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Abstract 

Deep learning (DL) has drawn tremendous attention in object localization and recognition for both natural and medical 
images. U-Net segmentation models have demonstrated superior performance compared to conventional hand-crafted 
feature-based methods. Medical image modality-specific DL models are better at transferring domain knowledge to a 
relevant target task than those that are pretrained on stock photography images. This helps improve model adaptation, 
generalization, and class-specific region of interest (ROI) localization. In this study, we train chest X-ray (CXR) modality-
specific U-Nets and other state-of-the-art U-Net models for semantic segmentation of tuberculosis (TB)-consistent 
findings. Automated segmentation of such manifestations could help radiologists reduce errors and supplement decision-
making while improving patient care and productivity. Our approach uses the publicly available TBX11K CXR dataset 
with weak TB annotations, typically provided as bounding boxes, to train a set of U-Net models. Next, we improve the 
results by augmenting the training data with weak localizations, post-processed into an ROI mask, from a DL classifier 
that is trained to classify CXRs as showing normal lungs or suspected TB manifestations. Test data are individually 
derived from the TBX11K CXR training distribution and other cross-institutional collections including the Shenzhen TB 
and Montgomery TB CXR datasets. We observe that our augmented training strategy helped the CXR modality-specific 
U-Net models achieve superior performance with test data derived from the TBX11K CXR training distribution as well as
from cross-institutional collections (p < 0.05). We believe that this is the first study to i) use CXR modality-specific U-
Nets for semantic segmentation of TB-consistent ROIs, and ii) evaluate the segmentation performance while augmenting
the training data with weak TB-consistent localizations.
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1. Introduction

1.1. Need for automated segmentation of tuberculosis (TB)-consistent findings 

Tuberculosis (TB) is caused by mycobacterium tuberculosis and most often affects the lungs but can occur 
throughout the body. According to the 2020 World Health Organization (WHO) report (“Global tuberculosis 
reports,” 2020), 10 million people were estimated to be infected with TB worldwide. While CT imaging is 
increasingly preferred, the simple chest X-ray (CXR) remains a widely used imaging modality in TB 
screening protocols, particularly in low and middle resource regions. Early diagnosis plays a crucial role in 
improving patient care and increasing the survival rate. However, there is a significant shortage of medical 
experts in the poor resource regions. Automated techniques have been proposed to offset some of these 



 

 

 

challenges (Murphy et al., 2020). However, it is unclear if these methods are generalizable across different 
datasets or concur with radiologist findings. These concerns can be addressed using automated segmentation 
methods that determine a prediction model to obtain highly accurate results over the training dataset while 
maintaining good generalization for cross-institutional test sets. Next, segmentation results could be compared 
with expert radiologist assessments to determine performance. However, deep learning (DL) methods are 
known to be data-hungry in that reliable high-performing algorithms are dependent on good quality, large, 
varied, and well-labeled data. We are challenged by issues concerning varying image acquisition, the 
variability with which the TB-consistent findings may manifest in the images, and insufficiently or weakly 
labeled publicly available data sets. While we have little control over image quality, we can model the 
variation in disease presentation with richly labeled data.  

Manual expert TB segmentation and localization is a very challenging and time-consuming task in disease 
screening due to the sparse availability of experts, particularly in resource-limited countries across the world. 
Overcoming the lack of richly annotated and publicly available data is the impetus of our effort to create a 
generalizable DL method that can semantically segment TB-consistent findings on CXRs. We envision that 
such a method could help radiologists reduce errors following initial interpretation and before finalizing the 
report with “flags” (segmentations), indicating potential TB findings. This could improve radiologist accuracy 
and improve patient care through an additional “set of eyes” thereby augmenting the radiologist workflow to 
become more efficient. Automated segmentation could also serve as an initial point for radiology residents to 
better learn the characteristics of the disease manifestations by comparing their annotations of suspected 
abnormal findings and comparing with radiologist readings. Approved segmented findings could later be 
subjected to a multifactorial analysis including measuring the lobar location, shape, and other quantitative 
features confined to the ROI and interactive with workflows. This segmentation approach would lead to a 
significant advancement in ROI segmentation, localization, and diagnosis in resourced-constrained areas. To 
develop such a method, we need to localize, segment, and recognize TB-consistent findings on CXRs.  

1.2. Need to train medical modality-specific segmentation models 

The challenge with TB is that the disease presents in a variety of shapes and sizes with different image 
intensities and may be obscured by or confused with superimposed or surrounding pulmonary structures. 
There are unique patterns of TB (e.g., cavities, nodule clusters) including anatomic distributions that support a 
TB etiology (e.g., apical predominance, para hilar, costophrenic angles). Medical image segmentation is often 
the first step in isolating anatomical organs, sites for dimension measurement, counting, disease classification, 
intervention planning, etc. It is a difficult task considering the existence of a high degree of variability in 
medical image quality to include penetration and positioning (Aresta et al., 2019). To overcome such variety, 
typical approaches in medical image segmentation develop solutions that are specific to the medical imaging 
modality, body part, or disease being studied (Reyes et al., 2009). This results in the limited direct use of 
segmentation models commonly trained on natural images for medical image segmentation (Renard et al., 
2020). There is an indispensable need to train generalizable medical modality-specific segmentation models to 
obtain high segmentation performance. The current literature leaves much room for progress in this regard. In 
this effort, we present our approach to this problem by building CXR modality-specific convolutional neural 
network (CNN) models for segmenting TB-consistent ROIs in CXRs. We provide background on these steps, 
i.e., classification and segmentation, in the following paragraphs. 

We selected CNN models since they have demonstrated superior performance in natural and medical visual 
recognition tasks as compared to using conventional hand-crafted feature descriptors/classifiers (Rajaraman et 
al., 2019). CNNs are typically used in supervised learning-based classification tasks where the input image is 
assigned to one of the class labels. Recent advances reported in the literature use conventional hand-crafted 



 

feature descriptors/classifiers and DL models for classifying CXRs as showing normal lungs or pulmonary TB 
manifestations (Jaeger et al., 2014; Lakhani and Sundaram, 2017). These studies reveal that the DL models 
outperform conventional methods toward medical image classification tasks, particularly CXR analysis 
(Rajaraman et al., 2020a). The authors (Lakhani and Sundaram, 2017) used the publicly available TB datasets 
including the Shenzhen TB CXR, the Montgomery TB CXR (Jaeger et al., 2014), the Belarus TB CXR 
(“Tuberculosis (TB) data science for public health impact,” 2020), and another private TB dataset from the 
Thomas Jefferson University Hospital, Philadelphia. The authors used ImageNet-pretrained AlexNet 
(Krizhevsky et al., 2012) and GoogLeNet (Szegedy et al., 2016) models to classify CXRs as showing normal 
lungs or pulmonary TB manifestations. To this end, the authors observed that an averaging ensemble of 
ImageNet-pretrained AlexNet and GoogLeNet models demonstrated statistically superior performance with an 
AUC of 0.99 (p < 0.001) compared to their untrained counterparts. Another study (Candemir et al., 2014) used 
an atlas-based method to segment lungs and the scale-invariant feature transform (SIFT) algorithm to extract 
lung shape descriptor features from the CXRs in the Shenzhen TB CXR dataset to classify them as showing 
healthy or TB-infected lungs where they obtained an accuracy of 0.956 and an AUC of 0.99. In another study 
(Chauhan et al., 2014), the authors used Histogram of Oriented Gradient (HOG)-based feature descriptors with 
an SVM classifier to detect TB in CXRs in the India TB CXR collection (Chauhan et al., 2014), resulting in an 
accuracy of 0.942 and AUC of 0.957. In another study, a computer-aided diagnostic system was developed 
(Hwang et al., 2016) using CNN models toward TB screening. The authors trained ImageNet-pretrained DL 
models on a private CXR data collection to classify the CXRs in the Shenzhen TB CXR collection as showing 
healthy or TB-infected lungs. The authors observed that the pretrained CNN models delivered a superior 
performance with an accuracy of 0.83 and AUC of 0.926 as compared to the baseline, untrained models. The 
authors (Pasa et al., 2019) proposed a simple CNN model to classify the CXRs in the Shenzhen TB CXR, 
Montgomery TB CXR, and Belarus TB CXR collections as showing healthy or infected lungs. They observed 
that the custom CNN model achieved superior performance with an accuracy of 0.862 and an AUC of 0.925. 
Another study used ImageNet-pretrained CNN models to classify a private collection of 10848 CXRs toward 
TB detection (Qin et al., 2018). The authors obtained an accuracy of 0.903 and an AUC of 0.964.  

Other studies demonstrate improvement in model robustness and generalization when the knowledge 
transfer is initiated from medical image modality-specific pretrained CNN models to a relevant medical visual 
recognition task (Rajaraman et al., 2020a). Such a knowledge transfer, unlike conventional transfer learning, 
has demonstrated superior model adaptation to a relevant target task, particularly when the target task suffers 
from limited data availability. The authors propose the benefits offered through modality-specific pretraining 
on a large collection of CXR images, and then transferring and fine-tuning the learned knowledge toward 
detecting TB manifestations (Rajaraman and Antani, 2020). To this end, the authors observed state-of-the-art 
(SOTA) performance using a stacked model ensemble with the Shenzhen TB CXR collection with an 
accuracy of 0.941 and an AUC of 0.995. In another study (Yadav et al., 2019), the authors proposed the 
benefits offered through modality-specific pretraining on a large collection of CXR images, and then 
transferring and fine-tuning the learned knowledge toward detecting TB manifestations. The authors observed 
superior performance with an accuracy of 0.9489 while constructing modality-specific model ensembles 
toward classifying CXRs as showing normal lungs or TB manifestations. However, there is no available 
literature that discusses modality-specific knowledge transfer applied to other visual recognition tasks like 
segmentation, particularly concerning CXR analysis.  

