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Abstract—Gradient descent has been a central training prin-
ciple for artificial neural networks from the early beginnings
to today’s deep learning networks. The most common imple-
mentation is the backpropagation algorithm for training feed-
forward neural networks in a supervised fashion. A drawback of
backpropagation has been the search required to find optimal
values of two important training parameters, learning rate
and momentum weight. The learning rate specifies the step
size towards a minimum of the loss function when following
the gradient, while the momentum weight considers previous
weight changes when updating current weights. Using both
parameters in conjunction with each other generally improves
training, although their specific values do not follow immediately
from standard backpropagation theory. This paper proposes a
new information-theoretical loss function based on cross-entropy
for which it derives a specific learning rate and momentum
weight. Many training procedures based on backpropagation use
cross-entropy directly as their loss function. Instead, this paper
investigates a dual process model with two processes, in which
one process minimizes the Kullback-Leibler divergence while its
dual counterpart minimizes the Shannon entropy. The golden
ratio plays an important role here, allowing to derive theoretical
values for the learning rate and momentum weight, matching
closely the values traditionally used in the literature, which are
determined empirically. To validate this information-theoretical
approach further, classification results for a handwritten digit
recognition task are presented, showing that the proposed loss
function, in conjunction with the derived learning rate and
momentum weight, works in practice.

Index Terms—machine learning, pattern recognition, neural
network theory, optimization, golden ratio

I. INTRODUCTION

Modern neural networks are typically trained on big data
in a supervised fashion. This is commonly achieved by min-
imizing a loss function that measures the distance between
network output and teaching input in several iterations so that
the network output approaches the training input. A widely
used method to do this is backpropagation, which descends
along the gradient of the loss function by propagating weight
changes through the network [1]–[3]. While backpropagation
has been applied very successfully, there are still several
open questions requiring a definite answer. In particular, the
type of loss function to be used and the optimal way of
following the gradient are still open problems. A variety of loss
functions has been used in the literature to judge the quality
of a network output. Similarly, many optimization strategies
have been investigated to let gradient descent converge faster
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or avoid local minima, including stochastic gradient descent,
second order methods, and others [2], [4]. However, most
design decisions are still largely based on empirical evidence
and experience.

This paper presents a theoretical study of one of the most
popular loss functions, cross-entropy. Technically, the paper
describes ideas developed in [5], [6]. It discusses the theoreti-
cal ramifications when cross-entropy is minimized by two dual
processes, which minimize the Kullback–Leibler divergence
and the Shannon entropy, respectively. The advantage of this
approach is that it leads to a loss function and weight space
for which learning rate and momentum weight can be derived
theoretically. These regularization parameters control weight
updates during backpropagation and thus have a strong effect
on gradient descent. Although rules of thumb and effective
heuristics exist for choosing these parameters, including dy-
namic parameter updates during backpropagation, they have
eluded a conclusive theoretical analysis so far. The theoretical
values derived in the following are similar to empirical values
in the literature. Another feature of the dual process model
proposed in this paper is that it includes the golden ratio, which
is a novel concept in machine learning.

The paper is structured as follows: Section II motivates the
paper, discussing intrinsic uncertainty in human perception.
Section III recalls the well-known definitions of cross-entropy,
Shannon entropy, and Kullback–Leibler divergence. Then,
Section IV lists the mathematical features of the golden ratio,
before Section V formalizes the intrinsic uncertainty between
observed and true probabilities. Based on these results, Sec-
tion VI introduces a new loss function. Next, Section VII
derives the two regularization parameters, learning rate and
momentum weight. Finally, Section VIII shows a practical
application of the theoretical framework to deep learning for
handwritten digit recognition. The paper concludes with a
discussion and a summary of the main results.

