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CHECK TAGS MESH TERMS (CTMTS) INDEXING PROJECT 

1. Introduction 
MEDLINE® is the largest bibliographic database of life sciences and biomedical information created and 
maintained by the National Library of Medicine (NLM). The database contains over 30 million citations 
indexed with NLM Medical Subject Headings (MeSH®). 
MEDLINE documents are indexed using about 30,000 MeSH terms by the NLM. Among these MeSH terms, a 
small subset of 40 most frequently indexed MeSH terms known as Check Tags help identify age groups, human 
or animal, males or females, historical periods, and pregnancy that are mentioned in almost every article. 
This project describes an ongoing effort at the NLM to automate the indexing of 40 Check Tags MeSH terms 
(CTMTs) based on titles and abstracts in the MEDLINE literature using various techniques and algorithms in 
Deep Learning, Ensemble Random Forest Bagging Machine Learning, and Natural Language Processing. 
Over the years, MeSH indexing for MEDLINE was done mostly by highly trained human indexers who read the 
full text of journal articles and assign appropriate MeSH terms to the articles. In April 2022, NLM decided to go 
with the full automation of indexing for all journals indexed for MEDLINE. The automated indexing of 
MEDLINE citations “provides users with timely access to MeSH indexing metadata and allow NLM to scale 
MeSH indexing for MEDLINE to the increasing volume of published biomedical literature” [1]. In the recent 
NLM MeSH indexing for MEDLINE report, it showed that the automated system had resolved backlogs of 
citations needing to be indexed in MEDLINE, reduced the cost of indexing, and can add MeSH indexing to 
articles within 24 hours. 
A distinctive feature of using MeSH terms to search is that users can find all articles related to MeSH terms’ 
concepts, regardless of the terms or words used in the articles. This is different from Internet search engines like 
Google, Microsoft Bing, or Yahoo, which search based on the same words. 
Automated indexing of MEDLINE citations with MeSH terms is a challenging multi-label classification 
problem due to the large number of labels (MeSH Headings) and very imbalanced datasets. Regarding data used 
between manual indexing and automatic methods for assigning MeSH terms, there is another challenging 
problem where NLM human indexers have access to the full text while automated indexing methods only use 
title and abstract [2]. 
Several studies addressing these challenging problems have been reported in the Natural Language Processing 
(NLP) literature. For example, the well-known Medical Text Indexer (MTI) [3] machine learning system 
developed by NLM is a rule-based automated indexing system that processes an article title and abstract and 
recommends MeSH terms to human indexers. MetaLabeler [4] used the MetaLabeler algorithm proposed by 
Tang et al. [5] to handle the MeSH indexing challenge. MeSH Now [6], MeSHLabeler [7] and DeepMeSH [8] 
incorporated the learning-to-rank approaches for improving the results of automatic MeSH indexing. Recently, 
due to the popularity of Deep Learning, AttentionMeSH [9], “Convolutional Neural Network for Automatic 
MeSH Indexing” [10], and MeSHProbeNet [11] were designed based on the Deep Learning neural network 
multi-label classification approaches for automatic MeSH indexing. 
In this manuscript, we describe a project to index 40 Check Tag MeSH terms using Deep Learning neural 
network multi-label classifiers, followed by Random Forest Bagging machine learning classifiers that combine 
predictions from multiple neural network classifiers to improve the system’s predictive performance. Note that 
for this work, the total number of labels is 40 CTMTs, but the other two challenges remain since the 
distributions of their CTMTs are very highly imbalanced, and the automated indexing methods can only access 
titles and abstracts. The features used for the Deep Learning neural networks are the combinations of 
open-source documents/sentences embeddings vectors and the project customized vectors. The open-source 
embeddings vectors include Universal Sentences Encoder vectors, Sentence Transformers Embeddings vectors, 
and Biomedical Sentence Embeddings vectors. The customized vectors consist of MeSH entry terms-based 
vectors, and word-based dictionary vectors. All vectors are generated from titles and abstracts of MEDLINE 
documents.  



