
 THE LISTER HILL NATIONAL CENTER
 FOR BIOMEDICAL COMMUNICATIONS
 A research division of the U.S. National Library of Medicine

A report to the Applied Clinical Informatics Branch

Check Tags MeSH Terms Indexing
Research Project

May 2023

Daniel Le, Ph.D.
James G. Mork, M.Sc.

U.S. National Library of Medicine, LHNCBC

8600 Rockville Pike, Building 38A
Bethesda, MD 20894

CHECK TAGS MESH TERMS (CTMTS) INDEXING PROJECT

1. Introduction
MEDLINE® is the largest bibliographic database of life sciences and biomedical information created and
maintained by the National Library of Medicine (NLM). The database contains over 30 million citations
indexed with NLM Medical Subject Headings (MeSH®).
MEDLINE documents are indexed using about 30,000 MeSH terms by the NLM. Among these MeSH terms, a
small subset of 40 most frequently indexed MeSH terms known as Check Tags help identify age groups, human
or animal, males or females, historical periods, and pregnancy that are mentioned in almost every article.
This project describes an ongoing effort at the NLM to automate the indexing of 40 Check Tags MeSH terms
(CTMTs) based on titles and abstracts in the MEDLINE literature using various techniques and algorithms in
Deep Learning, Ensemble Random Forest Bagging Machine Learning, and Natural Language Processing.
Over the years, MeSH indexing for MEDLINE was done mostly by highly trained human indexers who read the
full text of journal articles and assign appropriate MeSH terms to the articles. In April 2022, NLM decided to go
with the full automation of indexing for all journals indexed for MEDLINE. The automated indexing of
MEDLINE citations “provides users with timely access to MeSH indexing metadata and allow NLM to scale
MeSH indexing for MEDLINE to the increasing volume of published biomedical literature” [1]. In the recent
NLM MeSH indexing for MEDLINE report, it showed that the automated system had resolved backlogs of
citations needing to be indexed in MEDLINE, reduced the cost of indexing, and can add MeSH indexing to
articles within 24 hours.
A distinctive feature of using MeSH terms to search is that users can find all articles related to MeSH terms’
concepts, regardless of the terms or words used in the articles. This is different from Internet search engines like
Google, Microsoft Bing, or Yahoo, which search based on the same words.
Automated indexing of MEDLINE citations with MeSH terms is a challenging multi-label classification
problem due to the large number of labels (MeSH Headings) and very imbalanced datasets. Regarding data used
between manual indexing and automatic methods for assigning MeSH terms, there is another challenging
problem where NLM human indexers have access to the full text while automated indexing methods only use
title and abstract [2].
Several studies addressing these challenging problems have been reported in the Natural Language Processing
(NLP) literature. For example, the well-known Medical Text Indexer (MTI) [3] machine learning system
developed by NLM is a rule-based automated indexing system that processes an article title and abstract and
recommends MeSH terms to human indexers. MetaLabeler [4] used the MetaLabeler algorithm proposed by
Tang et al. [5] to handle the MeSH indexing challenge. MeSH Now [6], MeSHLabeler [7] and DeepMeSH [8]
incorporated the learning-to-rank approaches for improving the results of automatic MeSH indexing. Recently,
due to the popularity of Deep Learning, AttentionMeSH [9], “Convolutional Neural Network for Automatic
MeSH Indexing” [10], and MeSHProbeNet [11] were designed based on the Deep Learning neural network
multi-label classification approaches for automatic MeSH indexing.
In this manuscript, we describe a project to index 40 Check Tag MeSH terms using Deep Learning neural
network multi-label classifiers, followed by Random Forest Bagging machine learning classifiers that combine
predictions from multiple neural network classifiers to improve the system’s predictive performance. Note that
for this work, the total number of labels is 40 CTMTs, but the other two challenges remain since the
distributions of their CTMTs are very highly imbalanced, and the automated indexing methods can only access
titles and abstracts. The features used for the Deep Learning neural networks are the combinations of
open-source documents/sentences embeddings vectors and the project customized vectors. The open-source
embeddings vectors include Universal Sentences Encoder vectors, Sentence Transformers Embeddings vectors,
and Biomedical Sentence Embeddings vectors. The customized vectors consist of MeSH entry terms-based
vectors, and word-based dictionary vectors. All vectors are generated from titles and abstracts of MEDLINE
documents.

Experiments conducted on several million MEDLINE citations show that our proposed approach, which is based
on a two-level chained method of Deep Learning neural networks classifiers and Random Forest Bagging machine
learning classifiers, has a competitive performance with 86.0% precision, 81.1% recall, and 83.5% F1-score.
Note that in this manuscript, the two words "documents" and "articles" have the same meaning, so they can be
used interchangeably.