For our segmentation task, the goal is to obtain region-based segmentation, i.e., each pixel in the input 
image has to be assigned to one of the class labels. However, the performance of these models is limited by 
the availability of annotated data. Medical imagery in particular is constrained by the highly limited 
availability of expert annotated samples. To overcome this limitation, a CNN-based model with a U-shaped 
architecture called the U-Net was proposed to analyze biomedical images (Ronneberger et al., 2015). The 



 

 

 

authors demonstrated that the U-Net model delivered superior pixel-level class predictions even under 
conditions of sparse data availability. The U-Net model has thus become the principal segmentation model 
architecture to be used for natural and medical image segmentation tasks. Several U-Net model variants have 
been proposed including V-Net (Milletari et al., 2016), improved attention U-Net (Abraham and Khan, 2019), 
nnU-Net (Isensee et al., 2018), and U-Nets using ImageNet-pretrained encoders (Lin et al., 2020).  

For CXR image analysis, U-Nets are prominently used to automate lung segmentation (Farhat et al., 2020; 
Suzuki, 2017). We find the literature is limited in other segmentation tasks, particularly for segmenting TB-
consistent ROIs. There are no studies available at present that perform CXR-based TB-consistent ROI 
segmentation so that each pixel in the input image is assigned to one of the healthy or TB-consistent class 
labels. Thus, there is an essential need to (i) automate TB-consistent ROI segmentation through training 
SOTA segmentation models, and (ii) help clinicians localize these ROIs and supplement clinical decision-
making. 

1.3. Proposed methodology 

We propose a stage-wise methodology in this retrospective study.  
(i) We retrained a selection of ImageNet (Fei-Fei et al., 2010)-pretrained DL models including VGG-16 

(Simonyan and Zisserman, 2015), VGG-19 (Simonyan and Zisserman, 2015), Inception-V3 (Szegedy et al., 
2016), DenseNet-121 (Huang et al., 2017), ResNet-18 (He et al., 2016), MobileNet-V2 (Sandler et al., 2018), 
EfficientNet-B0 (Tan and Le, 2019), and NasNet-Mobile (Pham et al., 2018) on a large-scale collection of 
CXR images to convert the weight layers specific to the CXR modality and help learn CXR modality-specific 
feature representations.  

(ii) We propose CXR modality-specific VGG-16 and VGG-19 U-Nets hereafter referred to as the VGG-16-
CXR-U-Net and VGG-19-CXR-U-Net models. These models use the CXR modality-specific pretrained VGG-
16 and VGG-19 models from the previous step as the encoder backbone. The performance of these models 
and other SOTA U-Net model variants including the standard U-Net (Ronneberger et al., 2015), V-Net with 
ResNet blocks (Milletari et al., 2016), improved attention U-Net (Abraham and Khan, 2019), ImageNet-
pretrained VGG-16 U-Net (Lin et al., 2020), and ImageNet-pretrained VGG-19-U-Net are evaluated toward 
the lung segmentation task. The best performing model is used to segment lungs in a combined selection of 
CXRs showing normal lungs or pulmonary TB manifestations.  

(iii) We performed a knowledge transfer from CXR modality-specific pretrained models from (i) and fine-
tuned them to classify the combined selection of CXRs from (ii) as showing normal lungs or pulmonary TB 
manifestations.  

(iv) The best performing fine-tuned model from (iii) is used to weakly localize the TB-specific ROI using 
class-selective relevance mapping (CRM) methods (Kim et al., 2019). The localized ROIs are converted into 
binary ROI masks.  

(v) The segmentation models from (ii) are trained and evaluated to segment TB-consistent manifestations 
using CXRs. Here, we performed two sets of evaluations: (i) First, we used the publicly available, patient-
specific train/test split of the TBX11K (Liu et al., 2020) dataset to train and evaluate the models; (ii) Next, we 
augmented the training data of the TBX11K dataset with the ROI masks generated from weak TB-consistent 
ROI localization from (iv) and their associated original CXRs from (ii) to further improve segmentation 
performance. This training process is hereafter referred to as augmented training (AT). The performance 
achieved with non-augmented training and AT using cross-institutional Shenzhen TB CXR (Jaeger et al., 
2014) and Montgomery TB CXR (Jaeger et al., 2014) test collections is also evaluated to determine model 
robustness and generalization. Fig 1 illustrates the steps toward the current study.  



 

 

Fig. 1. Graphical abstract of the proposed study. 

 
We believe that this is the first study to i) use CXR modality-specific U-Net models to segment TB-

consistent manifestations, and ii) evaluate non-augmented training and AT segmentation performance using 
test data derived from the same training data distribution and other cross-institutional collections to determine 
model robustness and generalization to real-time applications. The combined use of CXR modality-specific U-
Net models and AT is expected to improve segmentation performance and could be applied to an extensive 
range of medical segmentation tasks including datasets from multiple institutions.  

The remainder of this study is organized as follows: Section 2 discusses the materials and methods, Section 
3 elaborates on the results, and Section 4 discusses the merits, limitations, and future work directions.  

2. Materials and Methods 

2.1. Dataset characteristics 

The following publicly available CXR collections are used in this retrospective research study: 
(i) Shenzhen TB CXR: This de-identified dataset contains 326 CXRs showing normal lungs and 336 

abnormal CXRs showing various TB manifestations (Jaeger et al., 2014). The CXRs are collected from 
Shenzhen No.3 hospital in Shenzhen, China. Each image is tested with diagnostic microbiology gold standard 
and acquired as a part of routine clinical care. It is exempted from institutional review board (IRB) review 
(OHSRP#5357) by the National Institutes of Health (NIH) Office of Human Research Protection Programs 



 

 

 

(OHSRP) and made publicly available by the National Library of Medicine (NLM) 
(https://lhncbc.nlm.nih.gov/publication/pub9931). In this study, we split this dataset into two: (i) Shenzhen 
TB CXR-Subset-1 consists of 326 CXRs showing normal lungs and 268 CXRs showing pulmonary TB 
manifestations. This dataset is used to fine-tune the CXR modality-specific pretrained DL models to classify 
CXRs as showing normal lungs or TB manifestations. (ii) Shenzhen TB CXR-Subset-2 consists of 68 
abnormal CXRs showing pulmonary TB manifestations. This dataset is used to perform cross-institutional 
testing toward TB-consistent ROI segmentation.  

(ii) Montgomery TB CXR: This de-identified dataset is collected by the TB control program of the 
Department of Health and Human Services (HHS), Maryland, USA. The data set is exempted from 
institutional review board (IRB) review (OHSRP#5357) by the National Institutes of Health (NIH) Office of 
Human Research Protection Programs (OHSRP) and made publicly available by the National Library of 
Medicine (NLM) (https://lhncbc.nlm.nih.gov/publication/pub9931) (Jaeger et al., 2014). The collection 
includes 58 abnormal CXRs showing various TB manifestations and 80 CXRs showing normal lungs. Each 
image is tested with the diagnostic microbiology gold standard. Radiologist readings are made publicly 
available as text files. In this study, we used this dataset to perform cross-institutional testing toward TB-
consistent ROI segmentation. 

(iii) India TB CXR: The authors (Chauhan et al., 2014) from the National Institute of TB and respiratory 
diseases, New Delhi, India, released two different CXR datasets that are collected using different X-rays 
machines. Dataset A includes 78 CXRs for each class, showing normal lungs and others with various TB 
manifestations. These images were obtained with the Diagnox-4050 X-ray machine. Dataset B includes 75 
CXRs for each class, showing normal lungs and other TB manifestations, and is acquired using the PRORAD 
URS X-ray machine with Canon detectors. This dataset is used in this study to fine-tune the CXR modality-
specific pretrained DL models to classify CXRs as showing normal lungs or TB manifestations. 

(iv) Belarus TB CXR: The International TB portals program at the National Institute of Allergic and 
Infectious Diseases (NIAID) is a leading scientific resource of annotated CXRs and CT images of TB patients 
(“Tuberculosis (TB) data science for public health impact,” 2020). The TB portal contains 298 CXRs showing 
various TB manifestations that are collected from patients in Belarus. This dataset is used to fine-tune the 
CXR modality-specific pretrained DL models to classify CXRs as showing normal lungs or TB 
manifestations. 

(v) Tuberculosis X-ray (TBX11K) CXR: The authors (Liu et al., 2020) have made available a collection of 
11,200 CXR images that are categorized into normal (n = 5000), sick but not TB (n = 5000), active TB (n = 
924), latent TB (n = 212), active and latent TB (n = 54) and uncertain TB (n = 10) classes, where ‘n’ denotes 
the total number of CXRs in each class. Each image in the TBX11K collection is tested with diagnostic 
microbiology and annotated by the radiologists for TB manifestations. The images are de-identified and 
exempted for review by relevant institutions. The dataset also provides rectangular bounding box regions for 
TB positive cases. Note that using bounding boxes instead of fine annotation implicitly introduces errors in 
the training since a fraction of non-TB pixels will be treated as the positive class in pixel-wise training. This 
dataset is used to train and evaluate the U-Net segmentation models toward TB-consistent ROI segmentation. 

(vi) Pediatric pneumonia CXR: This collection (Kermany et al., 2018) includes 1583 anterior-posterior 
CXRs showing normal lungs and 4,273 CXRs showing bacterial and viral pneumonia manifestations. The 
CXRs are collected from pediatrics of 1 to 5 years of age from the Guangzhou Women and Children’s 
Medical Center, China. The images are acquired as a part of routine clinical care with IRB approvals. This 
dataset is used to perform CXR modality-specific pretraining of the ImageNet-pretrained CNN models toward 
classifying CXRs as showing normal lungs or other abnormal pulmonary manifestations.  

(vii) Radiological Society of North America (RSNA) CXR: A part of the NIH CXR collection (Wang et 
al., 2017) is curated by the radiologists from RSNA and Society of Thoracic Radiology (STR) and made 



 

publicly available for a Kaggle challenge to detect pneumonia manifestations (Shih et al., 2019). The 
collection includes 8851 CXRs showing normal lungs, 11821 CXRs showing other abnormal manifestations 
but not pneumonia, and 6012 CXRs showing various pneumonia manifestations. The images are made 
available in DICOM format at 1024 X 1024 pixel resolutions. Ground truth (GT) disease annotations are 
made available for the CXRs belonging to the pneumonia class. This dataset is used in this study toward 
performing CXR modality-specific pretraining. 