Experiments conducted on several million MEDLINE citations show that our proposed approach, which is based 
on a two-level chained method of Deep Learning neural networks classifiers and Random Forest Bagging machine 
learning classifiers, has a competitive performance with 86.0% precision, 81.1% recall, and 83.5% F1-score. 
Note that in this manuscript, the two words "documents" and "articles" have the same meaning, so they can be 
used interchangeably. 

2. Project Objectives 
The overall goal of the project is to help improve the performance of automated MeSH indexing for MEDLINE 
citations and thereby control their cost. This goal could be achieved through the following specific objectives: 

Objective 1: Research and develop advanced machine-learning techniques for automated indexing of 
biomedical articles with Check Tags MeSH terms. 
We have been conducting research and development to design, develop, and evaluate advanced 
machine-learning techniques to assist human indexers with recommended MeSH terms for indexing articles as 
well as to automatically generate MeSH terms for selected groups of biomedical articles. 
In particular, the research and development in this active research area includes the Medical Text Indexer 
(MTI). MTI is a rule-based automated indexing system developed by NLM that processes an article title and 
abstract and returns a list of recommended MeSH terms. 
Objective 2: Build a practical production system and use it as an experimental test bed to conduct research 
in automated indexing of biomedical articles with Check Tags MeSH terms and to identify opportunities for 
improving system performance. 

3. Project Significance 
The outcome of this project is planned to replace a current machine learning software component of the NLM 
Medical Text Indexer  (MTI) system that classifies Check Tags MeSH terms (CTMTs) using ruled-based 
algorithms. 
In addition, this project proposed an interesting architecture to handle multi-label classification problems that 
provides a new perspective by: 

• Combining embedded and customized feature vectors as its inputs. 

• Merging datasets and their spin-off datasets to improve predictive performance. 

• Chaining two different machine learning classification approaches: Deep Learning neural networks and 
Random Forest Bagging machine learning models to index CTMTs. 

As a result, this proposed architecture could set up a platform for possible future experiments to improve the 
performance of CTMTs automated indexing, as described in detail in the “Conclusion and Future Works” 
section. 

4. Check Tags MeSH Terms (CTMTs) Indexing Project 

4.1 Datasets 
4.1.1 “Fully human indexed” citations 
There are three MEDLINE indexing methods: “Automated”, “Curated”, and “Fully human indexed”. Both the 
“Automated” and “Curated” methods index articles algorithmically, but  the “Curated” method includes an 
additional step where algorithm results are reviewed by a human. The “Fully human indexed” method, on the 
other hand, indexes articles solely by human indexers [1].  
We used the 2021 MEDLINE Baseline dataset [12], which consists of about 30 million citations, to build the 
project datasets. To create a consistent and stable classifier for CTMTs, we used the “Fully human indexed” 



citations to train and evaluate Deep Learning neural networks and ensemble machine learning models in this 
project. According to information posted in “Medical Subject Headings 2023" [13], the last Check Tags MeSH 
term “Young Adult” was included in MEDLINE in August 2008. Therefore, we only considered citations that 
were indexed after this date, and we collected 8,692,143 “Fully human indexed” citations for the project 
datasets. 
4.1.2 Training, testing, and validating datasets 
The 8,692,143 “Fully human indexed” citations are split into 85% for training (7,388,794), 10% for testing 
(868,982), and 5% for validating (434,367). 

4.2 Feature vectors and their combinations of feature vectors  
In this project, there are five different types of feature vectors that represent documents’ titles and abstracts. The 
first three feature vectors are open-source documents/sentences embeddings vectors, and the last two feature 
vectors are the project customized vectors. 

1. 512-dimensional Universal Sentence Encoder (USE) feature vectors 
The Google Universal Sentence Encoder, based on the Transformer architecture [14], takes a 
concatenated document title and abstract and generates a 512-dimensional feature vector.  