2. Project Objectives
The overall goal of the project is to help improve the performance of automated MeSH indexing for MEDLINE
citations and thereby control their cost. This goal could be achieved through the following specific objectives:

Objective 1: Research and develop advanced machine-learning techniques for automated indexing of
biomedical articles with Check Tags MeSH terms.
We have been conducting research and development to design, develop, and evaluate advanced
machine-learning techniques to assist human indexers with recommended MeSH terms for indexing articles as
well as to automatically generate MeSH terms for selected groups of biomedical articles.
In particular, the research and development in this active research area includes the Medical Text Indexer
(MTI). MTI is a rule-based automated indexing system developed by NLM that processes an article title and
abstract and returns a list of recommended MeSH terms.
Objective 2: Build a practical production system and use it as an experimental test bed to conduct research
in automated indexing of biomedical articles with Check Tags MeSH terms and to identify opportunities for
improving system performance.

3. Project Significance
The outcome of this project is planned to replace a current machine learning software component of the NLM
Medical Text Indexer (MTI) system that classifies Check Tags MeSH terms (CTMTs) using ruled-based
algorithms.
In addition, this project proposed an interesting architecture to handle multi-label classification problems that
provides a new perspective by:

• Combining embedded and customized feature vectors as its inputs.

• Merging datasets and their spin-off datasets to improve predictive performance.

• Chaining two different machine learning classification approaches: Deep Learning neural networks and
Random Forest Bagging machine learning models to index CTMTs.

As a result, this proposed architecture could set up a platform for possible future experiments to improve the
performance of CTMTs automated indexing, as described in detail in the “Conclusion and Future Works”
section.

4. Check Tags MeSH Terms (CTMTs) Indexing Project

4.1 Datasets
4.1.1 “Fully human indexed” citations
There are three MEDLINE indexing methods: “Automated”, “Curated”, and “Fully human indexed”. Both the
“Automated” and “Curated” methods index articles algorithmically, but the “Curated” method includes an
additional step where algorithm results are reviewed by a human. The “Fully human indexed” method, on the
other hand, indexes articles solely by human indexers [1].
We used the 2021 MEDLINE Baseline dataset [12], which consists of about 30 million citations, to build the
project datasets. To create a consistent and stable classifier for CTMTs, we used the “Fully human indexed”

citations to train and evaluate Deep Learning neural networks and ensemble machine learning models in this
project. According to information posted in “Medical Subject Headings 2023" [13], the last Check Tags MeSH
term “Young Adult” was included in MEDLINE in August 2008. Therefore, we only considered citations that
were indexed after this date, and we collected 8,692,143 “Fully human indexed” citations for the project
datasets.
4.1.2 Training, testing, and validating datasets
The 8,692,143 “Fully human indexed” citations are split into 85% for training (7,388,794), 10% for testing
(868,982), and 5% for validating (434,367).

4.2 Feature vectors and their combinations of feature vectors
In this project, there are five different types of feature vectors that represent documents’ titles and abstracts. The
first three feature vectors are open-source documents/sentences embeddings vectors, and the last two feature
vectors are the project customized vectors.

1. 512-dimensional Universal Sentence Encoder (USE) feature vectors
The Google Universal Sentence Encoder, based on the Transformer architecture [14], takes a
concatenated document title and abstract and generates a 512-dimensional feature vector.

2. 384-dimensional Sentence Transformers Embeddings (STE) feature vectors
The Sentence Embeddings using Siamese BERT-Networks [15] takes a concatenated document title and
abstract and generates a 384-dimensional feature vector.

3. 700-dimensional Biomedical Sentence Embeddings (BSE) feature vectors
The NLM BioSentVec pre-trained model [16,17,18] takes a concatenated document title and abstract
and generates a 700-dimensional feature vector.

4. 25,600-dimensional Word-based Dictionaries (WBD) feature vectors
Words in titles and abstracts of documents in the training dataset are collected and lemmatized using the
spaCy NLP library software [19]. The lemmatized words are tabulated and ordered based on their
occurrences from high to low. The top 25,600 lemmatized words are selected to build the Word-based
dictionaries. A 25,600-dimensional WBD feature vector is then generated for each document by
mapping lemmatized words and their occurrences in its title and abstract against those in the
Word-based dictionaries.

5. 29,917-dimensional MeSH Entry Terms (ET) feature vectors
Entry terms are “synonyms, near-synonyms alternate forms, and other closely related terms in a MeSH
record” [20]. They are grouped together under the same MeSH term and generally used interchangeably
with the preferred term in MeSH.
For the 2021 MEDLINE Baseline dataset [12], there are 29,917 MeSH terms and each MeSH term is
associated with a list of its entry terms. The 29,917-dimensional ET feature vector is generated for each
document by searching for entry terms and their occurrences in its title and abstract.