II. MOTIVATION AND APPROACH

The main motivation of the approach developed in this
paper lies in the observation that human perception is fraught
with intrinsic uncertainty. A good example is Rubin’s Vase,
an ambiguous visual perception made popular by the Danish
psychologist Edgar Rubin around 1915, which is shown in
Figure 1 [7]. This figure could be interpreted either as a vase,
or as two faces looking at each other, depending on what is
considered background and foreground. One interpretation is



Fig. 1. Rubin’s Vase ( [7])

the complement of the respective other. To develop this idea
further in a more formal approach, let X be a discrete random
variable with two possible values, X = {x,¬x}. Furthermore,
let P(X ) be a probability mass function on X that assigns
probability values as follows: P(x) = p, and P(¬x) = 1− p.
Assuming that X underlies the intrinsic uncertainty of our
perception, viewers do not know whether they observe x or
¬x, or in information-theoretical terms, they do not know
whether the information content of their observation is − ln(p)
or − ln(1 − p). Assuming, without loss of generality, that
p is the true probability, viewers do not know whether the
information they can expect is −p · ln(p) or −p · ln(1 − p).
Only if both terms are equal, which is the case for p = 0.5
when p ∈ ]0 ; 1[ , is there no uncertainty between them:

− p · ln(p) = −p · ln(1− p), (1)

or equivalently:

0 = −p · ln
(
1− p

p

)
(2)

In (2), the intrinsic uncertainty shows as follows: If an observer
knows the value of p, the observer does not know whether the
fraction (1− p)/p or its inverse needs to be used as argument
to the logarithmic term, and for that matter, does not know
the sign of the difference. Conversely, if the observer knows
the sign of the difference, the observer cannot know the value
of p, which could be either p or 1− p.

Equation (2) also shows the basic equation structure of the
Kullback–Leibler divergence, which will be discussed in the
next section and Section V.

III. CROSS ENTROPY

Cross-entropy is a common loss function used for training
of artificial neural networks [8], [9]. It quantifies the difference
between two probability distributions, say p and q, [10].
In communication theory, it measures the average number
of bits needed to encode data coming from a source with
distribution p, when the model (encoding) is optimized for
an estimated probability distribution q, rather than the true
distribution p.

Mathematically, for discrete probability distributions p
and q, defined on the same probability space X , the cross-
entropy H(p, q) is computed as follows:

H(p, q) = −
∑
x∈X

p(x) · ln
(
q(x)

)
(3)

The cross-entropy H(p, q) can also be expressed as the sum
of the Kullback–Leibler divergence D(p, q) from p to q and
the Shannon entropy H(p):

H(p, q) = D(p, q) +H(p) (4)

The next subsections will briefly write out the definitions for
these two information measures, including the special case of
a two-valued random variable X with outcome probabilities p
and 1− p.

A. Kullback–Leibler divergence

The Kullback–Leibler divergence DKL(p, q) describes the
difference between a probability distribution p, say a measured
observation, and a second probability distribution, q, serving as
a reference or model distribution [11]. The Kullback–Leibler
divergence can then be interpreted as the average difference of
the number of bits required for encoding samples of p using the
optimal encoding given by q (rather than the optimal coding
for p).

For the two distributions, p and q, the Kullback–Leibler
divergence DKL(p, q) is then defined as follows

DKL(p, q) = −
∑
x∈X

p(x) · ln

(
q(x)

p(x)

)
(5)

for a probability space X .
In the specific case of a two-valued random variable X , the

Kullback–Leibler divergence DKL(p, 1−p) therefore computes
as follows

DKL(p, 1−p) = −p · ln

(
1− p

p

)
−(1−p) · ln

(
p

1− p

)
(6)

For this specific case, the divergence D(p) = DKL(p, 1 − p),
assumes its minimum of zero when both distributions p and
1−p are identical, and thus when both outcomes of the random
variable have a probability of 0.5.

B. Shannon entropy

The Shannon entropy, or simply entropy, of a random
variable X is the average information conveyed by its possible
outcomes [12]. In mathematical terms, the entropy H(X ) of X
can be computed as follows:

H(X ) = −
∑
x∈X

p(x) · ln
(
p(x)

)
, (7)

where p(x) is a probability distribution defined on all out-
comes x of X .

For a random variable X with two possible outcomes, with
probabilities p and 1−p, the entropy thus computes as follows:

H(X ) = −p · ln(p)− (1− p) · ln(1− p) (8)



In this case, contrary to the Kullback–Leibler divergence,
the entropy assumes its maximum (not its minimum) when
the outcome and its complement have the same probability,
namely p = 0.5.