2. 384-dimensional Sentence Transformers Embeddings (STE) feature vectors 
The Sentence Embeddings using Siamese BERT-Networks [15] takes a concatenated document title and 
abstract and generates a 384-dimensional feature vector. 

3. 700-dimensional Biomedical Sentence Embeddings (BSE) feature vectors 
The NLM BioSentVec pre-trained model [16,17,18] takes a concatenated document title and abstract 
and generates a 700-dimensional feature vector.  

4. 25,600-dimensional Word-based Dictionaries (WBD) feature vectors 
Words in titles and abstracts of documents in the training dataset are collected and lemmatized using the 
spaCy NLP library software [19]. The lemmatized words are tabulated and ordered based on their 
occurrences from high to low. The top 25,600 lemmatized words are selected to build the Word-based 
dictionaries. A 25,600-dimensional WBD feature vector is then generated for each document by 
mapping lemmatized words and their occurrences in its title and abstract against those in the 
Word-based dictionaries. 

5. 29,917-dimensional MeSH Entry Terms (ET) feature vectors 
Entry terms are “synonyms, near-synonyms alternate forms, and other closely related terms in a MeSH 
record” [20]. They are grouped together under the same MeSH term and generally used interchangeably 
with the preferred term in MeSH. 
For the 2021 MEDLINE Baseline dataset [12], there are 29,917 MeSH terms and each MeSH term is 
associated with a list of its entry terms. The 29,917-dimensional ET feature vector is generated for each 
document by searching for entry terms and their occurrences in its title and abstract. 

To take advantage of the best performance of each feature vector on documents’ titles and abstracts, feature 
vectors other than the "baseline" feature vectors are not used alone but are combined into several groups of 
feature vectors combinations. 
Based on experimental results, the WBD feature vectors performed better than other feature vectors in terms of 
precision and recall on the validating dataset. Therefore, the WBD feature vectors were chosen as the “baseline” 
feature vectors. 
The “baseline” feature vectors are combined with the remaining four feature vectors to create 16 combinations 
of feature vectors, which are shown in Table 1. 
  



4.3 CTMTs-based entry terms binary feature vectors 
In addition to the 29,917-dimensional MeSH entry terms feature vectors defined in Section 4.2, a 40-
dimensional CTMTs-based entry terms binary feature vector is generated for each document by searching for 
CTMTs entry terms information in its title and abstract. 

4.4 Automated CTMTs Indexing Architecture 
The automated CTMTs indexing architecture is designed as a two-level chained classifier based on Deep 
Learning neural networks and Random Forest Bagging machine learning.  
The first level of the architecture takes a combination of feature vectors as input and predicts 40 CTMT outputs 
using Deep Learning neural networks. The second level of the architecture uses the predicted outputs of the first 
level, along with a CTMT-based entry terms binary feature vector as input and predicts each CTMT using 
Random Forest Bagging machine learning models. 
The purpose of this design is to combine global and local classifications of CTMTs. The first level is considered 
as a global classification level, where feature vectors associated with all CTMTs are used together for their 
classifications. On the other hand, the second level is a local classification level, where feature vectors 
associated with each CTMT are used to classify it separately. 
The automated CTMTs indexing architecture is shown in Figure 1. 
4.4.1 Deep Learning Neural Networks Architecture and Configurations 
The Deep Learning neural network architecture used in this project is a simple multi-layer fully connected 
neural network. The architecture has a combination of feature vectors as its input and 40 CTMTs as its outputs. 
Each feature vector input is either scaled up or down to a 512-dimensional vector, and then all 512-dimensional 
vectors are concatenated to input to the fully connected layers of the Deep Learning neural network. 
As shown in Table 1, there are 16 deep learning neural networks, each trained on a different combination of 
feature vectors. The output dimension and total number of training parameters for each network are also listed 
in the table. 
The Deep Learning models were implemented in Keras version 2.4.3. and the Deep Learning neural networks 
hyperparameters are listed in Table 2. 
4.4.2 Training 
The Deep Learning models were trained using the Adam optimizer and binary cross-entropy loss on a 16-core 
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz CPU with 125GB of memory. 
Due to the large training dataset, the maximum number of epochs was set to 10, but the training would stop 
early if the F1-score did not improve. For this project, the average number of epochs for training a Deep 
Learning model was about 3.2, and the total training time for all Deep Learning models was about 60 hours. 
4.4.3 “Spin-off” datasets 
When human indexers performed MeSH indexing for MEDLINE, they used MeSH entry terms to help them 
determine appropriate MeSH terms for indexing articles. However, entry terms may not always appear in the 
title or abstract of a MEDLINE citation. Regarding the predictive performance of CTMTs, we found that 
citations with CTMTs-based entry terms in the title or abstract performed better than those without. 
As a result, we decided to build the “spin-off” training, testing, and validating datasets by taking the project 
training, testing, and validating datasets and keeping only the records that have CTMTs-based entry terms found 
in their title and/or abstract. 
Both datasets are trained by Deep Learning neural networks, and their predicted records are combined to create 
“combined” predicted records. As shown in Figure 4, the predictive performance of the “combined” predicted 
records is improved in terms of precision, recall, and F1-score. 