To take advantage of the best performance of each feature vector on documents’ titles and abstracts, feature
vectors other than the "baseline" feature vectors are not used alone but are combined into several groups of
feature vectors combinations.
Based on experimental results, the WBD feature vectors performed better than other feature vectors in terms of
precision and recall on the validating dataset. Therefore, the WBD feature vectors were chosen as the “baseline”
feature vectors.
The “baseline” feature vectors are combined with the remaining four feature vectors to create 16 combinations
of feature vectors, which are shown in Table 1.

4.3 CTMTs-based entry terms binary feature vectors
In addition to the 29,917-dimensional MeSH entry terms feature vectors defined in Section 4.2, a 40-
dimensional CTMTs-based entry terms binary feature vector is generated for each document by searching for
CTMTs entry terms information in its title and abstract.

4.4 Automated CTMTs Indexing Architecture
The automated CTMTs indexing architecture is designed as a two-level chained classifier based on Deep
Learning neural networks and Random Forest Bagging machine learning.
The first level of the architecture takes a combination of feature vectors as input and predicts 40 CTMT outputs
using Deep Learning neural networks. The second level of the architecture uses the predicted outputs of the first
level, along with a CTMT-based entry terms binary feature vector as input and predicts each CTMT using
Random Forest Bagging machine learning models.
The purpose of this design is to combine global and local classifications of CTMTs. The first level is considered
as a global classification level, where feature vectors associated with all CTMTs are used together for their
classifications. On the other hand, the second level is a local classification level, where feature vectors
associated with each CTMT are used to classify it separately.
The automated CTMTs indexing architecture is shown in Figure 1.
4.4.1 Deep Learning Neural Networks Architecture and Configurations
The Deep Learning neural network architecture used in this project is a simple multi-layer fully connected
neural network. The architecture has a combination of feature vectors as its input and 40 CTMTs as its outputs.
Each feature vector input is either scaled up or down to a 512-dimensional vector, and then all 512-dimensional
vectors are concatenated to input to the fully connected layers of the Deep Learning neural network.
As shown in Table 1, there are 16 deep learning neural networks, each trained on a different combination of
feature vectors. The output dimension and total number of training parameters for each network are also listed
in the table.
The Deep Learning models were implemented in Keras version 2.4.3. and the Deep Learning neural networks
hyperparameters are listed in Table 2.
4.4.2 Training
The Deep Learning models were trained using the Adam optimizer and binary cross-entropy loss on a 16-core
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz CPU with 125GB of memory.
Due to the large training dataset, the maximum number of epochs was set to 10, but the training would stop
early if the F1-score did not improve. For this project, the average number of epochs for training a Deep
Learning model was about 3.2, and the total training time for all Deep Learning models was about 60 hours.
4.4.3 “Spin-off” datasets
When human indexers performed MeSH indexing for MEDLINE, they used MeSH entry terms to help them
determine appropriate MeSH terms for indexing articles. However, entry terms may not always appear in the
title or abstract of a MEDLINE citation. Regarding the predictive performance of CTMTs, we found that
citations with CTMTs-based entry terms in the title or abstract performed better than those without.
As a result, we decided to build the “spin-off” training, testing, and validating datasets by taking the project
training, testing, and validating datasets and keeping only the records that have CTMTs-based entry terms found
in their title and/or abstract.
Both datasets are trained by Deep Learning neural networks, and their predicted records are combined to create
“combined” predicted records. As shown in Figure 4, the predictive performance of the “combined” predicted
records is improved in terms of precision, recall, and F1-score.

4.4.4 Algorithm to combine Deep Learning predicted results from two datasets.
The project training dataset and its spin-off dataset are each trained by 16 Deep Learning neural networks to
generate 32 sets of predicted records. These 32 sets are combined to build 16 combined-predicted records using
the following algorithm:
Assume that there are X and Y records in the project dataset and its spin-off dataset, respectively.

For each of 16 Deep Learning neural networks:
….Train X records and build X predicted records for the project dataset.
….Train Y records and build Y predicted records for the project spin-off dataset.
….Set an array of XY-combined-predicted-record with a dimension X.
….Set an array index i to 0
….For each record in X predicted records:
….….Get its X-PMID and its X-predicted-record.
….….Set PMID_found_flag = False
….….For each record in Y predicted records:
….….….Get its Y-PMID and its Y-predicted-record.
….….….If Y-PMID == X-PMID then
….….….….XY-combined-predicted-record[i] = (X-predicted-record + Y-predicted-record) / 2 records
….….….….Set PMID_found_flag = True
….….….….break
….….If PMID_found_flag == False then
….….….XY-combined-predicted-record[i] = X-predicted-record
….….Increment i
…End For
End For