IV. GOLDEN RATIO

This section highlights a connection between (2) and the
golden ratio [13]. In (2), the argument to the logarithm,
(1 − p)/p, can be regarded as the perceived (or measured)
probability, whereas the multiplier p is the true probability. If
an observer wants to measure the true probability, both terms
need to be equal, meaning

p =
1− p

p
(9)

This holds true if p is the golden ratio, as discussed next.
Equation (9) is equivalent to the following quadratic equa-

tion:
p2 + p− 1 = 0, (10)

which has two irrational solutions p1 and p2:

p1 =

√
5− 1

2
≈ 0.618, (11)

and

p2 =
−
√
5− 1

2
≈ −1.618 (12)

An important feature of both solutions is that their comple-
ment, 1− p, equals their square,

1− p = p2 (13)

Alternatively, the golden ratio can be derived from another
quadratic equation, which may be more commonly found in
textbooks, and which results from replacing p by −p in (10):

p2 − p− 1 = 0 (14)

This equation also has two irrational solutions, which are the
negatives of p1 and p2:

− p1 ≈ −0.618 and − p2 ≈ 1.618 (15)

However, for both solutions of the second quadratic equation,
(14), the complement 1− p is the negative reciprocal:

1− p = −1

p
(16)

The sum of both solutions for (10) and (14) is either minus
one or one, respectively:

p1 + p2 = −1 and − p1 − p2 = 1 (17)

The literature sometimes uses the letter φ for the golden ratio,
and typically defines the golden ratio as a single value, often
with φ ≈ 1.618 and discarding negative values [13], [14]. In
this paper, all four solutions to the quadratic equations above
will be referred to as the golden ratio.

V. INTRINSIC UNCERTAINTY

For (2), the previous section showed that the measured
probability equals the true probability in the golden ratio.
This section develops (2) in a way that allows computing all
possible measurements in a systematic way.

By coupling the measured probability with the true prob-
ability, according to the relationship in (9), and using the
letter E (Energy) to denote the information difference, (2) can
be developed as follows:

E = −p · ln
(
1− p

p

)
(18)

⇔ −p2 · ln
(
1− p

)
(19)

⇔ −p · ln
(
1− p2

)
(20)

⇔ −p · ln
(√

1− p2
)
· 2 (21)

⇔ − sin(ϕ) · ln
(
cos(ϕ)

)
· 2, (22)

where the last expression holds for an angle ϕ ∈
[
0 ; π

2

]
. Vary-

ing ϕ in this range will produce all possible measurements,
which are points on the unit circle. Using this scheme, the
measured probability equals the true probability for ϕ = π/4,
and a measured probability of sin(π/4) = cos(π/4) = 1/

√
2.

The letter E for energy is used in (18) to emphasize that
information is related to energy in the physical sense and also
to emphasize that this energy, or information, can be absorbed
or released, depending on the sign.

In (22), the energy E attains its minimum of zero for ϕ = 0,
when sin(ϕ) = 0 and cos(ϕ) = 1. On the other hand, E
reaches its maximum, infinity, for ϕ = π/2, when sin(ϕ) = 1
and cos(ϕ) = 0.

Now, a dual energy for a second observer can be computed
by swapping sine and cosine in (22), which amounts to using
the main diagonal as a mirror axis. This dual energy will reach
its maximum, when the original energy reaches its minimum;
and vice versa, it will be minimum when the original energy
is maximum. Most importantly, it is possible to establish a
formal analogy to the intrinsic uncertainty in observations,
as motivated in Section II. For this, let there be two dual
and intertwined processes based on the dual energies above.
While one process considers all energies for ϕ > π/4 as
released, and all energies for ϕ < π/4 as absorbed; its dual
counterpart considers energies for ϕ > π/4 as absorbed, and
all energies for ϕ < π/4 as released. The intrinsic uncertainty
then shows as follows: If one process knows whether energy
is released or absorbed, it does not know the magnitude of
the energy. Conversely, if a process knows the magnitude of
the energy, it does not know whether the energy is released
or absorbed. Only when both processes work hand in hand,
synchronously, can there be knowledge about the direction
and magnitude of energy. However, an observer can truly
measure only one or the other, which shows a connection to
Heisenberg’s uncertainty principle in physics [15], [16].