4.4.4 Algorithm to combine Deep Learning predicted results from two datasets. 
The project training dataset and its spin-off dataset are each trained by 16 Deep Learning neural networks to 
generate 32 sets of predicted records. These 32 sets are combined to build 16 combined-predicted records using 
the following algorithm: 
Assume that there are X and Y records in the project dataset and its spin-off dataset, respectively. 

For each of 16 Deep Learning neural networks: 
….Train X records and build X predicted records for the project dataset. 
….Train Y records and build Y predicted records for the project spin-off dataset. 
….Set an array of XY-combined-predicted-record with a dimension X. 
….Set an array index i to 0 
….For each record in X predicted records: 
….….Get its X-PMID and its X-predicted-record. 
….….Set PMID_found_flag = False 
….….For each record in Y predicted records: 
….….….Get its Y-PMID and its Y-predicted-record.  
….….….If Y-PMID == X-PMID then 
….….….….XY-combined-predicted-record[i] = (X-predicted-record + Y-predicted-record) / 2 records 
….….….….Set PMID_found_flag = True 
….….….….break 
….….If PMID_found_flag == False then 
….….….XY-combined-predicted-record[i] = X-predicted-record 
….….Increment i 
…End For 
End For 

4.4.5 Random Forest Bagging Machine Learning Models Architecture  
Random Forest Bagging machine learnings are ensemble methods that combine the predictions of multiple base 
estimators to improve performance. There are two types of ensemble methods: averaging methods and boosting 
methods. Averaging methods, such as “Bagging methods” and “Forests of randomized trees”, build estimators 
independently and then take the average of their predictions. Boosting methods, such as “AdaBoost” and 
“Gradient Tree Boosting”, train models sequentially with samples of randomized data, where each model uses 
the residuals of the previous model to minimize training errors. 
The Random Forest Bagging machine learning model used in this project is the ensemble averaging method 
“RandomForestClassifier” [21]. It uses predicted outputs of Deep Learning neural networks and CTMTs-based 
entry terms to predict the output of each Check Tags MeSH term. 
As shown in Fig. 3, there are 40 Random Forest Bagging machine learning blocks, one for each Check Tags 
MeSH term. Each block has a “RandomForestClassifier” random forest classifier that takes 16 predicted outputs 
from the 16 Deep Learning neural networks and a 40-dimensional binary array of CTMTs-based entry terms as 
input and predicts the output of the Check Tags MeSH term assigned to the block. 
The hyperparameters “n_estimators” and “max_depth” of the  “RandomForestClassifier” are set to 100 and 2, 
respectively. 