(viii) Indiana CXR: This collection (Demner-Fushman et al., 2016) includes 2,378 posterior-anterior CXRs 
showing abnormal pulmonary manifestations and 1,726 CXRs showing normal lungs. These images are 
collected from various hospitals that are affiliated with the Indiana University School of Medicine. The 
dataset is de-identified, manually verified, archived at the National Library of Medicine (NLM), and 
exempted from IRB review (OHSRP # 5357). This dataset is used during the CXR modality-specific 
pretraining stage. The datasets used in various stages of the proposed study and their distribution are 
summarized in Fig 2. 
 

 

Fig. 2. Datasets used in various stages of learning and their distribution. (a) CXR modality-specific pretraining; (b) fine-tuning; and (c) 

TB-consistent ROI segmentation. 

2.2. Statistical analysis 

In this study, we used a 95% confidence interval (CI) to measure the error margin as the Binomial 
(Clopper-Pearson) “exact” method and discriminate models’ performance. We used StatsModels v0.12.1 
Python library to perform these analyses. Statistical approaches used only in subsets of this study will be 
described in those specific sections of the manuscript. 



 

 

 

2.3. CXR modality-specific pretraining 

In the first step of this stage-wise systematic study, we retrained a selection of ImageNet (Fei-Fei et al., 
2010)-pretrained DL models including i) VGG-16 (Simonyan and Zisserman, 2015), ii) VGG-19 (Simonyan 
and Zisserman, 2015), (iii) Inception-V3 (Szegedy et al., 2016), (iv) DenseNet-121 (Huang et al., 2017), (v) 
ResNet-18 (He et al., 2016), (vi) MobileNet-V2 (Sandler et al., 2018), (vii) EfficientNet-B0 (Tan and Le, 
2019), and (viii) NasNet-Mobile (Pham et al., 2018) on a combined collection of RSNA CXR, pediatric 
pneumonia CXR, and Indiana CXR datasets to introduce sufficient data diversity in terms of image 
acquisition and patient demographics into the training process. The models are selected based on their 
architectural diversity and SOTA performance in other visual recognition tasks. Recall that the ImageNet-
pretrained DL models are trained using stock photography images from the Internet. Using out-of-the-box 
ImageNet-pretrained models for medical visual recognition tasks may lead to model overfitting and loss of 
generalization. This is because the transfer of weights from the majority dataset does not adequately 
generalize on smaller medical datasets. Literature studies have shown that compared to using ImageNet-
pretrained CNN models, CXR modality-specific model retraining (i) delivers superior performance toward 
classifying CXRs as showing normal lungs or other pulmonary abnormal manifestations and (ii) improve ROI 
localization performance with added benefits of reduced overfitting, prediction variance, and computational 
complexity (Rajaraman et al., 2020a, 2020b). CXR modality-specific pretraining converts the weight layers 
specific to the CXR modality and learns relevant features. The learned knowledge is transferred and fine-
tuned to improve performance in a related target task. During this pretraining stage, the models are trained to 
classify CXRs as showing normal lungs or other abnormal manifestations.  

The architectural depth and complexity of these models that are developed for natural visual recognition 
tasks may not be optimal for medical visual recognition because of issues concerning sparse data availability 
and varying feature representations. To this end, we performed empirical evaluations toward (i) identifying 
the best layer to truncate these models and (ii) appending task-specific heads to improve learning the 
underlying feature representation toward classifying the CXRs as showing normal lungs or other abnormal 
pulmonary manifestations. The truncated models are appended with the following task-specific layers: i)  a 3 
× 3 convolutional layer with 512 filters, (ii) a global average pooling (GAP) layer, (iii) a dropout layer 
(empirically determined ratio = 0.5), and (iv) a final dense layer with Softmax activation to output prediction 
probabilities for the normal and abnormal classes.  

During this training step, the combined CXR collection including RSNA CXR, pediatric pneumonia CXR, 
and Indiana CXR datasets is split at the patient-level into 80% for training and 20% for testing. With a fixed 
seed value, we allocated 10% of the training data toward model validation. The models are optimized using 
stochastic gradient descent (SGD) algorithm to minimize the categorical cross-entropy loss toward this 
classification task. Callbacks are used to check model performance and the model checkpoints are stored after 
each epoch.  

2.4. Lung segmentation and preprocessing 

The performance of DL models is severely impacted by data quality. Irrelevant features may lead to biased 
learning and sub-optimal model performance. The task of detecting TB or other pulmonary disease 
manifestations is confined to the lung regions. Thus, regions in CXRs other than the lungs are irrelevant to be 
learned by the models. Hence, it is crucial to segment the lung regions and train the models on the lung ROI 
to help them learn relevant features concerning normal lungs or other pulmonary manifestations.  

The U-Nets are one of the most powerful CNN models that are used for precise and accurate segmentation 
of medical images (Ronneberger et al., 2015). The principal advantage of U-Net is that it can handle data 



 

scarcity and learn from small training sets. The U-Net has a U-shaped architecture. It is composed of an 
encoder/contracting path and a decoder/expanding path and performs pixel-wise class segmentations. The 
feature maps from the various levels of the encoder are passed over to the decoder to predict features at 
varying scales and complexities.  

In this study, we propose CXR modality-specific VGG-16 and VGG-19 U-Nets referred to as VGG-16-
CXR-U-Net and VGG-19-CXR-U-Net models. These models use the CXR modality-specific pretrained 
VGG-16 and VGG-19 models from 2.3 as the encoder backbone. The architecture of the VGG-16-CXR-U-
Net and VGG-19-CXR-U-Net models are shown in Fig 3.  

 

 

Fig. 3. The architecture of the VGG-16- and VGG-19-CXR-U-Net models. The only difference is that the VGG-19-CXR-U-Net has an 

additional Conv-512-BN-ReLU layer in the convolutional blocks 3, 4, and 5 in the encoder path.  

 
The encoder of the VGG-16-CXR-U-Net and VGG-19-CXR-U-Net models are each made up of five 
convolutional blocks, consisting of 13 and 16 convolutional layers, respectively, following the original VGG-
16 and VGG-19 architecture (Simonyan and Zisserman, 2015). The green downward arrow at the bottom of 
each convolutional block in the encoder designates a max-pooling operation (2 × 2 filters, 2 strides) to reduce 
image dimensions. The decoder of the VGG-16-CXR-U-Net and VGG-19-CXR-U-Net models are each made 
up of five convolutional blocks and consist of 15 convolutional layers. The upward red arrow at the top of 
each convolutional block in the decoder signifies an up-sampling operation that performs transposed 
convolutions to restore the image to its original dimensions. Each convolutional layer in the encoder and 
decoder is followed by batch normalization (BN) and ReLU activation. The pink arrow signifies skip-
connections that combine the corresponding feature maps and restores the original image dimensions. 
Sigmoidal activation is used at the final convolutional layer to predict binary pixel values. 

 
 
 



 

 

 

We evaluated the segmentation performance of the VGG-16-CXR-U-Net and VGG-19-CXR-U-Net 
models and other SOTA U-Net variants including the standard U-Net (Ronneberger et al., 2015), V-Net with 
ResNet blocks (Milletari et al., 2016), improved attention U-Net (Abraham and Khan, 2019), ImageNet-
pretrained VGG-16 U-Net (Lin et al., 2020), and VGG-19-U-Net toward lung segmentation. Fig 4 illustrates 
the lung segmentation workflow. 

 

 

 
Fig 4. Lung Segmentation workflow. The best-performing U-Net model is used to generate lung masks that are overlaid on the original 

image to demarcate the lung boundaries and cropped to the size of a bounding box containing all lung pixels.  
 
The models are trained on a publicly available collection of CXRs and their associated lung masks 

(Candemir and Antani, 2019). We allocated 10% of the training data with a fixed seed value for validation. 
We introduced variability into the training process by augmenting the training input with random affine 
transformations including horizontal flipping, height and width shifting, and rotations. The trained models are 
tested with the cross-institutional Montgomery TB CXR collection and their associated GT lung masks 
(Jaeger et al., 2014). We emphasize that such an evaluation with a cross-institutional test collection would 
provide a faithful performance measure since the test data have varying visual characteristics and are 
completely unseen during model training, thereby preventing data leakage and ensuring generalization.  

The best performing model is used to generate lung masks at 256 × 256 spatial resolution. The generated 
lung masks are overlaid on the original CXR images to demarcate the lung boundaries and then cropped into a 
bounding box encompassing the lung pixels. We pre-processed these images by (i) resizing the cropped 
bounding boxes to 256 × 256 spatial resolution, (ii) improving contrast by saturating the bottom and top 1% 
of all image pixel values, (iii) normalizing the pixel values to the range [0 – 1], and (iv) performing mean 
subtraction and standardization such that the resulting distribution has a mean µ of 0 and a standard deviation 
σ of 1 given by, 
 

𝐾௡௢௥௠ ൌ  
𝐾 െ µ
𝜎

 
 (1) 

 
Here K is the original image and K_norm is the normalized image. 

2.5. Model fine-tuning and weak TB-consistent localization  

The process workflow toward CXR modality-specific pretraining and fine-tuning is illustrated in Fig 5. The 
CXR modality-specific pretrained models are truncated at their deepest convolutional layer and appended 
with the following task-specific layers: (i) GAP, (ii) dropout (empirically determined ratio = 0.5), and (iii) 
dense layer with two neurons. The resulting models are fine-tuned using the lung-segmented, combined TB 
CXR collection including India TB CXR, Belarus TB CXR, and Shenzhen TB CXR-Subset-1 datasets to 
classify them as showing normal lungs or pulmonary TB manifestations. The best-performing model from 2.4 
is used to segment the lungs in this collection. During this training step, the combined TB CXR collection is 



 

split at the patient-level into 80% for training and 20% for testing. We allocated 10% of the training data 
toward validation with a fixed seed value. The performance of these fine-tuned models is compared to their 
baseline counterparts, i.e., the out-of-the-box ImageNet-pretrained CNNs that are fine-tuned on this 
collection. The models are optimized using the SGD algorithm to minimize the categorical cross-entropy loss 
toward this classification task. We used callbacks to check the internal states of the fine-tuned models. The 
following metrics are used to evaluate models’ performance during CXR modality-specific pretraining and 
fine-tuning stages: (a) accuracy; (b) AUC; (c) sensitivity; (d) precision; (e) specificity; (f) F-measure; (g) 
Matthews correlation coefficient (MCC); and (h) diagnostic odds ratio (DOR).  