4.4.5 Random Forest Bagging Machine Learning Models Architecture
Random Forest Bagging machine learnings are ensemble methods that combine the predictions of multiple base
estimators to improve performance. There are two types of ensemble methods: averaging methods and boosting
methods. Averaging methods, such as “Bagging methods” and “Forests of randomized trees”, build estimators
independently and then take the average of their predictions. Boosting methods, such as “AdaBoost” and
“Gradient Tree Boosting”, train models sequentially with samples of randomized data, where each model uses
the residuals of the previous model to minimize training errors.
The Random Forest Bagging machine learning model used in this project is the ensemble averaging method
“RandomForestClassifier” [21]. It uses predicted outputs of Deep Learning neural networks and CTMTs-based
entry terms to predict the output of each Check Tags MeSH term.
As shown in Fig. 3, there are 40 Random Forest Bagging machine learning blocks, one for each Check Tags
MeSH term. Each block has a “RandomForestClassifier” random forest classifier that takes 16 predicted outputs
from the 16 Deep Learning neural networks and a 40-dimensional binary array of CTMTs-based entry terms as
input and predicts the output of the Check Tags MeSH term assigned to the block.
The hyperparameters “n_estimators” and “max_depth” of the “RandomForestClassifier” are set to 100 and 2,
respectively.

5. Results
Figure 2 shows the precision, recall, and F1-score prediction performances of 16 Deep Learning neural
networks on 40 Check Tags MeSH terms using the project testing dataset. The precisions and recalls reported

https://scikit-learn.org/stable/modules/ensemble.html#bagging
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting

are very competitive among the 16 Deep Learning neural networks, but the F1-scores are improved when there
are more combinations of feature vectors.
Figure 3 shows the precision, recall, and F1-score prediction performance of 16 Deep Learning neural networks
on 40 Check Tags MeSH terms using the project “spin-off” testing dataset.
The results from Figures 2 and 3 are combined and shown in Figure 4. The thick lines represent results from
the project testing dataset, and the thin lines represent results from the project “spin-off” testing dataset. As
shown in Figure 4, the ranges of precision, recall, and F1-score of the project “spin-off” testing dataset are
better than those of the project testing dataset. Therefore, the predictive performances are better for citations
that have CTMTs-based entry terms in their title and/or abstract.
Figure 5 shows precision, recall, and F1-score prediction performance of 16 Deep Learning neural networks on
40 Check Tags MeSH terms using predicted records that are combined using the algorithm shown in Section
4.4.4. The prediction performance based on the project “combined” testing dataset is shown with thick red lines.
In addition, the prediction performance based on the project testing dataset shown in Figure 2 is also shown
with thin blue lines just for comparison purposes. In the “recall” area, the prediction performances of the project
“combined” testing dataset and the project testing dataset are very competitive. However, in the precision and
F1-score areas, the prediction performances of the project “combined” testing dataset are higher than those of
the project testing dataset. Therefore, the “combined” predicted records using the algorithm shown in Section
4.4.4 help improve the prediction performances of 40 Check Tags MeSH terms.
Figure 6 shows the predictive performance of Random Forest Bagging Machine Learning classifiers for each
CTMT and for all 40 CTMTs using the project testing dataset. The overall predictive performance of all 40
CTMTs is 86.0% precision, 81.1% recall, and 83.5% F1-score.

6. Discussion
This work presents an approach to automatically index MEDLINE Check Tag MeSH terms using two levels of
classifications: a first level of Deep Learning neural networks classifiers and a second level of Random Forest
Bagging machine learning classifiers. In both levels, the CTMTs-based entry terms data found in the title and/or
abstract are used as inputs. The first level is trained on the project training dataset and its “spin-off” dataset
(consisting of records that have CTMTs-based entry terms found in their title and/or abstract). The second level
uses a 40-dimensional binary array of CTMTs-based entry terms as one of its inputs. Based on the experimental
results, the CTMTs-based entry terms data used in these two levels improved the overall predictive performance
of CTMTs by +0.48% in precision, -0.04% in recall, and +0.21% in F1-score on the project testing dataset. The
increases in precision and F1-score as well as the decreases in recall are expected, as shown in Figure 5.
As shown in Figures 3 and 5, citations with CTMTs-based entry terms found in the title and/or abstract perform
better than citations without. However, CTMTs-based entry terms information may not be present in the title
and/or abstract for some MEDLINE citations, but it may be present in the full text. Therefore, to get closer to
human indexers’ performance on MeSH indexing, automated indexing methods must access the full text to
collect relevant information (such as entry terms) for MeSH indexing.
There are 18 CTMTs that have the highest indexing occurrences among 40 CTMTs. They are ordered from high
to low based on their indexing occurrences as follows: “Humans”, “Female”, “Male”, “Animals”, “Adult”,
“Middle Aged”, “Aged”, “Adolescent”, “Young Adult”, “Mice”, “Child”, “Aged, 80 and over”, “Rats”, “Child,
Preschool”, “United States”, “Pregnancy”, “Infant”, “Infant, Newborn”. Among these 18 CTMTs, the 10-age
related CTMTs (“Adult”, “Middle Aged”, “Aged”, “Adolescent”, “Young Adult”, “Child”, “Aged, 80 and
over”, “Child, Preschool”, “Infant”, “Infant, Newborn) have the lowest predictive performance in average.
Their average precision, recall, and F1-score are about 73.6%, 58.3%, and 64.2% respectively, as shown in
Figure 6. To improve the overall predictive performance, the performance of these 18 CTMTs must be
improved, especially the 10-age related CTMTs. One suggestion, which is mentioned in the next section
“Conclusion and Future Works”, is to classify each of 18 CTMTs separately and then combine their predicted
records with the current 40 CTMTs binary outputs to improve the system performance.