5. Results 
Figure 2 shows the precision, recall, and F1-score prediction performances of 16 Deep Learning neural 
networks on 40 Check Tags MeSH terms using the project testing dataset. The precisions and recalls reported 

https://scikit-learn.org/stable/modules/ensemble.html#bagging
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting


are very competitive among the 16 Deep Learning neural networks, but the F1-scores are improved when there 
are more combinations of feature vectors. 
Figure 3 shows the precision, recall, and F1-score prediction performance of 16 Deep Learning neural networks 
on 40 Check Tags MeSH terms using the project “spin-off” testing dataset. 
The results from Figures 2 and 3 are combined and shown in Figure 4.  The thick lines represent results from 
the project testing dataset, and the thin lines represent results from the project “spin-off” testing dataset. As 
shown in Figure 4, the ranges of precision, recall, and F1-score of the project “spin-off” testing dataset are 
better than those of the project testing dataset. Therefore, the predictive performances are better for citations 
that have CTMTs-based entry terms in their title and/or abstract. 
Figure 5 shows precision, recall, and F1-score prediction performance of 16 Deep Learning neural networks on 
40 Check Tags MeSH terms using predicted records that are combined using the algorithm shown in Section 
4.4.4. The prediction performance based on the project “combined” testing dataset is shown with thick red lines. 
In addition, the prediction performance based on the project testing dataset shown in Figure 2 is also shown 
with thin blue lines just for comparison purposes. In the “recall” area, the prediction performances of the project 
“combined” testing dataset and the project testing dataset are very competitive. However, in the precision and 
F1-score areas, the prediction performances of the project “combined” testing dataset are higher than those of 
the project testing dataset. Therefore, the “combined” predicted records using the algorithm shown in Section 
4.4.4 help improve the prediction performances of 40 Check Tags MeSH terms. 
Figure 6 shows the predictive performance of Random Forest Bagging Machine Learning classifiers for each 
CTMT and for all 40 CTMTs using the project testing dataset. The overall predictive performance of all 40 
CTMTs is 86.0% precision, 81.1% recall, and 83.5% F1-score. 

6. Discussion 
This work presents an approach to automatically index MEDLINE Check Tag MeSH terms using two levels of 
classifications: a first level of Deep Learning neural networks classifiers and a second level of Random Forest 
Bagging machine learning classifiers. In both levels, the CTMTs-based entry terms data found in the title and/or 
abstract are used as inputs. The first level is trained on the project training dataset and its “spin-off” dataset 
(consisting of records that have CTMTs-based entry terms found in their title and/or abstract). The second level 
uses a 40-dimensional binary array of CTMTs-based entry terms as one of its inputs. Based on the experimental 
results, the CTMTs-based entry terms data used in these two levels improved the overall predictive performance 
of CTMTs by +0.48% in precision, -0.04% in recall, and +0.21% in F1-score on the project testing dataset. The 
increases in precision and F1-score as well as the decreases in recall are expected, as shown in Figure 5. 
As shown in Figures 3 and 5, citations with CTMTs-based entry terms found in the title and/or abstract perform 
better than citations without. However, CTMTs-based entry terms information may not be present in the title 
and/or abstract for some MEDLINE citations, but it may be present in the full text. Therefore, to get closer to 
human indexers’ performance on MeSH indexing, automated indexing methods must access the full text to 
collect relevant information (such as entry terms) for MeSH indexing. 
There are 18 CTMTs that have the highest indexing occurrences among 40 CTMTs. They are ordered from high 
to low based on their indexing occurrences as follows: “Humans”, “Female”, “Male”, “Animals”, “Adult”, 
“Middle Aged”, “Aged”, “Adolescent”, “Young Adult”, “Mice”, “Child”, “Aged, 80 and over”, “Rats”, “Child, 
Preschool”, “United States”, “Pregnancy”, “Infant”, “Infant, Newborn”. Among these 18 CTMTs, the 10-age 
related CTMTs (“Adult”, “Middle Aged”, “Aged”, “Adolescent”, “Young Adult”, “Child”, “Aged, 80 and 
over”, “Child, Preschool”, “Infant”, “Infant, Newborn) have the lowest predictive performance in average. 
Their average precision, recall, and F1-score are about 73.6%, 58.3%, and 64.2% respectively, as shown in 
Figure 6. To improve the overall predictive performance, the performance of these 18 CTMTs must be 
improved, especially the 10-age related CTMTs. One suggestion, which is mentioned in the next section 
“Conclusion and Future Works”, is to classify each of 18 CTMTs separately and then combine their predicted 
records with the current 40 CTMTs binary outputs to improve the system performance. 