 

 

Fig. 5. The process workflow showing (a) CXR modality-specific pretraining and (b) fine-tuning. 

2.6. Verifying ROI localization  

We used saliency maps and a CRM-based localization algorithm (Kim et al., 2019) to interpret the learned 
behavior of the fine-tuned models toward detecting TB manifestations. These algorithms provide a visual 
interpretation of model predictions and supplement clinical decision-making.  

The algorithms differ by the methods in backpropagating the derivatives and the use of feature maps. 
Saliency maps measure the derivative of the output category score concerning the original input and generate 
a heat-map with the original input image resolution. A higher derivative value signifies the importance of that 
activation in contributing to the final category score. A smaller value for the derivative results in negligible 
impact and the activation can thus be considered trivial toward final prediction.  

CRM-based visualization algorithms are demonstrated to deliver superior localization performance as 
compared to the conventional class-activation map (CAM)-based localization, particularly toward medical 
image analysis (Kim et al., 2019). Unlike CAM-based visualization, CRM-based localization underscores the 
fact that the feature maps contribute to decreasing the prediction scores for other class categories in addition 
to increasing the scores for the expected category. Such discrimination helps in maximizing the difference 
between these scores and results in superior discrimination of class-specific ROI by measuring the 
incremental mean-squared error from the output nodes. The features are extracted from the deepest 
convolutional layer of the best-performing fine-tuned model. The CRM algorithm is used to localize the ROI 
involved in classifying the CXRs as showing pulmonary TB manifestations. The feature map dimensions vary 
across the models. Hence, the CRMs are up-scaled through normalization methods to match the spatial 
resolution of the input image. The computed CRMs are overlaid on the original image to localize the TB-
consistent ROI that is used to categorize the CXRs as showing pulmonary TB manifestations. The CRMs are 
generated for the CXRs with TB-category labels toward visualizing the regions of TB manifestations. We 



 

 

 

further converted these CRM-based weak TB-consistent ROI localizations to binary ROI masks. The original 
CXRs and the associated ROI masks are used for further analysis. 

2.7. TB-consistent ROI segmentation using U-Net models  

The U-Net models used in this study are trained and evaluated on the publicly available train/test split of 
TBX11K CXR collection (Liu et al., 2020) to segment pulmonary TB manifestations. The dataset includes 
rectangular bounding box annotations for 599 training and 200 test samples. We used the best-performing 
model from 2.4 to segment the lungs in this collection. Following lung segmentation, we rescaled the disease 
bounding box coordinates and converted them into binary masks. Recall that since we are using bounding 
boxes for training a fraction of the pixels within these are false positive (FP) training labels which will 
adversely impact our outcome. These masks and their associated CXRs are used to train and test the models. 
We used a fixed seed value to allocate 10% of the training data toward validation. Variability is introduced 
into the training process by augmenting the training data through affine transformations including horizontal 
flipping, height and width shifting, and rotations. Callbacks are used to store model checkpoints and the best 
performing model is used to segment TB-consistent ROI.  

We further evaluated the performance of the U-Net models with cross-institutional test sets. The Shenzhen 
TB CXR-Subset-2 (n = 68) and the Montgomery TB CXR (n = 58) collections are individually used as test 
sets toward this evaluation. Such cross-institutional testing would demonstrate the generalization ability of the 
models and their suitability for real-time deployment because the test set is diverse and unseen during the 
training process.  

2.8. Selecting appropriate loss function and other evaluation metrics  

U-Net models, though having an excellent potential toward accurate medical image segmentation, often 
suffer from data imbalance. These issues are particularly prominent in applications that involve lung/TB-
consistent ROI segmentation where the number of lung/TB-consistent ROI pixels is markedly lower 
compared to the total image pixels. Such imbalanced training may lead to learning bias and may adversely 
impact segmentation performance. To alleviate issues due to this data imbalance, a generalized loss metric 
based on the Tversky index has been proposed (Abraham and Khan, 2019) that delivers superior performance 
compared to the conventional binary cross-entropy (BCE) loss. A superior trade-off between sensitivity and 
precision is demonstrated using the Tversky loss function for imbalanced data segmentation tasks. In this 
study, we customized the hyperparameters α and β of the Tversky loss function given by,  
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(2) 

where a and b denote the set of predicted and GT binary labels, respectively, 𝑎௢௞ is the probability of the pixel 
k to belong to the lung/TB-consistent ROI, 𝑎ଵ௞ is the probability of the pixel k to belong to the background, 
𝑏௢௞ takes the value of 1 for a lung/TB-consistent ROI pixel and 0 for the background and vice versa for 𝑏ଵ௞. 
Through empirical evaluations, we observed that the values for the hyperparameters α = 0.3 and β = 0.7 
demonstrated a good balance between precision and sensitivity and that higher values for β resulted in 
improved performance and generalization while using imbalanced data and helped to boost sensitivity. 
Accordingly, we used these hyperparameter values in the current study. We used callbacks to store model 



 

checkpoints after the completion of an epoch. The best of the stored checkpoints is used as the final model for 
the subsequent analysis.  

We measured segmentation performance in terms of the following metrics: (i) confusion matrix; (ii) 
Jaccard index, otherwise known as the intersection of union (IOU); (iii) Dice index; and (iv) average precision 
(AP). The IOU evaluation metric is widely used in image segmentation applications. It is given by a ratio as 
shown below: 
 

𝐼𝑂𝑈 ൌ  
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁
 

(3) 

 
Here TP, FP, and FN denote respectively true positives, false positives, and false negatives. Comparisons are 
made to GT from CXR interpretations by independent radiologists as described in 2.9. While comparing the 
predicted masks with the GT masks, a TP indicates that the predicted mask overlaps with the GT mask, 
exceeding a pre-defined IOU threshold. The abbreviation FP indicates that the predicted mask has no 
associated GT mask. FN indicates that a GT mask has no associated predicted mask. The Dice index is 
another evaluation metric widely used in segmentation and object detection tasks and is given by:  
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2𝑇𝑃
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The Dice index is similar to and is positively correlated with IOU.  Like the IOU, the value of the Dice index 
ranges from 0 to 1, with the latter signifying a higher similarity between the GT and predicted masks. We 
computed the AP as the area under the precision-recall curve (AUPRC) given by, 
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Here p denotes precision and r denotes sensitivity/recall. The values of precision and recall are given by,  
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(7) 

The value of AP lies within 0 and 1. In this study, we computed AP as an average over multiple IOU 
thresholds ranging from 0.5 to 0.95 (in increments of 0.05), denoted by AP@[.5:.95].  
 



 

 

 

2.9. Reducing inter-observer variability using Simultaneous Truth and Performance Level Estimation 
(STAPLE) based consensus ROI generation 

The GT disease annotations for Shenzhen TB CXR-Subset-2 are set by verification from two expert 
radiologists, hereafter referred to as R1 and R2. The GT annotations for the Montgomery TB CXR collection 
are set by the verification from two expert radiologists, hereafter referred to as R2 and R3. The expert R2 
participated in both annotations. The collective experience of the experts counts to 65 years. The web-based, 
VGG Image Annotator tool (Dutta and Zisserman, 2019) is used by radiologists to independently annotate 
these collections. The radiologists are asked to draw rectangular bounding boxes over the regions that they 
believed to show TB-consistent manifestations. We chose to use bounding boxes rather than fine 
segmentation to maintain similarity to the TBX11K data recognizing that there will be noisy pixels due to the 
bounding box as well as the variability from multiple expert annotators. The annotations are performed in 
independent sessions when the radiologists annotated the TB-consistent ROI in these CXR images. The 
annotations from individual radiologists are later exported to a JSON file for subsequent analyses. The 
experts’ annotations would be made publicly available at https://lhncbc.nlm.nih.gov/publication/pub9931.  

We used the STAPLE algorithm (Warfield et al., 2004) to build a consensus ROI annotation from the 
experts’ annotations for the Shenzhen TB CXR-Subset-2 and Montgomery TB CXR data collections. 
STAPLE is widely used for validating the segmentation performance of the models by comparing them to that 
of expert annotations. An expectation-maximization methodology is used where the probabilistic estimate of a 
reference segmentation is computed from a collection of expert annotations and weighed by each expert’s 
estimated level of performance. The segmented regions are spatially distributed based on this knowledge, 
satisfying constraints of homogeneity. The steps involved in measuring the consensus ROI are as follows: Let 
R = (r1, r2, …., rn)N and X = (x1, x2, …., xn)N denote two column vectors, each containing A elements. The 
elements in R and X represent sensitivity and specificity parameters, respectively, characterizing one of N 
segmentations. Let B denote an M × N matrix that describes segmentation decisions made for each image 
pixel. Let C denote an indicator vector containing M elements representing hidden, true binary segmentation 
values. The complete data can be written as (B, C), and the probability mass function as f (B, C| r, x). The 
performance level of the experts, characterized by a tuple (r, x) is estimated by the expectation-maximization 
algorithm, which maximizes (r’, x’), the data log-likelihood function, given by,  
 
ሺ𝑟ᇱ, 𝑥ᇱሻ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥௥,௫ln ሺ𝑓ሺ𝐵,𝐶|𝑟, 𝑥ሻሻ (8) 

   
The STAPLE-generated consensus ROI is then given by,  
 
𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑅𝑂𝐼 ൌ 𝑆𝑇𝐴𝑃𝐿𝐸ሺ𝑀𝑎𝑠𝑘𝑠ଵ,𝑀𝑎𝑠𝑘𝑠ଶሻ (9) 

 
Here 𝑀𝑎𝑠𝑘𝑠ଵ,𝑀𝑎𝑠𝑘𝑠ଶ denote the annotations of the experts that annotated the given CXR dataset. We used 
the STAPLE-generated consensus ROI as the standard reference, which reduces the aforementioned inter-
reader variability across our multiple experts. Next, we converted these TB-consistent ROI coordinates into 
binary masks that are used as the GT masks to evaluate the aforementioned TB segmentation models. Fig 6 
shows instances of TB-consistent ROI annotations made by the radiologists and the STAPLE-generated 
consensus ROI for a sample CXR instance from the Shenzhen TB CXR-Subset-2 and Montgomery TB CXR 
collections respectively. 
 