Regarding the 10-age related CTMTs, the MeSH indexing instruction [22] required that when a range of ages
appears in an article, it must be used to select the appropriate age group check tags. For example, “Infant” is
from 1 to 23 months, “Infant, Newborn” is from 0 to 1 month, “Infant” is from 1 to 23 months, “Child” is from
6 to 12 years, “Child, Preschool” is from 2 to 5 years, “Young Adult” is from 19 to 24 years, “Adult” is from 19
to 44 years, “Middle Aged” is from 45 to 64 years, and so on. However, the range of ages information is often
presented in the full text of an article, rather than in the title or abstract. Therefore, the availability of full text to
automated indexing methods is an important factor in improving the overall predictive performance of the
system.

7. Conclusion and Future Works
The automated indexing of 40 Check Tag MeSH terms using a two-level chained classifier - Deep Learning
neural network multi-label classifiers followed by Random Forest Bagging machine learning classifiers - has
been presented. In this design, two different machine learning classification approaches are chained to support
global classifications and local classifications among 40 Check Tag MeSH terms. Feature vectors are
combinations of open-source documents/sentences embeddings vectors and project customized vectors. They
include document-based vectors, word-based vectors, and MeSH entry terms-based vectors.
As mentioned briefly in Section 3, this project provides a new perspective for handling multi-label classification
problems by (1) combining embedded and customized input feature vectors, (2) merging datasets and their spin-
off datasets to improve predictive performance, and (3) chaining two different machine learning classification
approaches. As a result, this proposed architecture could establish a platform for possible future experiments to
improve the overall performance of the CTMTs automated indexing. These experiments could include:

i. Experimenting with new embedding feature vectors and/or new customized feature vectors.
ii. Adding more records into the CTMTs-based entry terms spin-off datasets, if possible, for better

predictive performance.
iii. Exploring different Deep Learning neural networks architectures, such as Convolutional Neural

Network and/or different hidden neural networks layers configurations.
iv. Considering other Boosting/Bagging machine learning models, such as AdaBoost, Gradient Tree

Boosting, other Bagging methods, and XGBoost, and experimenting with their combinations.
v. Building classifiers for each of the 18 CTMTs mentioned in the “Discussion” section separately, and

then combining their predicted records with the current 40 CTMTs binary outputs for improvements.
vi. Building and classifying titles and abstracts sentences and combining their predicted records for

improvements.

https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
https://scikit-learn.org/stable/modules/ensemble.html#bagging

Table 1. Combination of Feature Vectors, Output Dimension, and Training Parameters

Deep Learning Hyperparameter Value

Loss function binary_crossentropy

Activation for hidden layers ReLU (Rectified Linear Activation)

Activation for output layers Logistic (Sigmoid)

Learning rate 0.001

Table 2: Deep Learning Neural Networks Hyperparameters

Figure 1: Automated Check Tags MeSH Terms Indexing Architecture

Figure 2: Performance of 16 Deep Learning Neural Networks on 40 CTMTs
using the project testing dataset.

Figure 3: Performance of 16 Deep Learning Neural Networks on 40 CTMTs
using the project “spin-off” testing dataset.

Figure 4: Performance of 16 Deep Learning Neural Networks on 40 CTMTs using both the project testing
dataset and the project “spin-off” testing dataset.

Figure 5: Performance of 16 Deep Learning neural networks on 40 Check Tags MeSH terms using
predicted records that are combined by the algorithm shown in Section 4.4.4.

Figure 6: Performance of Random Forest Bagging Machine Learning Classifiers for each CTMT
and for 40 CTMTs using the project testing dataset.