Regarding the 10-age related CTMTs, the MeSH indexing instruction [22] required that when a range of ages 
appears in an article, it must be used to select the appropriate age group check tags. For example,  “Infant” is 
from 1 to 23 months, “Infant, Newborn” is from 0 to 1 month,  “Infant” is from 1 to 23 months, “Child” is from 
6 to 12 years, “Child, Preschool” is from 2 to 5 years, “Young Adult” is from 19 to 24 years, “Adult” is from 19 
to 44 years, “Middle Aged” is from 45 to 64 years, and so on. However, the range of ages information is often 
presented in the full text of an article, rather than in the title or abstract. Therefore, the availability of full text to 
automated indexing methods is an important factor in improving the overall predictive performance of the 
system.  

7. Conclusion and Future Works 
The automated indexing of 40 Check Tag MeSH terms using a two-level chained classifier - Deep Learning 
neural network multi-label classifiers followed by Random Forest Bagging machine learning classifiers - has 
been presented. In this design, two different machine learning classification approaches are chained to support 
global classifications and local classifications among 40 Check Tag MeSH terms. Feature vectors are 
combinations of open-source documents/sentences embeddings vectors and project customized vectors. They 
include document-based vectors, word-based vectors, and MeSH entry terms-based vectors. 
As mentioned briefly in Section 3, this project provides a new perspective for handling multi-label classification 
problems by (1) combining embedded and customized input feature vectors, (2) merging datasets and their spin-
off datasets to improve predictive performance, and (3) chaining two different machine learning classification 
approaches. As a result, this proposed architecture could establish a platform for possible future experiments to 
improve the overall performance of the CTMTs automated indexing. These experiments could include: 

i. Experimenting with new embedding feature vectors and/or new customized feature vectors. 
ii. Adding more records into the CTMTs-based entry terms spin-off datasets, if possible, for better 

predictive performance. 
iii. Exploring different Deep Learning neural networks architectures, such as Convolutional Neural 

Network and/or different hidden neural networks layers configurations. 
iv. Considering other Boosting/Bagging machine learning models, such as AdaBoost, Gradient Tree 

Boosting, other Bagging methods, and XGBoost, and experimenting with their combinations. 
v. Building classifiers for each of the 18 CTMTs mentioned in the “Discussion” section separately, and 

then combining their predicted records with the current 40 CTMTs binary outputs for improvements. 
vi. Building and classifying titles and abstracts sentences and combining their predicted records for 

improvements. 
  

https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
https://scikit-learn.org/stable/modules/ensemble.html#bagging


 
Table 1. Combination of Feature Vectors, Output Dimension, and Training Parameters 

 
 
 

Deep Learning Hyperparameter Value 

Loss function binary_crossentropy 

Activation for hidden layers ReLU (Rectified Linear Activation) 

Activation for output layers Logistic (Sigmoid) 

Learning rate 0.001 

Table 2: Deep Learning Neural Networks Hyperparameters 
  



 

 

Figure 1: Automated Check Tags MeSH Terms Indexing Architecture 
  



 
 

 

Figure 2: Performance of 16 Deep Learning Neural Networks on 40 CTMTs 
using the project testing dataset. 

  



 
 

 

Figure 3: Performance of 16 Deep Learning Neural Networks on 40 CTMTs 
using the project “spin-off” testing dataset. 