 

 

Fig. 6. Examples showing annotations of the radiologists and the STAPLE-generated consensus ROI. (a) and (e) show the CXR image 

instances from the Shenzhen TB CXR-Subset-2 and Montgomery TB CXR datasets respectively; (b) and (c) show the annotations of R2 

and R3 (bounding boxes in red and green), respectively for the given CXR instance from the Shenzhen TB CXR-Subset-2 dataset; (f) and 

(g) show the annotations of R2 and R1 (bounding boxes in red and yellow), respectively for the given CXR instance from the 

Montgomery TB CXR dataset; (d) and (h) show the STAPLE-generated consensus ROI (bounding boxes in blue) from the experts’ 

annotations for the given CXR instance from the Shenzhen TB CXR-Subset-2 dataset and Montgomery TB CXR dataset respectively. 

2.10. Task-appropriate data augmentation: Augmenting training data with weak localizations to improve TB-
consistent ROI segmentation 

The binary masks obtained from weak TB-consistent ROI localizations using the best-performing fine-
tuned model and their associated CXR images are used to perform AT of the models used in 2.7 toward 
improving TB-consistent ROI segmentation. The performance with such AT is evaluated with the test set 
derived from TBX11K training distribution and individually with the cross-institutional Shenzhen TB CXR-
Subset-2 and Montgomery TB CXR data collections. We used a fixed seed value toward allocating 10% of 
the training data toward validation. Variability is introduced into the training process by augmenting the 
training data through affine transformations including horizontal flipping, height and width shifting, and 
rotations. Callbacks are used to store model checkpoints and the best performing model is used to segment 
TB-consistent manifestations. The predicted masks are overlaid on the original CXR input to localize the TB-
consistent ROI boundaries. The performance of the models with AT is evaluated and compared to those with 
non-augmented training using confusion matrix, IOU, Dice, and AP@[.5:.95] metrics. We used a Windows® 
system with NVIDIA GeForce GTX 1080 Ti GPU, Intel Xeon CPU E3-1275 v6 3.80 GHz processor, Keras 
framework with Tensorflow backend, and CUDA support for accelerated GPU performance toward these 
evaluations. 



 

 

 

3. Results 

3.1. CXR modality-specific pretraining 

Recall that during CXR modality-specific pretraining, we truncated the ImageNet-pretrained CNN models 
at the empirically determined intermediate layers that demonstrated superior performance toward this 
classification task. These layers are listed in Table 1. The naming conventions of these layers follow the Keras 
DL framework. Table 2 shows the performance achieved by these models toward this classification stage. 

 
Table 1. Candidate layers that delivered superior performance during CXR modality-specific pretraining 
 

Model Truncated layers  

VGG-16 Block5-conv3 

VGG-19 Block5-conv4 

Inception-V3 Mixed3 

DenseNet-121 Pool3-pool 

NASNet-mobile Activation-94 

ResNet-18 Add-6 

MobileNet-V2 Block-9-add 

EfficientNet-B0 Block5c-add 

   
Table 2. Performance measures achieved by the CXR modality-specific pretrained models. Data in parenthesis are 95% CI for the MCC 
values measured as the Binomial (Clopper-Pearson) “exact” method corresponding to separate 2-sided CI with individual coverage 
probabilities of √0.95. (Acc. = Accuracy, AUC = Area under curve, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision, F = F-
measure, MCC = Matthews correlation coefficient, DOR = Diagnostics odd ratio). The best performances are denoted by bold numerical 
values in the corresponding columns. None of these individual differences are statistically significant (p > 0.05). 
 

Model ACC AUC Sens. Spec. Prec. F MCC DOR 

VGG-16 0.9009 0.9674 0.9009 0.8759 0.9026 0.9015 0.7799 (0.7664, 0.7934) 64.1632 

VGG-19 0.9056 0.9687 0.9163 0.8841 0.9409 0.9284 0.7905 (0.7773, 0.8037) 83.5085 

Inception-V3 0.899 0.966 0.899 0.8759 0.901 0.8997 0.7761 (0.7626, 0.7896) 62.8234 

DenseNet-121 0.8966 0.9602 0.8966 0.7912 0.896 0.895 0.7629 (0.7491, 0.7767) 32.8575 

NasNet-Mobile 0.8914 0.9609 0.8914 0.8224 0.8908 0.891 0.7535 (0.7395, 0.7675) 38.0087 

ResNet-18 0.8881 0.9602 0.8881 0.8076 0.8872 0.8874 0.7451 (0.7309, 0.7593) 33.3138 

MobileNet-V2 0.9015 0.9666 0.9015 0.8709 0.9027 0.9019 0.7803 (0.7668, 0.7938) 61.7407 

EfficientNet-B0 0.905 0.9675 0.9196 0.8759 0.9372 0.9283 0.7882 (0.7749, 0.8015) 80.7283 

 
It is observed from Table 2 that the VGG-19 model demonstrated superior performance for the accuracy, 
AUC, precision, specificity, F-measure, MCC, and DOR metrics. The DOR metric informs the discriminative 
power of the trained models. A higher value for DOR signifies high sensitivity and specificity with low FNs 
and FPs. The MCC metric offers more information than accuracy and F-measure because it considers a 
balanced ratio of TPs TNs, FPs, and FNs. The 95% CI for the MCC metric of the VGG-19 model 



 

demonstrated a tighter error margin and hence higher precision as compared to the other models. However, 
we noticed that these values are not statistically significantly different (p > 0.05) across the models. 
Considering the MCC and DOR values, the VGG-19 model demonstrated superior performance compared to 
other models. Fig 7 illustrates the confusion matrix, the area under receiver-operating-characteristic (AUC-
ROC) curves, and the normalized Sankey diagram achieved by the VGG-19 model toward this classification 
task. The Sankey flow diagrams are used to illustrate energy flow and to assess the products’ life-cycle 
(Schmidt, 2008). In this study, we used Sankey flow diagrams to provide a visual representation of the 
models’ performance. To this end, we assigned weights to the categories on the GT (left) and predictions 
(right) side to equally represent the categories on either side of the flow diagram. The width of the strips 
changes across the flow diagram such that the width of each strip at the right side illustrates the fraction of all 
images that the model predicts for a class that truly belongs to each class. 

 

 
 
Fig. 7. Performance achieved by the VGG-19 model during CXR modality-specific pretraining. (a) Confusion matrix; (b) AUC-ROC 
curves; (C) Normalized Sankey flow diagram. 

3.2. Lung segmentation 

Table 3 shows the performance achieved by the SOTA U-Net variants and the proposed VGG-16-CXR-U-
Net and VGG-19-CXR-U-Net models toward lung segmentation using the cross-institutional Montgomery TB 
CXR dataset for model testing. It is observed from Table 3 that the proposed VGG19-CXR-U-Net 
demonstrated superior values for IOU, Dice, and AP@[.5:.95] metrics. The 95% CI for the AP@[.5:.95] 
metric obtained using the proposed VGG19-CXR-U-Net model demonstrated a smaller error margin and 
hence higher precision compared to other models. However, we noticed that these values are not statistically 



 

 

 

significantly different (p > 0.05) except for the standard U-Net model using which the performance achieved 
is statistically significantly different compared to other models (p < 0.05).  

 
Table 3. Performance measures achieved by the U-Net models toward CXR lung segmentation. Data in parenthesis are 95% CI for the 
AP@[.5:.95] values measured as the Binomial (Clopper-Pearson) “exact” method corresponding to separate 2-sided CI with individual 
coverage probabilities of √0.95. The best performances are denoted by bold numerical values in the corresponding columns. The 
performance of the standard U-Net is significantly worse compared to other models (p < 0.05). Otherwise, individual differences are not 
statistically significant. 
 

Model IOU Dice AP@[.5:.95] 

Standard U-Net [5] 0.9108 0.9529 0.8503 (0.7907,0.9099) 

V-Net [6] 0.9477 0.9729 0.9678 (0.9383,0.9973) 

Improved attention U-Net [7] 0.9493 0.9738 0.9548 (0.9201,0.9895) 

VGG16-U-Net [8] 0.9503 0.9744 0.9687 (0.9396,0.9978) 

VGG19-U-Net 0.9544 0.9765 0.9737 (0.947,1.000) 

VGG16-CXR-U-Net (proposed) 0.9532 0.9759 0.9715 (0.9437,0.9993) 

VGG19-CXR-U-Net (proposed) 0.9558 0.9774 0.9753 (0.9494,1.000) 

 
Fig 8 illustrates the AUC-ROC curve and confusion matrix obtained using the proposed VGG19-CXR-U-Net 
toward the lung segmentation task. It is observed from the confusion matrix that the model demonstrates 
lower FNs compared to FPs and hence higher sensitivity compared to precision. That is, fewer lung pixels are 
classified as belonging to the background. This is because we empirically determined the hyperparameter 
values (α = 0.3 and β = 0.7) of the Tversky loss function so that higher values for β resulted in improved 
performance and helped to boost sensitivity. Fig 9 shows an instance of a CXR image on which the generated 
lung mask is overlaid to delineate the lung boundaries. 

 

 



 

Fig. 8. Performance achieved by the proposed VGG19-CXR-U-Net model toward lung segmentation task. (a) AUC-ROC curve; (b) 
Confusion matrix. 

 

 

Fig. 9. Sample lung segmentation result. (a) An instance of Montgomery TB CXR; (b) GT mask; (c) Predicted mask; and (d) Predicted 
mask overlaid on the original image. 

3.3. Fine-tuning toward TB detection 

During fine-tuning, the CXR modality-specific pretrained models are truncated at their deepest 
convolutional layer and appended with a task-specific head to classify CXRs as showing normal lungs or 
pulmonary TB manifestations. The performance achieved by the fine-tuned models is compared to their 
baseline counterparts, i.e., out-of-the-box ImageNet-pretrained models that are fine-tuned toward this 
classification task and are shown in Table 4. 

 
Table 4. Performance metrics achieved by the fine-tuned models and their baseline counterparts. Data in parenthesis are 95% CI for the 
MCC values measured as the Binomial (Clopper-Pearson) “exact” method corresponding to separate 2-sided CI with individual coverage 
probabilities of √0.95. Redux. = Reduction in trainable parameters in %. The Baseline signifies fine-tuning out-of-the-box ImageNet-
pretrained CNNs toward this classification task. The best performances are denoted by bold numerical values in the corresponding 
columns. Except for the NasNet-Mobile and EfficientNet-B0 models, all other fine-tuned models demonstrated statistically significantly 
superior performance (p < 0.05) for their MCC metric compared to their baseline counterparts. 
 