VI. LOSS FUNCTION

This section will develop a loss function based on the
theoretical results derived above. Section V showed that for an
angle of ϕ = π/4, one of the two dual intertwined processes
will know the quantity of the input, but not the sign. Typically,
for a machine learning task, the goal is to match the magnitude
of the teaching input with the output of a classifier, say a neural
network. The sign of the teaching input is ignored, or tacitly
assumed to be positive. As discussed above, there is no way
of knowing both the magnitude and the sign of the teaching
input. Therefore, assuming a binary teaching input t, let the
difference function d(y, t) between t and network output y be
defined as follows:

d(y, t) = (y − t+ 1) · π
4

(23)

This function will output values in the interval
[
0; π

2

]
, and will

be equal to one of the outer boundaries of the interval when
the difference between network output and teaching input is
maximum, with |y − t| = 1. In case the network output is
identical to the teaching input, d(y, t) will be in the middle of
the interval, d(y, t) = π/4. The angle defined by d(y, t) can
now be used as ϕ, and its cosine as the observed input.

Based on the distance function in (23), the combined
energy E∗ for both dual energies can be computed as follows:

E∗(d) = − sin(d) · ln
(
cos(d)

)
− cos(d) · ln

(
sin(d)

)
(24)

The energy in (24) assumes its minimum for an angle of 45◦,
or d = π/4.

Based on the combined energy in (24), the loss function for
training is developed as follows: First, resolving (18) for the
true probability p leads to the following sigmoidal expression
for p (see [17] for the role of the sigmoid function in natural
neural networks):

p =
1

1 + exp (−E/p)
(25)

Then, using E∗(d)−E∗(π/4) as an information estimate of E
in (25), and assuming the equilibrium value 1/

√
2 for p, with

ϕ = π/4 in (22), produces the following loss function:

L(d) =

√
2

1 + exp (−(E∗(d)− E∗(π/4))/2)
(26)

The loss function in (26) reaches its minimum of 1/
√
2 when

the network output equals the teaching input, and when y−t =
0, with d = π/4.

The derivative of the loss function in (26) with respect to
the prediction Y , dL/dY , can be computed by applying the
chain rule [5]. This derivative can then be used for descending
the gradient in the traditional backpropagation process. The
next section introduces the corresponding learning rate and
momentum weight to be used in combination with the loss
function in (26)) and its derivative.

VII. REGULARIZATION

A training method based on backpropagation adapts the
network weights in a way that minimizes the loss, meaning
the difference between network output and teaching input [3].
Using gradient descent, training implies computing the gradi-
ent of a loss function L, such as the loss given by (26), with
respect to each network weight. A backpropagation method
accomplishes this for one network layer at a time, iteratively,
propagating the gradient back from the output layer to the
input layer. To move along the gradient towards the minimum
of the loss function, a delta is added to each weight, which
has the following form, when adding also a momentum term:

∆wij(t) = −η
∂L

∂wij(t)
+ α ·∆wij(t− 1) (27)

In (27), ∆wij(t) denotes the delta added to each weight
wij between a node i and a node j in the network, at
training iteration (or time) t. The term ∂L/∂wij(t) is the
partial derivative of the loss function with respect to wij , at
time t, which is multiplied with the learning rate η. The sign
of ∆wij(t) is negative so that the loss function approaches its
minimum. In practice, a momentum term describing the weight
change at time t− 1, ∆wij(t− 1), is commonly added. This
term is typically multiplied by a weighting factor α, as seen
in (27). The general conception is that the momentum term im-
proves stochastic gradient descent by dampening oscillations.
However, according to the dual process model developed here,
the actual reason for the performance improvement brought
about by the momentum term lies in the gradient of the dual
process.

