outputs are shown
in Fig. 3. Separate cells are extracted using the markers as
described in Section III-B. The results were evaluated in terms
of segmentation and detection performances and compared to
a marker controlled watershed segmentation algorithm [24].

A. Segmentation Performance
Experimental results were first evaluated in terms of cell

segmentation. Model inference results were thresholded and

Fig. 3. Example results from the CFPNet-M-DEC pipeline. Two example
images are given in two rows with zoomed in parts showing touching cell
examples. First column is the original image, second column is the model
output shown in jet colormap, third column shows the cell center markers
found in the model output.

dilated to produce binary segmentation masks and compared
to the manual cell segmentation in terms of dice similarity
coefficient [34]. The dice similarity coefficient between two
binary images A and B is given in Eq. (1), where |A| represents
the cardinality of image A.

Dice(A,B) =
2|(A ∩B)|
|A|+ |B|

(1)

These results were compared to the performance of a
watershed segmentation algorithm [24]. The marker controlled
watershed algorithm was applied on the gradient magnitude
image, based on the cell markers that were found using
multi-scale Laplacian of Gaussian. The dice coefficient was
calculated for each test image, then the mean dice coefficient
was taken by averaging the dice coefficients of all images. The
mean dice coefficient on all 100 images in the test set is given
in Table I. In this table, we see that the proposed detection
model outputs have a mean dice value of 0.5762, whereas
the mean dice coefficient of the watershed-based method is
0.7204.

The results of these experiments show that the watershed-
based method is superior to the proposed detection model with
respect to the mean dice score with a 0.15 difference. This
result is expected since the watershed-based method directly
aims to have a segmentation mask, whereas the proposed
model aims to have a detection mask that will later be used
to extract and count each cell separately. Moreover, since
the proposed model outputs a truncated distance transform,



TABLE I
MEAN DICE SIMILARITY COEFFICIENT BETWEEN THE GROUND TRUTH

MASK USED IN TRAINING, AND THE BINARIZED DETECTION MASK RESULT
OF CELL DETECTION MODULE OF CFPNET-M-DEC, AND THE RESULTS

OF THE WATERSHED-BASED METHOD.

Method Mean Dice Coefficient
CFPNet-M-DEC 0.5762

Watershed 0.7204

it highlights the centers of the cells while giving a smaller
mask for each cell to make it easier to separate them in cases
of touching and overlapping cells.

B. Cell Counting Performance

Experimental results from the full processing pipeline in-
cluding the cell extraction module were evaluated in terms
of single cell detection and counting. Extracted cells and
the obtained cell counts were compared to the cell counts
obtained from the binary ground-truth segmentation masks and
the aforementioned watershed transform-based segmentation
masks. Cell count errors in the ground-truth segmentation
masks are caused by touching or overlapping cells. Cell
count errors in this case can be used as a measure of image
complexity. These counts were compared to the ground-truth
cell counts obtained from the manual polygon annotations.

Mean cell count errors and standard deviations (STD) for all
100 images of 20 patients in the test set are shown in Table II.
The mean errors show that the proposed pipeline has a 15.08
mean error value with 11.52 standard deviation. The binary
ground truth segmentation masks have a 41.09 mean error with
19.16 standard deviation. Finally, the counts extracted from
the watershed segmentation results have a 32.31 mean error
with 40.66 standard deviation value. The mean error values in
this table are calculated by taking the difference between the
computed cell counts and the actual cell counts in each image,
and then by averaging over 100 test images.

The cell count percentages for both image level and patient
level are given in the Table III. The cell count percentage for
a single image was directly calculated by taking the number
of the extracted cells from the image divided by the actual
cell count in that specific image. Then the ratio value was
multiplied by 100 to have percentage scale. Finally, the mean
of these percentages were taken for all 100 images to find the
mean cell count percentage on image level, and for 5 images
for each patient on patient level. The mean percentage value
of the correctly detected and counted cells of the proposed
pipeline on all test images is 92.28%, whereas the percentage
value is 79.54% for the count of the cells that are extracted
from ground truth masks used in training, and 84.07% for the
cell counts extracted from the watershed-based method.

For patient level analysis of 20 patients, the percentage
of correct counts of our method varies between 99.18% and
77.95%, with a mean of 92.20%. For watershed, the variance
goes much higher with percentage values between 101.48%
(over-segmentation) and 30.32%, with a mean of 83.61%. For
the binary ground-truth segmentation masks, the percentage

values varies between 88.70% and 56.41%, with a mean of
79.38%.

TABLE II
GT MASK: MEAN ERROR AND STD BETWEEN THE CELL COUNT OF THE
CELLS EXTRACTED FROM THE GROUND TRUTH MASK AND ACTUAL CELL
COUNT. WATERSHED: THE MEAN ERROR AND STD BETWEEN THE CELL

COUNT OF THE CELLS EXTRACTED FROM THE RESULTS OF THE
WATERSHED-BASED METHOD AND THE ACTUAL CELL COUNT.

CFPNET-M-DEC: THE MEAN ERROR WITH THE CORRESPONDING STD
BETWEEN THE CELL COUNT OF THE CELLS EXTRACTED FROM THE

CFPNET-M-DEC RESULT AND THE ACTUAL CELL COUNT.

Method Mean Error Error STD
Binary Ground-truth Mask 41.09 19.16

Watershed 32.31 40.66
CFPNet-M-DEC 15.08 11.52

TABLE III
GT MASK: MEAN PERCENTAGE OF THE CELL COUNT OF THE CELLS

EXTRACTED FROM THE GROUND TRUTH MASK OVER THE ACTUAL CELL
COUNT. WATERSHED: MEAN PERCENTAGE OF THE CELL COUNT OF THE

CELLS EXTRACTED FROM THE WATERSHED-BASED METHOD RESULT OVER
THE ACTUAL CELL COUNT. CFPNET-M-DEC: MEAN PERCENTAGE OF

THE CELL COUNT OF THE CELLS EXTRACTED FROM THE CFPNET-M-DEC
RESULT OVER THE ACTUAL CELL COUNT.

Mean Count Percentage %
Method Image Level Patient Level

Binary Ground-truth Mask 79.54 79.38
Watershed 84.07 83.61

CFPNet-M-DEC 92.28 92.20

The experimental results show that our pipeline has the
smallest mean error value with the lowest standard deviation
with respect to the missed cells in the cell count. Moreover,
the results show that our pipeline has the highest accuracy
in cell count values with higher mean percentage with least
variance. Our method goes up to 99.18% accuracy for cell
counts on patient level. The proposed method is more focused
on detecting and extracting single cells, rather than having
accurate segmentation masks.

V. CONCLUSION

The proposed pipeline shows promising results for extrac-
tion and counting of red blood cells from thin blood smear
images. The proposed deep learning network considers stain
and color differences between images collected from different
resources, and generates a truncated distance map instead of a
binary segmentation mask. This distance mapping enables de-
tection, extraction, and counting of single cells within clusters.
The extracted cells can then be used to classify the individual
cells as uninfected or infected, or to train a 3-class classifier
for uninfected cells and cells infected with P. falciparum and
P.Vivax. With a classification step added to the pipeline, the
whole pipeline can be used to diagnose malaria, and monitor
malaria patients during their treatments.

Our future work will involve generalization of the proposed
pipeline to images collected from different resources including
P. vivax; augmentation of the training dataset with artificial



data to further improve performance on touching and overlap-
ping cells; and precise tuning of the parameters or creation of
adaptive parameters to extract the cells.
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