Models Acc. AUC Sens. Spec. Prec. F MCC DOR Redux. 

VGG-16-Baseline 0.8828 0.9434 0.8766 0.8919 0.9221 0.8988 0.7612  
(0.7106, 0.8118) 

58.575  

VGG-16-Finetuned 0.9231 0.9532 0.9692 0.8559 0.9076 0.9374 0.8411  
(0.7977, 0.8845) 

186.4375 0 

VGG-19-Baseline 0.9011 0.9441 0.9383 0.8469 0.8995 0.9185 0.7942  
(0.7462, 0.8422) 

84.0471  

VGG-19-Finetuned 0.9158 0.963 0.9198 0.9100 0.9372 0.9284 0.8264  
(0.7814, 0.8714) 

115.7616 0 

Inception-V3-Baseline 0.8754 0.9304 0.9198 0.8109 0.8765 0.8976 0.7404  
(0.6883, 0.7925) 

49.1209  

Inception-V3-Finetuned 0.9048 0.9456 0.9198 0.8829 0.9198 0.9198 0.8027  
(0.7554, 0.8500) 

86.4024 42.82 

DenseNet-121-Baseline 0.8645 0.9288 0.8519 0.8829 0.914 0.8818 0.7260  
(0.6730, 0.7790) 

43.3462  

DenseNet-121-Finetuned 0.8974 0.9399 0.9383 0.8379 0.8942 0.9157 0.7866  
(0.7379, 0.8353) 

78.5334 56.52 



 

 

 

NasNet-Mobile-Baseline 0.8828 0.9403 0.9013 0.8559 0.9013 0.9013 0.7571 
 (0.7062, 0.8080) 

54.1797  

NasNet-Mobile-Finetuned 0.8865 0.9258 0.9692 0.7658 0.858 0.9102 0.7679  
(0.7178, 0.8180) 

102.6539 11.64 

ResNet-18-Baseline 0.8865 0.9371 0.9075 0.8559 0.9019 0.9047 0.7644  
(0.7140, 0.8148) 

58.1875  

ResNet-18-Finetuned 0.9048 0.9416 0.9013 0.9100 0.9359 0.9183 0.8052 
(0.7582, 0.8522) 

92.1625 44.56 

MobileNet-V2-Baseline 0.8645 0.9188 0.8766 0.8469 0.8931 0.8848 0.7206  
(0.6673, 0.7739) 

39.2589  

MobileNet-V2-Finetuned 0.8865 0.9242 0.9754 0.7568 0.8541 0.9107 0.7694  
(0.7194, 0.8194) 

122.8889 36.35 

EfficientNet-B0-Baseline 0.9194 0.9548 0.9383 0.8919 0.9269 0.9326 0.8327  
(0.7884, 0.8870) 

125.4  

EfficientNet-B0-Finetuned 0.9194 0.9442 0.963 0.8559 0.907 0.9342 0.8331  
(0.7888, 0.8774) 

154.375 44.17 

  
As shown in Table 4, the models that were CXR-specific fine-tuned achieved superior performance 

compared to their ImageNet-trained baseline counterparts. Except for the NasNet-Mobile and EfficientNet-B0 
models, all other fine-tuned models demonstrated statistically significantly superior performance (p < 0.05) 
for their MCC metric compared to their baseline counterparts. The VGG-16 fine-tuned model demonstrated 
superior values for accuracy, F-measure, MCC, and DOR metrics. The MCC value for this model 
demonstrated a smaller error margin and hence higher precision compared to other models. Fig 10 shows the 
confusion matrix, AUC-ROC curves, and the normalized Sankey diagram achieved by the VGG-16 fine-tuned 
model toward this classification task.  

A significant reduction in the computational parameters is demonstrated by the fine-tuned models as 
compared to their baseline counterparts. The fine-tuned DenseNet-121 demonstrated a 56.52% reduction in 
the trainable parameters while delivering superior performance compared to the out-of-the-box ImageNet-
pretrained counterpart. The same holds valid with other fine-tuned models except for VGG-16 and VGG-19 
models where we had a similar number of trainable parameters compared to baseline models. 

 



 

 

Fig. 10. Performance achieved by the VGG-16 fine-tuned model. (a) Confusion matrix; (b) AUC-ROC curves; (C) Normalized Sankey 
flow diagram. 

3.4. TB-consistent ROI localization and mask generation 

We studied the saliency maps to interpret the learned behavior of the VGG-16 fine-tuned model that 
delivered superior performance in classifying CXRs as showing normal lungs or pulmonary TB 
manifestations. Saliency visualizations generate heat-maps by measuring the derivative of the output class 
score concerning the original input. The resolution of saliency maps is higher compared to CAM-based 
visualizations. Fig 11 shows saliency map visualizations achieved with the VGG-16 fine-tuned model using 
an instance of abnormal CXR each from the Shenzhen TB CXR-Subset-1 and Montgomery TB CXR test set 
to visualize regions of TB manifestations. Fig 11 (a) shows an instance of CXR from the Shenzhen TB CXR-
Subset-1 dataset that is truly classified as showing TB manifestations. The CXR shows a patchy opacity in the 
right upper lung lobe. The saliency maps (Fig 11 (b)) show high activations on upper right lung lobe regions; 
these activations are consistent with the STAPLE-generated consensus annotation (Fig 11 (c)) that stands 
indicative of TB. However, there are a few FPs highlighted on the left upper lung lobe. These highlights are 
indicative of the highly sensitive nature of the model. This serves our goal to reduce potential FN radiologist 
errors before report generation. These regions will force the radiologist to verify their initial assessment and 
rule them out. We believe that such saliency visualization could help supplement clinical decisions while 
interpreting model predictions. Fig 11 (d) shows an instance of CXR from the Montgomery TB CXR dataset 
that is truly classified as having pulmonary TB. The saliency maps (Fig 11 (e)) highlight regions in the right 
upper lung lobe and these are consistent with the consensus annotation except that there is a faint insignificant 
activation observed above the right upper lung lobe (Fig 11 (f)).  

 



 

 

 

 

Fig. 11. Saliency visualization. (a) and (d) An instance of Shenzhen TB CXR-Subset-1 and Montgomery TB CXR respectively; (b) and 
(e) Saliency activations; (c) and (f) Saliency overlaid on original images with expert GT annotation (bounding box in red) showing 
regions of TB manifestations most pronounced in the right apex. 

We used the CRM-based visualization algorithm to compare the localization performance of baseline 
(ImageNet-pretrained DL models) and the fine-tuned models toward highlighting TB manifestations. Fig 12 
shows the following: (i) an instance of Montgomery TB CXR with consensus annotation, and (ii) TB-
consistent ROI localization achieved with various fine-tuned models and their baseline counterparts. Features 
are extracted from the deepest convolutional layer of the fine-tuned models and their baseline counterparts. 
CRM localization algorithm is then used to localize TB-consistent ROI pixels involved in the final 
predictions.  

 



 

 

Fig. 12. CRM-based TB-consistent ROI localization achieved using the CXR modality-specific pretrained/fine-tuned models and their 
baseline counterparts. (a) An instance of Montgomery TB CXR with STAPLE-generated consensus annotation (shown with a red 
bounding box); (b) and (f) baseline and fine-tuned DenseNet-121; (c) and (g) baseline and fine-tuned VGG-16; (d) and (h) baseline and 
fine-tuned ResNet-18; (e) and (i) baseline and fine-tuned EfficientNet-B0. 

It is observed from Fig 12 that the baseline models demonstrate sub-optimal TB-consistent ROI localization 
compared to the fine-tuned models. The TB-consistent ROI localization obtained using the fine-tuned models 
conform to the experts’ knowledge of the problem under study. The feature map dimensions vary across the 
models. Hence, the CRMs are up-scaled through normalization methods to match the spatial resolution of the 
input image. The computed CRMs are overlaid on the original image to localize the TB-consistent ROI that is 
used to categorize the CXRs as showing pulmonary TB manifestations.  

We further converted these weak TB-consistent ROI localizations to binary masks through a sequence of 
steps mentioned as follows: (i) we computed the difference between the CRM-overlaid image and the original 
image and converted it into a binary image; (ii) The parameters of the polygonal coordinates of the connected 
components in the binary image are measured. This gives the coordinates of the vertices and that of the line 
segments making up the sides of the polygon; (iii) A binary mask is then generated from the polygon and 
stored; and (iv) The original images and their associated TB-consistent ROI binary masks are used for further 
analysis. Fig 13 illustrates the sequence of steps involved in CRM-based TB-consistent ROI localization and 
binary mask generation. 
 



 

 

 

 

Fig. 13. The process workflow showing the steps involved in CRM-based TB-consistent ROI localization and ROI mask generation. 

3.5. TB-consistent ROI Segmentation evaluation using TBX11K train/test dataset 

Table 5 shows the segmentation performance achieved by the U-Net models with and without AT using 
the TBX11K train/test dataset. It is observed from Table 5 that the models’ performance with AT is superior 
compared to their baseline counterparts, i.e., without augmenting the training data. The proposed VGG16-
CXR-U-Net (AT) demonstrated superior values for IOU and Dice metrics. However, concerning the 
AP@[.5:.95] metric that gives a balanced measure of precision and recall, the VGG19-U-Net (AT) delivered 
improved performance. This demonstrated that this model has better discrimination power compared to other 
models. However, except for the standard U-Net (p < 0.05), other U-Net models did not demonstrate 
statistically significantly superior performance for the AP@[.5:.95] metric (p > 0.05).  
 
Table 5. TB segmentation performance achieved using the U-Net models with and without AT. AT denotes augmenting the training data 
with the masks generated through weak TB-consistent ROI localization using the fine-tuned models and their associated original CXRs. 
Data in parenthesis are 95% CI for the AP@[.5:.95] values measured as the Binomial (Clopper-Pearson) “exact” method corresponding 
to separate 2-sided CI with individual coverage probabilities of √0.95. The performance of the standard U-Net model is significantly 
worse compared to other models (p < 0.05). The best performances are denoted by bold numerical values in the corresponding columns. 
 

