
U.S. Government work not protected by U.S. copyright 

Automated Drug-Resistant TB Screening: Importance 

of Demographic Features and Radiological Findings 

in Chest X-Ray 

Feng Yang  

Lister Hill National Center for 

Biomedical Communications 

National Library of Medicine, 

National Institutes of Health 

Bethesda, MD 20894, USA 

feng.yang2@nih.gov  

Hang Yu  

Lister Hill National Center for 

Biomedical Communications 

National Library of Medicine, 

National Institutes of Health 

Bethesda, MD 20894, USA 

hang.yu@nih.gov  

Karthik Kantipudi 

Office of Cyber Infrastructure 

and Computational Biology 

National Institute of Allergy and 

Infectious Diseases, National 

Institutes of Health 

Bethesda, MD 20894, USA 

karthik.kantipudi@nih.gov  

Alex Rosenthal 

Office of Cyber Infrastructure 

and Computational Biology 

National Institute of Allergy and 

Infectious Diseases, National 

Institutes of Health 

Bethesda, MD 20894, USA 
alexr@niaid.nih.gov  

Darrell E Hurt  

Office of Cyber Infrastructure 

and Computational Biology 

National Institute of Allergy and 

Infectious Diseases, National 

Institutes of Health 

Bethesda, MD 20894, USA 

darrellh@niaid.nih.gov  

Ziv Yaniv 

Office of Cyber Infrastructure 

and Computational Biology 

National Institute of Allergy and 

Infectious Diseases, National 

Institutes of Health 

Bethesda, MD 20894, USA 

zivrafael.yaniv@nih.gov   

Stefan Jaeger  

Lister Hill National Center for 

Biomedical Communications 

National Library of Medicine, 

National Institutes of Health 

Bethesda, MD 20894, USA 

stefan.jaeger@nih.gov  

Abstract— Tuberculosis (TB) is a global disease caused by the 

bacillus Mycobacterium tuberculosis. In recent years, great 

progress has been made in care and control of drug-sensitive TB, 

whereas drug-resistant TB continues to be a worldwide public 

health problem that takes a heavy toll on both patients and the 

health care system. Early detection of drug resistance during a 

patient’s first visit is very important because it enables 

appropriate drug treatment and thus reduces the period of 

infectiousness. However, discrimination between drug-resistant 

TB (DR-TB) and drug-sensitive TB (DS-TB) using imaging and 

readily available demographic data is still an open problem. In this 

paper, we investigate the possibility of automatic discrimination 

between DR-TB and DS-TB with demographic data and 

radiological findings from chest X-rays (CXRs) using machine 

learning techniques as well as the importance of such features for 

classifier training. We use a dataset of 1311 DR-TB cases and 1311 

DS-TB cases from 10 countries, collected from the NIAID TB 

Portals program (https://tbportals.niaid.nih.gov). We first 

perform a two-step preprocessing, which consists of feature 

quantitation and missing data imputation. Seven demographic 

features and 25 radiological features are selected from the dataset. 

Then, we train a random forest (RF) model to evaluate the ability 

to differentiate between DR-TB and DS-TB. An importance index 

calculated from the RF model is used to analyze the feature 

importance with respect to the discrimination task. The 

importance index from the RF model shows that the top ten 

important factors for discriminating between DR-TB and DS-TB 

are: number of daily contacts, BMI, patient type, education, 

medium density infiltrate, medium density stabilized fibrotic 

nodules, low ground glass density infiltrate, pleural effusion 

percentage of hemithorax involved, multiple nodules, small 

nodules. Ten-fold cross-validation using the RF model shows that 

automatic discrimination between DR-TB and DS-TB achieves an 

average accuracy of 75% and an average AUC value of 83%, when 

using the top ten features. Our study suggests that automatic 

discrimination between DR-TB and DS-TB with demographic and 

radiological features is possible.  
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I. INTRODUCTION