CTMTs TP TN FN FP Precision Recall F1-Score
Adolescent 36,048 778,670 41,574 12,690 0.740 0.464 0.571
Adult 150,746 628,015 41,882 48,339 0.757 0.783 0.770
Aged 102,012 698,631 33,876 34,463 0.747 0.751 0.749
Aged, 80 and over 17,365 805,067 36,541 10,009 0.634 0.322 0.427
Animals 204,444 619,521 26,503 18,514 0.917 0.885 0.901
Bees 615 868,198 107 62 0.908 0.852 0.879
Cats 1,430 867,081 387 84 0.945 0.787 0.859
Cattle 6,321 858,857 2,763 1,041 0.859 0.696 0.769
Chlorocebus aethiops 444 866,639 1,757 142 0.758 0.202 0.319
Chick Embryo 507 867,854 479 142 0.781 0.514 0.620
Child 35,351 807,778 17,282 8,571 0.805 0.672 0.732
Child, Preschool 18,661 831,190 12,802 6,329 0.747 0.593 0.661
Dogs 4,770 862,668 1,202 342 0.933 0.799 0.861
Female 298,107 479,679 50,396 40,800 0.880 0.855 0.867
Guinea Pigs 809 867,813 315 45 0.947 0.720 0.818
Cricetinae 1,034 866,246 1,421 281 0.786 0.421 0.549
History of Medicine - 868,926 56 - 0.000 0.000 0.000
Horses 1,531 866,985 390 76 0.953 0.797 0.868
Humans 583,877 234,891 26,621 23,593 0.961 0.956 0.959
Infant 13,297 840,085 10,768 4,832 0.733 0.553 0.630
Infant, Newborn 9,243 848,892 8,437 2,410 0.793 0.523 0.630
Male 294,738 480,265 47,078 46,901 0.863 0.862 0.862
Middle Aged 154,617 641,952 33,061 39,352 0.797 0.824 0.810
Pregnancy 19,541 842,317 4,475 2,649 0.881 0.814 0.846
Rabbits 3,369 864,166 1,174 273 0.925 0.742 0.823
Sheep 1,698 866,334 615 335 0.835 0.734 0.781
Swine 5,613 860,897 1,313 1,159 0.829 0.810 0.820
United States 11,014 842,869 11,431 3,668 0.750 0.491 0.593
History, 15th Century - 868,805 177 - 0.000 0.000 0.000
History, 16th Century - 868,707 275 - 0.000 0.000 0.000
History, 17th Century - 868,608 374 - 0.000 0.000 0.000
History, 18th Century - 868,453 529 - 0.000 0.000 0.000
History, 19th Century 661 867,167 848 306 0.684 0.438 0.534
History, 20th Century 1,832 864,708 1,714 728 0.716 0.517 0.600
History, 21st Century - 867,087 1,895 - 0.000 0.000 0.000
History, Ancient 138 868,271 497 76 0.645 0.217 0.325
History, Medieval - 868,682 300 - 0.000 0.000 0.000
Mice 57,385 788,251 12,638 10,708 0.843 0.820 0.831
Rats 32,465 824,890 6,031 5,596 0.853 0.843 0.848
Young Adult 25,617 777,893 48,737 16,735 0.605 0.345 0.439

OVERALL 2,095,300 31,834,008 488,721 341,251 0.860 0.811 0.835

References
1. https://www.nlm.nih.gov/bsd/indexfaq.html
2. Mork,J. et al. (2017) 12 years on–is the NLM medical text indexer still useful and relevant? J. Biomed. Seman., 8, 8.
3. Aronson,A. et al. (2004) The NLM indexing initiative’s medical text indexer. Stud. Health Technol. Inform., 107, 268–272.
4. Tsoumakas,G. et al. (2013) Large-scale semantic indexing of biomedical publications. In: Proceedings of the First Workshop on

Bio-Medical Semantic Indexing and Question Answering, a Post-Conference Workshop of Conference and Labs of the
Evaluation Forum 2013, Valencia, Spain.

5. Tang, L. et al. (2009) Large scale multi-label classication via metalabeler. In: WWW '09: Proceedings of the 18th international
conference on World wide web, New York, NY, USA, ACM 211-220

6. Mao,Y. et al. (2017) MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank. J. Biomed. Seman., 8, 15.
7. Liu,K. et al. (2015) MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence.

Bioinformatics, 31, i339–i347.
8. Peng,S. et al. (2016) DeepMeSH: deep semantic representation for improving large-scale MeSH indexing. Bioinformatics, 32,

i70–i79.
9. Jin,Q. et al. (2018) AttentionMeSH: simple, effective and interpretable automatic MeSH indexer. In: BioASQ@EMNLP.