Model Dice IOU AP@[.5:.95] % Improvement  
in AP@[.5:.95] 

Standard U-Net 0.5335 0.3691 0.3361 (0.2706, 0.4016) 5.02 

Standard U-Net (AT) 0.6571 0.5004 0.3863 (0.3188, 0.4538) 

V-Net 0.6913 0.5435 0.5084 (0.4391, 0.5777) 2.22 

V-Net (AT) 0.7186 0.5725 0.5306 (0.4614, 0.5998) 

Improved attention U-Net 0.7032 0.5548 0.4605 (0.3914, 0.5296) 2.06 

Improved attention U-Net (AT) 0.7144 0.5656 0.4811 (0.4118, 0.5504) 

VGG16-U-Net 0.7268 0.5812 0.5296 (0.4604, 0.5988) 0.46 

VGG16-U-Net (AT) 0.7304 0.5876 0.5342 (0.4650, 0.6034) 



 

VGG19-U-Net 0.7417 0.5999 0.5328 (0.4636, 0.6020) 2.96 

VGG19-U-Net (AT) 0.7468 0.596 0.5624 (0.4936, 0.6312) 

VGG16-CXR-U-Net 0.7304 0.5854 0.528 (0.4588, 0.5972) 1.64 

VGG16-CXR-U-Net (AT) 0.7552 0.6168 0.5116 (0.4423, 0.5809) 

VGG19-CXR-U-Net 0.7233 0.5768 0.4863 (0.4170, 0.5556) 3.27 

VGG19-CXR-U-Net (AT) 0.7424 0.6024 0.5190 (0.4497, 0.5883) 

   
Fig 14 illustrates the AUC-ROC curve and confusion matrix obtained by the VGG19-U-Net (AT) model 

toward this segmentation task. It is observed from the confusion matrix that the VGG19-U-Net (AT) model 
demonstrated lower FNs compared to FPs and hence higher sensitivity compared to precision toward 
segmenting TB-consistent manifestations using the TBX11K test set. This underscores the fact that fewer TB-
consistent image pixels are classified as belonging to the background. 

 

 

Fig. 14. Performance achieved by the VGG19-U-Net (AT) toward TB-consistent ROI segmentation using TBX11K test set. (a) AUC-
ROC curve; and (b) Confusion matrix. 

Fig 15 shows a TBX11K test image on which the predicted TB-consistent ROI mask is overlaid to delineate 
regions showing TB manifestations.  
 



 

 

 

 

Fig. 15. Sample overlay image. (a) An instance of TBX11K test CXR; (b) GT mask generated from bounding box annotations; (c) Mask 
predicted by the VGG19-U-Net (AT) model; and (d) GT and predicted mask overlaid on the original CXR (GT is denoted by a green 
bounding box and predicted mask is denoted by a red bounding box).  

3.6. TB-consistent ROI Segmentation evaluation using TBX11K train set and cross-institutional test sets 

We further evaluated the segmentation performance of the U-Net models using the training data from the 
TBX11K dataset and individual cross-institutional Shenzhen TB CXR-Subset-2 and Montgomery TB CXR 
test sets. Here, we performed two sets of evaluations: (i) First, we trained the models using the TBX11K 
training data and tested the segmentation performance individually with cross-institutional Shenzhen TB 
CXR-Subset-2 and Montgomery TB CXR collections; (ii) Next, we augmented the training data of the 
TBX11K dataset with the ROI masks generated from weak TB-consistent ROI localizations and their 
associated original CXRs and evaluated the test performance individually with the Shenzhen TB CXR-
Subset-2 and Montgomery TB CXR collections. Table 6 and Table 7 show the segmentation performance 
achieved by the U-Net models, with and without AT, individually using the Shenzhen TB CXR-Subset-2 and 
Montgomery TB CXR test sets.   

 
Table 6. TB-consistent ROI segmentation performance achieved by the U-Net models with and without AT using the Shenzhen TB CXR-
Subset-2 test set. Data in parenthesis are 95% CI for the AP@[.5:.95] values measured as the Binomial (Clopper-Pearson) “exact” 
method corresponding to separate 2-sided CI with individual coverage probabilities of √0.95. The best performances are denoted by bold 
numerical values in the corresponding columns. 
 

Model Dice IOU AP@[.5:.95] % Improvement  
in AP@[.5:.95] 

Standard U-Net 0.412 0.2639 0.3381 (0.2725,0.4037) 1.66 

Standard U-Net (AT) 0.5043 0.3429 0.3547 (0.2883,0.4211) 

V-Net 0.4352 0.2856 0.4400 (0.3712,0.5088) 4.72 

V-Net (AT) 0.4836 0.3243 0.4872 (0.4179,0.5565) 

Improved attention U-Net 0.4563 0.2997 0.4575 (0.3884,0.5266) 6.76 

Improved attention U-Net (AT) 0.4934 0.3344 0.5251 (0.4558,0.5944) 

VGG16-U-Net 0.4754 0.3158 0.4506 (0.3816,0.5196) 0.14 

VGG16-U-Net (AT) 0.4951 0.3377 0.452 (0.383,0.521) 

VGG19-U-Net 0.4692 0.3142 0.4849 (0.4156,0.5542) 0.71 

VGG19-U-Net (AT) 0.5114 0.3501 0.492 (0.4227,0.5613) 



 

VGG16-CXR-U-Net 0.453 0.2979 0.4314 (0.3627,0.5001) 10.3 

VGG16-CXR-U-Net (AT) 0.5189 0.3503 0.5344 (0.4652,0.6036) 

VGG19-CXR-U-Net 0.4576 0.3025 0.5272 (0.458,0.5964) 0.51 

VGG19-CXR-U-Net (AT) 0.4694 0.3226 0.5323 (0.4631,0.6015) 

 
The performance achieved with the cross-institutional Shenzhen TB CXR-Subset-2 test set, as shown in Table 
6, led to the following observations: (i) the performance of the models toward cross-institutional testing is not 
superior compared to using the test data coming from the TBX11K training distribution. This could be 
attributed to the changes in the visual characteristics of the images acquired across institutions. The Shenzhen 
TB CXR-Subset-2 test set is completely unseen during the training process; (ii) the models’ performance with 
AT is superior compared to their baseline counterparts, i.e., without augmenting the training data; and (iii) the 
proposed VGG16-CXR-U-Net (AT) demonstrated statistically superior performance for IOU, Dice, and 
AP@[.5:.95] metrics compared to its baseline counterpart (p < 0.05). The model also performed statistically 
significantly better (p < 0.05) compared to other augmented/non-augmented trained models. Fig 16 illustrates 
the AUC-ROC curve and confusion matrix obtained by the proposed VGG16-CXR-U-Net (AT) model toward 
this segmentation task. Fig 17 shows an instance of Shenzhen TB CXR-Subset-2 test CXR on which the 
generated TB-consistent ROI mask is overlaid to delineate regions showing TB manifestations. 

 

 

Fig. 16. Performance achieved by the VGG16-CXR-U-Net (AT) toward TB-consistent ROI segmentation using Shenzhen TB CXR-
Subset-2 test set. (a) AUC-ROC curve; and (b) Confusion matrix. 



 

 

 

 

Fig. 17. Sample overlay image. (a) An instance of Shenzhen TB CXR-Subset-2 test CXR; (b) GT mask generated from the STAPLE 
consensus ROI obtained using annotations of R2 and R3; (c) Predicted mask by the VGG19-U-Net (AT) model; and (d) GT and predicted 
mask overlaid on the original CXR (GT denoted by a green bounding box and predicted mask denoted by a red bounding box). 

Table 7 shows the performance achieved through cross-institutional testing with the Montgomery TB CXR 
dataset. Comparing these results with Table 5, we observed the following: (i) the performance of the models 
with cross-institutional Montgomery TB CXR test set is not superior compared to that using the test data 
coming from the TBX11K training distribution. These observations are analogous to those obtained with the 
Shenzhen TB CXR-Subset-2 test set, shown in Table 6. The inherent data variability across institutions 
resulted in sub-optimal model performance; (ii) the models’ performance with AT using the Montgomery TB 
CXR test set is superior compared to non-augmented training; (iii) the proposed VGG16-CXR-U-Net (AT) 
demonstrated statistically superior values for IOU and Dice metrics (p < 0.05) compared to its baseline 
counterpart. However, concerning the AP@[.5:.95] metric, the VGG19-U-Net (AT) model demonstrated 
statistically significantly superior performance (p < 0.05) as compared to other models. Fig 18 illustrates the 
AUC-ROC curve and confusion matrix obtained using the VGG19-U-Net (AT) model toward this 
segmentation task. Fig 19 shows an instance of the Montgomery TB CXR test image on which the generated 
TB-consistent ROI mask is overlaid to delineate regions showing TB manifestations. 
 
Table 7. TB-consistent ROI segmentation performance achieved using the U-Net models with and without AT using the Montgomery TB 
CXR test set. Data in parenthesis are 95% CI for the AP@[.5:.95] values measured as the Binomial (Clopper-Pearson) “exact” method 
corresponding to separate 2-sided CI with individual coverage probabilities of √0.95. The best performances are denoted by bold 
numerical values in the corresponding columns. 
 

Model Dice IOU AP@[.5:.95] % Improvement  
in AP@[.5:.95] 

Standard U-Net 0.301 0.1844 0.3171 (0.2526,0.3816) 1.26 

Standard U-Net (AT) 0.4531 0.3021 0.3297 (0.2645,0.3949) 

V-Net 0.4121 0.2785 0.4114 (0.3432,0.4796) 5.68 

V-Net (AT) 
0.4365 0.3021 0.4682 (0.399,0.5374) 

Improved attention U-Net 0.3903 0.2573 0.4218 (0.3533,0.4903) 12.0 

Improved attention U-Net (AT) 0.4806 0.3273 0.5418 (0.4727,0.6109) 

VGG16-U-Net 0.4263 0.2949 0.5275 (0.4583,0.5967) 1.15 

VGG16-U-Net (AT) 0.4771 0.3211 0.539 (0.4699,0.6081) 

VGG19-U-Net 0.4238 0.2881 0.5029 (0.4336,0.5722) 10.14 



 

VGG19-U-Net (AT) 0.4789 0.3148 0.6043 (0.5365,0.6721) 

VGG16-CXR-U-Net 0.4667 0.3200 0.4191 (0.3507,0.4875) 16.32 

VGG16-CXR-U-Net (AT) 0.5261 0.3743 0.5823 (0.5139,0.6507) 

VGG19-CXR-U-Net 0.4809 0.3306 0.4935 (0.4242,0.5628) 3.37 

VGG19-CXR-U-Net (AT) 0.4694 0.3226 0.5272 (0.458,0.5964) 

 

 

Fig. 18. Performance achieved by the VGG19-U-Net (AT) toward TB-consistent ROI segmentation using the Montgomery TB CXR test 
set. (a) AUC-ROC curve; and (b) Confusion matrix. 