Tuberculosis (TB), caused by the bacillus Mycobacterium 
tuberculosis, is a serious worldwide health issue with  an 
estimated 10 million people infected and 1.5 million deaths each 
year [1]. In recent years, great progress has been made in care 
and control of drug sensitive TB [2], whereas drug resistant TB 
continues to be a worldwide public health problem [3]. In 2019, 
there were an estimated 10 million TB cases; approximately half 
a million cases are resistant to rifampicin, of which 78% are 
multidrug-resistant TB (MDR-TB) [1]. Drug-resistant TB is a 
growing public health concern since it requires more complex 
treatment than drug- sensitive TB and incurs more costs. Early 
detection of drug resistance is very important, as it helps with 
decision making, enables appropriate drug treatment, and 
reduces the period of infectiousness. However, discrimination 
between drug-resistant TB (DR-TB) and drug-sensitive TB (DS-
TB) using imaging and readily available demographic data is 
still an open problem. 

Previous works have shown evidence that certain clinical 
features can potentially aid in identification of DR-TB, such as 
prior treatment [4]–[8], positive sputum smear microscopy [5], 
history of drug injection [6], gender [6], [9], and age [7], [8]. 
Few works have dealt with radiological findings from chest 
imaging to identify the type of TB, DR-TB or DS-TB. Icksan et 
al. [10] reported that the MDR-TB group are more likely to have 
large-size lesions than DS-TB group. Wang et al. [11] found that 



thick-walled multiple cavities (particularly with count ≥3 and 

size ≥30mm) present the most promising radiological sign for 

MDR-TB with good specificity but at the cost of low sensitivity. 
Huang et al. [12] reported that consolidated nodule number and 
size can be used to predict the probability of MDR-TB. Flores-
Trevino et al. [13] found that multiple cavities is a promising 
predictor for DR-TB. Our previous work [14] found that the 
number of sextants with abnormalities is useful for 
discriminating between DR-TB and DS-TB. So far, very few 
works have been concerned with discriminating between DR-
TB and DS-TB in an automated manner. [15]–[17] applied 
machine learning methods or deep learning methods on chest 
images to extract features for identifying DR-TB and DS-TB 
achieving AUC values of 72%, 66% and 85%, respectively. 

In this work, we focus on demographic information and 
radiologist reported findings from patient records. We 
investigate the possibility of automatic discrimination between 
DR-TB and DS-TB with demographic and radiological features 
using machine learning techniques as well as evaluating the 
importance of such features in classifier training. 

II. METHODS 

A. Data collection 

We use a dataset of 2622 patients, which includes de-
identified clinical data and chest X-ray images publicly 
available from the NIAID TB Portals program [18]. Each patient 
record is manually annotated with clinical information and 
radiological findings using the chest X-ray images. Clinical 
information includes demographic features such as age of onset, 
gender, patient type (New, Relapse or Failure), BMI, country of 
origin, education, employment, number of daily contacts, 
number of children, and other information such as type of 
sample (pulmonary or extrapulmonary), prescription drugs, 
laboratory tests, treatment period, treatment status and outcome. 
A new case refers to a patient who has never been treated for TB 
or has taken anti-TB drugs for less than one month. A relapse 
case refers to a patient who has previously been treated for TB, 
was declared cured or completed treatment at the end of the most 
recent course of treatment, and is now diagnosed with a 
recurrent episode of TB (either a true relapse or a new episode 
of TB caused by reinfection). A failure case represents a patient 
who has previously been treated for TB and whose treatment 
failed at the end of the most recent course of treatment [18]. 
Radiological findings include chest radiography patterns such as 
nodules, cavities, infiltrates and collapses, the presence of 
mediastinal lymphadenopathy, presence of other non-TB 
abnormalities, the overall percentage of abnormal volume, and 
the pleural effusion percentage of the hemithorax involved. Due 
to financial constraints and the size of the TB portals CXR 
dataset, radiological features are obtained using a single 
experienced radiologist-reading per image. The whole dataset 
was annotated by multiple radiologists from the countries 
contributing data to the program. Consequentially, the 
radiological annotations are not biased towards a single 
radiologist. The 2622 patients include 1311 DS-TB and 1311 
DR-TB patients, acquired from 10 countries.  