Brussels, Belgium, pp. 47–56.
10. Rae A. et al. (2019) Convolutional Neural Network for Automatic MeSH Indexing. PKDD/ECML Workshops (2): 581-594
11. Xun,G. et al. (2019) MeSHProbeNet: a self-attentive probe net for mesh indexing. Bioinformatics, 35, 3794.
12. Download MEDLINE/PubMed Data [internet] from www.nlm.nih.gov/databases/download/pubmed_medline.html
13. https://www.nlm.nih.gov/mesh/meshhome.html
14. https://tfhub.dev/google/universal-sentence-encoder-large/5
15. https://www.sbert.net/
16. https://github.com/ncbi-nlp/BioSentVec
17. Zhang Y. et al. (2019) BioWordVec, improving biomedical word embeddings with subword information and MeSH. Scientific Data.
18. Chen Q. et al. (2019) BioSentVec: creating sentence embeddings for biomedical texts. The 7th IEEE International Conference on

Healthcare Informatics.
19. spaCy Linguistic features [internet]. 2021. Available from https://spacy.io/usage/linguistic-features
20. https://www.nlm.nih.gov/mesh/intro_entry.html
21. https://scikit-learn.org/stable/modules/ensemble.html#forest
22. MEDLINE Indexing Online Training Course [internet]. Available from https://www.nlm.nih.gov/bsd/indexing/training/CHK_030.html

https://www.nlm.nih.gov/bsd/indexfaq.html
http://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/mesh/meshhome.html
https://tfhub.dev/google/universal-sentence-encoder-large/5
https://www.sbert.net/
https://github.com/ncbi-nlp/BioSentVec
https://www.nature.com/articles/s41597-019-0055-0
http://arxiv.org/abs/1810.09302
https://spacy.io/usage/linguistic-features
https://www.nlm.nih.gov/mesh/intro_entry.html
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://www.nlm.nih.gov/bsd/indexing/training/CHK_030.html

	1. Introduction
	2. Project Objectives
	3. Project Significance
	4. Check Tags MeSH Terms (CTMTs) Indexing Project
	4.1 Datasets
	4.1.1 “Fully human indexed” citations
	We used the 2021 MEDLINE Baseline dataset [12], which consists of about 30 million citations, to build the project datasets. To create a consistent and stable classifier for CTMTs, we used the “Fully human indexed” citations to train and evaluate Deep...
	4.1.2 Training, testing, and validating datasets
	The 8,692,143 “Fully human indexed” citations are split into 85% for training (7,388,794), 10% for testing (868,982), and 5% for validating (434,367).
	4.2 Feature vectors and their combinations of feature vectors
	In this project, there are five different types of feature vectors that represent documents’ titles and abstracts. The first three feature vectors are open-source documents/sentences embeddings vectors, and the last two feature vectors are the project...
	1. 512-dimensional Universal Sentence Encoder (USE) feature vectors
	The Google Universal Sentence Encoder, based on the Transformer architecture [14], takes a concatenated document title and abstract and generates a 512-dimensional feature vector.
	2. 384-dimensional Sentence Transformers Embeddings (STE) feature vectors
	The Sentence Embeddings using Siamese BERT-Networks [15] takes a concatenated document title and abstract and generates a 384-dimensional feature vector.
	3. 700-dimensional Biomedical Sentence Embeddings (BSE) feature vectors
	The NLM BioSentVec pre-trained model [16,17,18] takes a concatenated document title and abstract and generates a 700-dimensional feature vector.
	4. 25,600-dimensional Word-based Dictionaries (WBD) feature vectors
	Words in titles and abstracts of documents in the training dataset are collected and lemmatized using the spaCy NLP library software [19]. The lemmatized words are tabulated and ordered based on their occurrences from high to low. The top 25,600 lemma...
	5. 29,917-dimensional MeSH Entry Terms (ET) feature vectors
	To take advantage of the best performance of each feature vector on documents’ titles and abstracts, feature vectors other than the "baseline" feature vectors are not used alone but are combined into several groups of feature vectors combinations.
	Based on experimental results, the WBD feature vectors performed better than other feature vectors in terms of precision and recall on the validating dataset. Therefore, the WBD feature vectors were chosen as the “baseline” feature vectors.
	The “baseline” feature vectors are combined with the remaining four feature vectors to create 16 combinations of feature vectors, which are shown in Table 1.
	4.3 CTMTs-based entry terms binary feature vectors
	In addition to the 29,917-dimensional MeSH entry terms feature vectors defined in Section 4.2, a 40-dimensional CTMTs-based entry terms binary feature vector is generated for each document by searching for CTMTs entry terms information in its title an...
	4.4 Automated CTMTs Indexing Architecture
	The first level of the architecture takes a combination of feature vectors as input and predicts 40 CTMT outputs using Deep Learning neural networks. The second level of the architecture uses the predicted outputs of the first level, along with a CTMT...
	The purpose of this design is to combine global and local classifications of CTMTs. The first level is considered as a global classification level, where feature vectors associated with all CTMTs are used together for their classifications. On the oth...
	The automated CTMTs indexing architecture is shown in Figure 1.
	4.4.1 Deep Learning Neural Networks Architecture and Configurations
	4.4.2 Training
	The Deep Learning models were trained using the Adam optimizer and binary cross-entropy loss on a 16-core Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz CPU with 125GB of memory.
	Due to the large training dataset, the maximum number of epochs was set to 10, but the training would stop early if the F1-score did not improve. For this project, the average number of epochs for training a Deep Learning model was about 3.2, and the ...
	4.4.3 “Spin-off” datasets
	When human indexers performed MeSH indexing for MEDLINE, they used MeSH entry terms to help them determine appropriate MeSH terms for indexing articles. However, entry terms may not always appear in the title or abstract of a MEDLINE citation. Regardi...
	As a result, we decided to build the “spin-off” training, testing, and validating datasets by taking the project training, testing, and validating datasets and keeping only the records that have CTMTs-based entry terms found in their title and/or abst...
	Both datasets are trained by Deep Learning neural networks, and their predicted records are combined to create “combined” predicted records. As shown in Figure 4, the predictive performance of the “combined” predicted records is improved in terms of p...
	4.4.4 Algorithm to combine Deep Learning predicted results from two datasets.
	The project training dataset and its spin-off dataset are each trained by 16 Deep Learning neural networks to generate 32 sets of predicted records. These 32 sets are combined to build 16 combined-predicted records using the following algorithm:
	Assume that there are X and Y records in the project dataset and its spin-off dataset, respectively.
	For each of 16 Deep Learning neural networks:
	….Train X records and build X predicted records for the project dataset.
	….Train Y records and build Y predicted records for the project spin-off dataset.
	….Set an array of XY-combined-predicted-record with a dimension X.
	….Set an array index i to 0
	….For each record in X predicted records:
	….….Get its X-PMID and its X-predicted-record.
	….….Set PMID_found_flag = False
	….….For each record in Y predicted records:
	….….….Get its Y-PMID and its Y-predicted-record.
	….….….If Y-PMID == X-PMID then
	….….….….XY-combined-predicted-record[i] = (X-predicted-record + Y-predicted-record) / 2 records
	….….….….Set PMID_found_flag = True
	….….….….break
	….….If PMID_found_flag == False then
	….….….XY-combined-predicted-record[i] = X-predicted-record
	….….Increment i
	…End For
	End For
	4.4.5 Random Forest Bagging Machine Learning Models Architecture
	Random Forest Bagging machine learnings are ensemble methods that combine the predictions of multiple base estimators to improve performance. There are two types of ensemble methods: averaging methods and boosting methods. Averaging methods, such as “...
	The Random Forest Bagging machine learning model used in this project is the ensemble averaging method “RandomForestClassifier” [21]. It uses predicted outputs of Deep Learning neural networks and CTMTs-based entry terms to predict the output of each ...
	As shown in Fig. 3, there are 40 Random Forest Bagging machine learning blocks, one for each Check Tags MeSH term. Each block has a “RandomForestClassifier” random forest classifier that takes 16 predicted outputs from the 16 Deep Learning neural netw...
	The hyperparameters “n_estimators” and “max_depth” of the “RandomForestClassifier” are set to 100 and 2, respectively.