As of yet, a conclusive theory for the optimal values of
the learning rate η and the momentum weight α has been
lacking, although second order methods have been tried [2],
[4], [18]; see also [19]–[22] as examples of adaptive methods
proposed. Both parameters are often determined heuristically,
either through empirical experiments or through systematic
search [23]. Training results can be very sensitive to the
value of the learning rate. For example, a small learning rate
may produce a slow convergence, whereas a larger learning
rate may result in the search passing over the minimum
loss. Negotiating this delicate trade-off in the regularization
of the training process can be time-consuming in practical
applications. Literature seems to prefer initial learning rates
around 0.01 or smaller, although reported values differ by
several orders of magnitude. For the momentum weight, higher
initial values around 0.9 are more common [9], [24]–[26].

The proposed dual process model allows deriving theoretical
values for both regularization parameters, learning rate η and
momentum weight α. The information loss function in (24),
and the loss function in (26) assume their minima for an angle
of 45◦, or d = π/4, in the state of equilibrium when both
dual energies are equal. This corresponds to p = 0.5 in (18).
Minimizing the loss function in (26) therefore minimizes the
Kullback–Leibler divergence and maximizes the entropy.

On the other hand, the dual process minimizing the negative
energies does the opposite. It maximizes the Kullback–Leibler



divergence and minimizes the entropy. A gradient in the dual
process model is therefore a composite of the gradients of
both processes, involving the gradient of one process and
the negative gradient of its dual process. Each summand in
the weight adjustment defined by (27), namely the partial
derivative ∂L/∂wij(t) and the momentum term ∆wij(t− 1),
corresponds to a gradient of one of the dual processes.

The momentum weight α follows from results above. The
probability p in (18) can be considered as a gradient of a linear
function with information input, − ln(x), and information out-
put, E. The dual process, with input and output reversed, has a
similar gradient. Because both dual processes are intertwined,
it is fair to say that the dual process happens at time t−1, and
that the current process at time t observes the output of its dual
counterpart. Therefore, the multiplier p in (18) represents the
gradient from the previous iteration. This gradient, and thus the
delta at t−1, ∆wij(t−1), needs to be multiplied by a constant
to obtain the golden ratio for the state of equilibrium, in (18),
for which the measured probability equals the true probability.
This regularization can be computed as follows:

α =
√
2 · p1 ≈ 0.874, (28)

where p1 is the value of the golden ratio in (11), which
provides the value for the momentum weight α ≈ 0.874.

The learning rate η can be derived from the momentum
weight α by converting the latter to the corresponding value
of the dual process. For ϕ = π/2, in (22), sin(ϕ) becomes one.
Therefore, after multiplying with the momentum weight, the
multiplier, or true probability, will be α. The true probability
for the dual process is then given by the complement of α:
1 − α. To make probabilities consistent with each other, this
measured probability needs to be squared according to (13)
in order to compute its complement. Taking the complement
twice can be understood as looking at the same process from
a dual point of view. Applying these steps to the momentum
weight α results in the following expression for the learning
rate η:

η = (1− α)2 ≈ 0.016 (29)

This provides the value for the second regularization term,
learning rate η, with η ≈ 0.016 [6].

VIII. EXPERIMENTAL EVALUATION

To show that the proposed loss function in (26) works in
conjunction with the derived learning rate η and momentum
weight α, a practical experiment is performed on public data.
For handwritten digit classification, a deep learning network is
trained on a dataset containing 10,000 handwritten, artificially
rotated digits, and evaluated by averaging ten runs for each
fold in 10-fold cross-validation [27]. Each digit is a 28-by-28
gray-scale image, with a corresponding label denoting which
digit the image represents (MNIST database [28]). Figure 2
shows the network architecture used in the experiment, with
a sample input digit 3 and a correct output result [9]. The
first layer is the image input layer, with a size of 28-by-28,
followed by a convolution layer with 20 5-by-5 filters. The

Image Input Layer

Convolution Layer

Batch Normalization Layer

ReLU Layer

Fully-Connected Layer

Softmax Layer

Classification Layer

3

Fig. 2. Network architecture

next layers are a batch normalization layer, a ReLU layer, and
a fully-connected layer with an output size of 10. Finally, a
softmax layer and a classification layer are the last two layers
of the network, with the latter computing the proposed loss
function in (26). For training, the learning rate given by (29)
and the momentum weight given by (28) are used.