B. Feature preprocessing  

We perform a two-step preprocessing for demographic and 
radiological features. It consists of feature quantitation and 
missing data imputation. Feature quantitation indicates 
converting text features into numeric features. Missing data for 
a demographic feature is replaced by the mean value of other 
non-missing values under the same feature, while missing data 
for a radiological feature is assigned a special group number. For 
example, the radiological feature under the category Overall 
Percentage of Abnormal Volume will be assigned four values 
after feature quantitation and missing data imputation: 1 (0), 2 
(<50%), 3 (>50%) and 4 (missing data). 

Seven demographic features and 25 radiological features are 
selected by removing those whose missing data is more than 
40% and by removing the country of origin from demographic 
features. Since almost 80% patients comes from five countries 
(Belarus, Georgia, India, Ukraine, and Kazakhstan), training on 
the country of origin may result in biased classification. 

C. Random forest classifier 

Based on the selected demographic and radiological 
features, we train a machine learning classifier, a Random Forest 
(RF) model [19], to discriminate between DS-TB and DR-TB. 
We illustrate the pipeline of our machine classification in Fig. 1. 
To compare the contributions of different features for 
classifying DR-TB vs DS-TB, we train the RF classifiers using 
different feature combinations. 
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Fig. 1. Pipeline of the RF-model-based classification beween DR-TB and DS-

TB. 

D. Importance measure 

Each tree in a RF model is built from a random sample of the 
data, and not all observations are used to construct a specific 
tree. The observations that are not used to construct a tree are 
called out-of-bag (OOB) observations of this tree. In a RF 
model, each tree is built from a different sample of the original 
data, so each observation is “out-of-bag” for some of the trees. 

Assuming that our RF model includes M decision trees 
H={h1, h2, …, hM}. The importance index of a given predictor 
�� is calculated using the following four steps. 

Step 1: Use the decision tree hm to predict its OOB 
observations. We refer th input matrix as XOOB (feature matrix), 

and output matrix as Ym, then the prediction error ���1  can be 
calculated as the mean square error (MSE) between the 
predicted values Ym and real values Y: 

 ���1 = �	
� (� − )�.   (1) 

Step 2: Permute values for the feature �� (the ith column of 
the feature matrix) and use decision tree hm to predict the OOB 

observations. Then, the prediction error ���2  can be calculated 
as:  



  ���2 = �	
� (′� − )�.  (2) 

Step 3: The importance index of predictor ��  on decision 
tree hm is calculated as: MSEm = Err2-Err1. 

Step 4: The importance index of predictor �� o the RF model 
is given by:  

 � =
�

�
∑ ����.                   (3) 

� > 0  means ��  is important since changing its order 

makes the error larger; � = 0  indicates that the order of �� is 
not important since the MSE does not change; � < 0 suggests 
that the variable can have a detrimental impact on the 
classification since changing its order makes the error smaller 
(substituting the feature with noise is better than the original 
feature; hence, the feature is worse than noise). 

III. EXPERIMENTAL RESULTS 

Figure 1 shows the importance index calculated using Eq. 
(3) on seven demographic and 25 radiological features. We see 
that the top ten important factors for classifying DR-TB and DS-
TB are: number of daily contacts, BMI, patient type, education, 
medium density infiltrate, medium density stabilized fibrotic 
nodules, low ground glass density infiltrate, pleural effusion 
percentage of hemithorax involved, multiple nodules, small 
nodules. 