	5. Results
	Figure 2 shows the precision, recall, and F1-score prediction performances of 16 Deep Learning neural networks on 40 Check Tags MeSH terms using the project testing dataset. The precisions and recalls reported are very competitive among the 16 Deep Le...
	Figure 3 shows the precision, recall, and F1-score prediction performance of 16 Deep Learning neural networks on 40 Check Tags MeSH terms using the project “spin-off” testing dataset.
	The results from Figures 2 and 3 are combined and shown in Figure 4. The thick lines represent results from the project testing dataset, and the thin lines represent results from the project “spin-off” testing dataset. As shown in Figure 4, the range...
	Figure 5 shows precision, recall, and F1-score prediction performance of 16 Deep Learning neural networks on 40 Check Tags MeSH terms using predicted records that are combined using the algorithm shown in Section 4.4.4. The prediction performance base...

	6. Discussion
	7. Conclusion and Future Works
	Table 1. Combination of Feature Vectors, Output Dimension, and Training Parameters
	Table 2: Deep Learning Neural Networks Hyperparameters
	Figure 2: Performance of 16 Deep Learning Neural Networks on 40 CTMTs using the project testing dataset.
	Figure 3: Performance of 16 Deep Learning Neural Networks on 40 CTMTs using the project “spin-off” testing dataset.
	Figure 4: Performance of 16 Deep Learning Neural Networks on 40 CTMTs using both the project testing dataset and the project “spin-off” testing dataset.
	Figure 5: Performance of 16 Deep Learning neural networks on 40 Check Tags MeSH terms using predicted records that are combined by the algorithm shown in Section 4.4.4.
	Figure 6: Performance of Random Forest Bagging Machine Learning Classifiers for each CTMT and for 40 CTMTs using the project testing dataset.

	References