Table I shows the classification results for training with the
common loss function defined by the sum of squares, and
with the proposed loss function defined by (26). All results

TABLE I
EXPERIMENTAL RESULTS WITH 10-FOLD CROSS-VALIDATION

Loss avg. accuracy (%) std

SSE without momentum 77.4 10
SSE with momentum 98.9 1
(26) with momentum 99.4 0.06

have been achieved after 30 training epochs, using ten-fold
cross-validation. The results show that training with SSE loss
benefits significantly from using a momentum term, which
increases the accuracy from 77.4% to 98.9%. The proposed
loss function in (26) with momentum performs best, with an
accuracy of 99.4%. It is also worth noting that the standard
deviation improves by an order of magnitude each time,
decreasing from 10 for SSE without momentum to only 0.06
for the proposed loss function, learning rate, and momentum
weight.

IX. DISCUSSION

The previous sections have shown how the regularization
parameters of the delta learning rule given by (27), which
are learning rate η and momentum weight α, can be derived
from a dual process model. Specifically, according to the



proposed theoretical framework, the delta rule combines the
gradients of two dual processes. This goes beyond the tradi-
tional understanding according to which the momentum term
produces a more stable gradient descent by smoothing weight
changes over several iterations. While one process minimizes
the Kullback–Leibler divergence (p = 0.5) and maximizes
the Shannon entropy (p = 0.5), its dual counterpart does the
opposite, by maximizing the Kullback–Leibler divergence and
minimizing the entropy.

The process that minimizes the Kullback–Leibler divergence
ensures that the output equals the training input, while its
dual counterpart that minimizes the Shannon entropy ensures
that there is no uncertainty in the output. However, only both
processes taken together can minimize the cross entropy. Each
process alone has limitations. The process minimizing the
Kullback–Leibler divergence may know that the output equals
the training input, but it cannot know with absolute certainty
whether the output should be zero or one. This is why the loss
function given by (26) is defined in such a way that it assumes
its minimum for an angle of of 45◦. On the other hand, the
process minimizing the Shannon entropy may know that the
output is zero, for example, but it cannot know if this is equal
to the intended teaching input.

This reveals an inherent problem of the teaching input that
has largely gone unnoticed so far in the literature. It is only
possible to know either the teaching input signal, zero or one,
or the actual teaching input, which could be identical to the
teaching input signal or could equally well be its complement.
It is only possible to know one or the other, but not both, which
is reminiscent of Heisenberg’s Uncertainty principle.

Under these theoretical considerations, the gradient ad-
justment by means of the delta learning rule, as defined
by (27), becomes a composite of two gradient adjustments.
On the one hand, the gradient is followed to minimize the
Kullback–Leibler divergence. On the other hand, the reversed
gradient of the dual process maximizing the Kullback–Leibler
divergence is followed to minimize the entropy. After a suc-
cessful training, both processes together have minimized the
cross-entropy. However, their knowledge is distributed among
them. While one process has learned to mimic the teaching
input, the dual process has learned whether the teaching signal
needs to be taken at face value or if it needs to be flipped.

The theoretical results in this paper confirm that cross-
entropy is a profound loss function. However, rather than using
cross-entropy directly as a loss function, it may be more ap-
propriate to use it indirectly, via the sum of Kullback–Leibler
divergence and Shannon entropy, following the dual process
model. This can be achieved by using the loss function defined
by (26), and applying the delta learning rule with momentum,
as given by (27), with the specific values for learning rate η
and momentum weight α derived in Section VII.

X. CONCLUSION

This paper presents a theoretical analysis for minimizing
cross-entropy. The main result is a model comprising two dual
processes, with one process minimizing the Kullback–Leibler

divergence and the other process minimizing the Shannon
entropy. The golden ratio plays a major role in this model,
and is a novel concept in machine learning. Specific values
for learning rate and momentum weight follow from the
model. The order of magnitude of these values is very similar
to empirical values often used in the literature. Choosing
these values for both regularization parameters improves the
performance of gradient descent. The proposed theoretical
framework could therefore be a step toward a better under-
standing of gradient descent and rendering an expensive hyper-
parameter grid search redundant in the future.
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