  



 
 

 

Figure 4: Performance of 16 Deep Learning Neural Networks on 40 CTMTs using both the project testing 
dataset and the project “spin-off” testing dataset. 

  



 
 

 

Figure 5: Performance of 16 Deep Learning neural networks on 40 Check Tags MeSH terms using 
predicted records that are combined by the algorithm shown in Section 4.4.4.  



 

Figure 6: Performance of Random Forest Bagging Machine Learning Classifiers for each CTMT 
and for 40 CTMTs using the project testing dataset. 

  

CTMTs TP TN FN FP Precision Recall F1-Score
Adolescent 36,048             778,670           41,574             12,690             0.740 0.464 0.571
Adult 150,746           628,015           41,882             48,339             0.757 0.783 0.770
Aged 102,012           698,631           33,876             34,463             0.747 0.751 0.749
Aged, 80 and over 17,365             805,067           36,541             10,009             0.634 0.322 0.427
Animals 204,444           619,521           26,503             18,514             0.917 0.885 0.901
Bees 615                  868,198           107                  62                    0.908 0.852 0.879
Cats 1,430               867,081           387                  84                    0.945 0.787 0.859
Cattle 6,321               858,857           2,763               1,041               0.859 0.696 0.769
Chlorocebus aethiops 444                  866,639           1,757               142                  0.758 0.202 0.319
Chick Embryo 507                  867,854           479                  142                  0.781 0.514 0.620
Child 35,351             807,778           17,282             8,571               0.805 0.672 0.732
Child, Preschool 18,661             831,190           12,802             6,329               0.747 0.593 0.661
Dogs 4,770               862,668           1,202               342                  0.933 0.799 0.861
Female 298,107           479,679           50,396             40,800             0.880 0.855 0.867
Guinea Pigs 809                  867,813           315                  45                    0.947 0.720 0.818
Cricetinae 1,034               866,246           1,421               281                  0.786 0.421 0.549
History of Medicine -                   868,926           56                    -                   0.000 0.000 0.000
Horses 1,531               866,985           390                  76                    0.953 0.797 0.868
Humans 583,877           234,891           26,621             23,593             0.961 0.956 0.959
Infant 13,297             840,085           10,768             4,832               0.733 0.553 0.630
Infant, Newborn 9,243               848,892           8,437               2,410               0.793 0.523 0.630
Male 294,738           480,265           47,078             46,901             0.863 0.862 0.862
Middle Aged 154,617           641,952           33,061             39,352             0.797 0.824 0.810
Pregnancy 19,541             842,317           4,475               2,649               0.881 0.814 0.846
Rabbits 3,369               864,166           1,174               273                  0.925 0.742 0.823
Sheep 1,698               866,334           615                  335                  0.835 0.734 0.781
Swine 5,613               860,897           1,313               1,159               0.829 0.810 0.820
United States 11,014             842,869           11,431             3,668               0.750 0.491 0.593
History, 15th Century -                   868,805           177                  -                   0.000 0.000 0.000
History, 16th Century -                   868,707           275                  -                   0.000 0.000 0.000
History, 17th Century -                   868,608           374                  -                   0.000 0.000 0.000
History, 18th Century -                   868,453           529                  -                   0.000 0.000 0.000
History, 19th Century 661                  867,167           848                  306                  0.684 0.438 0.534
History, 20th Century 1,832               864,708           1,714               728                  0.716 0.517 0.600
History, 21st Century -                   867,087           1,895               -                   0.000 0.000 0.000
History, Ancient 138                  868,271           497                  76                    0.645 0.217 0.325
History, Medieval -                   868,682           300                  -                   0.000 0.000 0.000
Mice 57,385             788,251           12,638             10,708             0.843 0.820 0.831
Rats 32,465             824,890           6,031               5,596               0.853 0.843 0.848
Young Adult 25,617             777,893           48,737             16,735             0.605 0.345 0.439

OVERALL 2,095,300   31,834,008 488,721      341,251      0.860 0.811 0.835
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