 

Fig. 2. Importance index of random forest model for the seven demographic 

features and 25 radiological features. Predictors: 1 - 'number of daily contacts', 

2 - 'bmi', 3 -  'patient type', 4 - 'education', 5 - 'employment, 6 - 'pleural effusion 
percentage of hemithorax  involved', 7 - 'low GGD active fresh nodules', 8 - 

'non-calcified nodules', 9 -  'medium density stabalized fibroticn odules', 10 - 

'infiltrate_medium density', 11 - 'medium nodules',12 - 'low GGD infiltrate', 13 
- 'medium cavities', 14 - 'small nodules', 15 - 'clustered nodules', 16 - 'calcified 

or partially calcified nodules', 17 - 'small cavities', 18 - 'high density calcified 

typically sequella nodules', 19 - 'visible multiple cavities', 20 - 'multiple 
nodules', 21 - 'collapse', 22 - 'huge nodules', 23 - 'high density infiltrate', 24 - 

'overall percentage of abnormal volume', 25 - 'large nodules', 26 - 'age of onset', 

27 - 'large cavities', 28 - 'large cavity belonging to a multisextant cavity', 29 - 
'bilateral pleural effusion', 30 - other non TB abnormalities', 31 - 'gender', 32 - 

'mediastinal lymphadenopathy'. GGD indicates ground glass density. 

To investigate the possibility of automatically differentiating 
between DR-TB and DS-TB and to evaluate the contribution of 

specific features, we trained RF models using the following 
combinations: 1) seven demographic features, 2) 25 radiological 
features, 3) 32 demographic and radiological features, and 4) top 
10 important features. The results in Table 1 show that 1) 
demographic features have more influence on the RF model than 
radiological features; 2) the RF classifiers using top 10 features 
and using 32 features achieve very close performance, with an 
average AUC value of 83% and an average accuracy of 75%. 
Figure 2 shows the ROC curves for RF-based classifier using the 
top 10 features. 

 

Table 1 RF classifier performance with ten-fold cross validation. 

RF model 

features 

Performance 

AUC Accuracy Sensitivity Specificity Precision 

7 demog. 
features 

81.09% 
±2.52% 

72.72% 
±1.88% 

76.05% 
±4.13% 

71.39% 
±2.22% 

72.67% 
±1.48% 

6 demog. 
without 
patient type 

77.11% 
±2.47% 

72.16% 
±2.78% 

77.33% 
±4.11% 

66.59% 
±3.07% 

69.94% 
±2.41% 

25 radiol. 
features 

64.89% 
±3.81% 

60.79% 
±3.36% 

68.65% 
±3.68% 

52.94% 
±5.10% 

59.39% 
±3.07% 

32 features 
82.86%

±3.49% 

75.03% 
±3.05% 

78.33% 

±5.25% 

69.72% 
±4.40% 

72.20% 
±3.09% 

Top 10 

features 

82.55%

±2.64% 

75.17% 

±3.36% 

77.58% 

±4.36% 

72.77% 

±4.23% 

74.04% 

±3.76% 

Note: demog. indicates demographic, radiol. indicates radiological. 

 

Fig. 3. ROC curves for ten-fold cross validation using random forest classifier 

based on the top 10 features. 

IV. DISCUSSION AND CONCLUSION 

In this paper, we investigated the importance of 
demographic and radiological features in discrimination 
between DS-TB and DR-TB and the possibility applying 
machine learning to discrimination between DR-TB and DS-TB 
by incorporating both features.  

We select balanced DR-TB and DS-TB cases to avoid the 
bias of unbalanced dataset on machine classifier training and to 
avoid the unpredictable effects of synthetic data from 
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augmentation methods. It should be noticed that about 80% of 
the patients come from five countries (Belarus, Georgia, India, 
Ukraine, and Kazakhstan). That is, our machine classifier learns 
drug-sensitive and drug-resistant features primarily from five 
countries, and thus the classification performance will likely 
decrease when we use it to identify DR-TB from other countries 
or when we perform a country-level evaluation.  

We observe from Table 1 that patient type plays an important 
role in discriminating between DR-TB and DS-TB, with 
specificity decreasing around 5% when removing patient type 
from the training features. This is probably due to the fact that 
most of the patients with patient types of Failure (95%) and 
Relapse (83%) are drug resistant.  

Experimental results show that automated discrimination 
between DR-TB and DS-TB using a RF model achieves an AUC 
value of 83% and an accuracy of 75% with the top 10 
demographic and radiological features. Our study suggests that 
automatic discrimination between DR-TB and DS-TB is 
possible by utilizing both demographic features and radiological 
features. 
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