 

Fig. 19. Sample overlay image. (a) An instance of Montgomery TB CXR; (b) GT mask generated from the STAPLE consensus ROI 
obtained using annotations of R1 and R2; (c) Mask predicted by the VGG19-U-Net (AT) model; and (d) GT and predicted mask overlaid 
on the original CXR (GT denoted by a green bounding box and predicted mask denoted by a red bounding box). 



 

 

 

4. Discussion and conclusion 

We made several key observations from the results of this stage-wise systematic study. Broadly, these are 
the need for (i) modality-specific knowledge transfer techniques, (ii) verifying ROI localization, (iii) reducing 
inter-observer variability, (iv) selecting the appropriate loss function, (v) performing statistical analysis, (vi) 
evaluating with cross-institutional test collection, and (vii) selecting task-appropriate data augmentation 
methods. These observations are discussed in detail below. 

Modality-specific knowledge transfer techniques: We note that CXR modality-specific pretraining helped 
improve performance in lung segmentation, fine-tuning, and TB segmentation and localization tasks over the 
non-modality-specific ImageNet-pretrained CNN models. Therefore, performing medical modality-specific 
training is a path toward improving model adaption and performance, reducing computational complexity and 
overfitting. The performance improvement may be attributed to the fact that the CXR modality-specific 
pretraining helped learn the characteristics of the lungs including shape, texture, contour, and their 
combinations that are diverse from natural stock photographic images. The learned modality-specific 
knowledge, when transferred to a relevant modality-specific task, helped in superior weight initialization 
compared to ImageNet-pretrained weights and resulted in improved performance.  

The VGG-16 and VGG-19 CXR modality-specific segmentation models were better not only to localize 
but to classify the findings such as TB manifestations using the CXR modality-specific pretrained/fine-tuned 
classification models. This training approach facilitated a generalized modality-specific knowledge transfer 
that helped the segmentation models to better discriminate the lungs from the background pixels and the 
classification models to differentiate abnormal lungs with TB manifestations from normal lungs. An added 
benefit of this approach is that it resulted in a marked reduction in the number of trainable parameters.  

Verifying ROI localization: Neural networks make use of inherent learning methods to identify salient 
features in the input data. However, data-driven DL models are considered back-boxes since they lack 
explainability. Therefore, it is crucial to determine if these models are predicting the expected classes for the 
right reasons. Saliency maps and other visual ablation studies help to investigate if the models learn salient 
feature representations conforming to the experts’ knowledge of the problem. In this study, we used saliency 
maps and CRM-based localization algorithms to illustrate and explain the localization behavior of the trained 
models. We observed that the TB-consistent ROI localization obtained with the CXR modality-specific fine-
tuned models are superior to those obtained using the ImageNet-pretrained models. Such superior localization 
performance could be attributed to the following characteristics: (i) the fine-tuned models inherit CXR 
modality-specific knowledge compared to that transferred from the natural image domain; (ii) the transferred 
knowledge is relevant to the target modality; (iii) the fine-tuned models are empirically truncated at the 
optimal depth to learn relevant and salient feature representations. This helped to deliver superior 
classification and localization performance. These observations are reinforced by the sub-optimal localization 
performance observed with the out-of-the-box ImageNet-pretrained models.  

Reducing inter-observer variability: Literature studies are limited concerning arriving at a consensus ROI 
when using GT annotations from multiple experts. This is particularly important for medical decision-making 
since different experts may have varying opinions on the extent or location of the disease-specific ROI. The 
inherent bias in the experts’ annotations may be due to a variety of explicit and implicit factors including 
overall clinical experience, specific background in the disease manifestations, and tendency to be aggressive 
or conservative when treating/detecting disease, or simply missing the disease leading to FNs in the data. To 
overcome these challenges, we used the STAPLE algorithm to arrive at a consensus ROI by discovering and 
quantifying the experts’ bias and varying opinions about the TB-consistent ROI.   

Selecting the appropriate loss function: Segmentation models often suffer from class imbalance issues, 
particularly in medical image segmentation tasks. This is due to the highly localized ROI, spanning for a very 



 

small percentage of the total number of image pixels. The issues with using the conventional BCE loss for 
such class imbalanced segmentation tasks are as follows: (i) the BCE loss weighs all image pixels equally; (ii) 
the model demonstrates low BCE loss and hence higher segmentation accuracy even if it misses all ROI 
pixels that spans a small portion of the total image. In this study, we used a customized loss based on Tversky 
Index, an asymmetric similarity measure that generalizes IOU and Dice metrics. The use of a customized 
Tversky Index-based loss function with empirically determined hyperparameter values for the problem under 
study helped to improve segmentation performance by providing a finer level of segmentation control 
compared to using a conventional BCE-based loss. Computing a single precision and recall score at a specific 
IOU threshold does not sufficiently describe the models’ behavior. In this study, we used AP@[.5:.95] to 
effectively integrate the AUPRC by averaging the precision score at multiple IOU thresholds ranging from 0.5 
to 0.95 (in 0.05 increments). Such a measure would help to better demonstrate models’ generalization ability 
and stability toward the segmentation task.  

Performing statistical analysis: Literature studies have shown that research publications seldom perform 
statistical significance analyses while interpreting their results (Diong et al., 2018). We performed statistical 
analyses to investigate the existence of a statistically significant difference in the performance of the 
segmentation models based on the AP@[.5:.95] metric and classification models using the MCC metric. Such 
analysis helped to interpret model performance and other assumption violations.   

Evaluating with cross-institutional test collection: It is indispensable to note that the data collected across 
institutions differ due to changes in imaging equipment, acquisition methods, processing protocols, and their 
combinations. These differences could notably affect their characteristics and render them qualitatively and 
quantitatively different across institutions. This may lead to sub-optimal performance when the models trained 
with the imaging data from one institution are tested with the data from another institution. The evaluation 
with cross-institutional test sets helps to empirically determine the existence of cross-institutional data 
variability and its effect on model robustness and generalization.  

Selecting task-appropriate data augmentation technique: The performance of DL models is shown to 
improve with an increase in data and computational resources. Training data augmentation helps to 
significantly increase data diversity and thus the models’ robustness and generalization to real-time 
applications. However, literature studies extensively discuss the use of affine-transformation-based data 
augmentation methods like cropping, flipping, rotating, and image padding. There is a need for progress in 
investigating the use of task-specific data augmentation strategies that could better capture inherent data 
variability, particularly toward medical image analyses, and help to improve performance. In this study, we 
observed that augmenting the training data with TB-specific weak localization improved TB segmentation 
and localization with both the test data coming from the same training distribution and cross-institutions. This 
performance improvement may be attributed to the fact that CXR modality-specific pretraining and task-
specific training data augmentation, i.e., augmenting training data with weak, TB-consistent ROI localizations 
helped in added knowledge about CXRs and other diverse TB manifestations that resulted in superior weight 
initialization and improved segmentation performance with training distribution-similar and cross-institutional 
test sets.  

Limitations: Regarding the limitations of the current study: (i) the numbers of publicly available CXRs 
showing pulmonary TB manifestations with expert ROI annotations are fairly small. In this study, we tried to 
alleviate this limitation by collecting expert annotations and generating STAPLE-based consensus ROI 
annotations for the publicly available Montgomery TB CXR and a subset of the Shenzhen TB CXR 
collections. However, there is an indispensable need for large-scale CXR collections with sufficient data 
diversity and expert-annotated TB-specific ROIs. This would further help training diversified models and 
improve their confidence, robustness, and generalization toward real-time deployment. (ii) This study is 
evaluated to segment and localize TB-consistent findings. However, future research shall focus on testing 



 

 

 

against non-TB findings because TB-consistent findings including nodules and cavities are found in other 
abnormal pulmonary conditions. (iii) We generated the STAPLE-based consensus ROI using the annotations 
of two experts for each cross-institutional test set. However, it is commendable to have more experts 
performing independent assessments of the data and on a larger population. This would help to reduce 
annotation errors and arrive at a markedly better consensus. (iv) We augmented the training data with TB-
specific weak ROI localizations to improve performance in a TB segmentation task. However, the effects of 
augmenting the training data with other pulmonary abnormality-specific localizations and the resulting 
performance are yet to be investigated. (v) Considering limited data availability, this study proposes 
comparatively shallow VGG-16 and VGG-19 CXR modality-specific segmentation models be employed 
rather than other ImageNet-pretrained models toward the current task. With the availability of more annotated 
data, future research could propose diversified models with novel filters that may result in improved 
segmentation performance and reduction in computational complexity.    

In conclusion, in this study we have demonstrated that CXR modality-specific pretraining/fine-tuning 
resulted in (i) transferring CXR modality-specific learned knowledge that can subsequently be fine-tuned to 
improve TB classification and segmentation performance; and (ii) improving segmentation performance with 
training distribution-similar and cross-institutional test sets by augmenting the training data with segmentation 
task-relevant, weak TB-consistent ROI localization. We have generated STAPLE consensus ROI from expert 
annotations for the publicly available Montgomery TB CXR and a subset of Shenzhen TB CXR collection 
that could be used by the research community (i) to train and evaluate segmentation and classification models 
and (ii) as a benchmark for developing effective computational methods. We believe that the results proposed 
in this study would be useful for developing robust models for classification, segmentation, and TB-consistent 
ROI localization tasks and eventually assist radiologist interpretive workflows to include triage of abnormal 
findings and further classification based on distribution and other patterns. We believe this will eventually 
lead to improved patient care while improving productivity in addition to further providing quality labels via 
vetted annotations. 
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