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Abstract 

 

 

This report describes a study on tokenization of MEDLINE
®

 abstracts by 13 different 

software packages that are freely available. In literature, there is little or no comparative 

evaluation studies on general purpose tokenizers, nor is there any such study on 

tokenizers that are specific to biomedical text. Biomedical text processing in general and 

tokenization in particular are quite challenging as biomedical text contains a wide variety 

of domain-specific terms.  

 

This study explores various scenarios taken from actual MEDLINE abstracts, and 

provides critical evaluation on the observed performances of the tested tokenizers. The 

results of this study show that there is a wide variance among outputs of these tokenizers 

and choosing a right tokenizer requires detailed information that this report is aimed to 

compile.  

 

The target audience of this report may be those people who are interested in using any 

particular tokenizer and want to know what types of behavior are expected from general 

purpose and biomedical tokenizers. The report is prepared with the intention to aid the 

decision making process of the reader on choosing the right tokenizer and/or devising 

algorithms that can effectively use the resulting tokens with a minimum loss of 

information. The reader can find a list of factors that need to be taken into account in 

such decision. The report also discusses various pros and cons of the tokenizers that are 

tested.  
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1. Introduction 

This report describes our study on 13 software packages that tokenize text into words. 

The text of this study comes from the abstracts of MEDLINE
®

, a corpus of biomedical 

literature compiled by the U.S. National Library of Medicine. In linguistics, tokenization 

is the process of breaking a sequence of characters into words, numbers, punctuations, 

and other symbols. These words and expression sequences are called tokens, and the 

tools performing such tokenization are called tokenizers. The following example 

illustrates the basic function of a tokenizer, where each line of the output is a distinct 

token. 

 

Input 

This is a test.  

Output 

This 
is 
a 
test 
. 

  

A number of tokenizers are available as open source software. Preliminary examination 

shows that, given a MEDLINE abstract as the input, outputs of these tokenizers differ—

sometimes significantly. For example, some tokenizers split hyphenated compound 

words (e.g., alpha-T) into two or more tokens (e.g., alpha, -, and T), but other 

tokenizers keep it as one token. Such differences may considerably alter the course of 

many natural language processing (NLP) procedures such as indexing and part of speech 

(POS) tagging. If an inverted index is built based on a tokenization protocol that 

generates three separate tokens for the word alpha-T, a search engine would not be able 

to find the word in the index directly. More importantly, other concepts denoted by alpha 

or T might be erroneously associated with alpha-T.  

 

As outputs of word tokenizers are distinct from each other, choosing a right tokenizer is a 

non-trivial task. Tokenizing biomedical literature poses an additional challenge as it 

contains many domain-specific words such as names of genes, gene sequences, and 

chemical substances. So far, we only found one paper on comparisons of word tokenizers 

[1], which, however, discusses mainly the needs of such comparison rather than actually 

comparing them.   

 

We installed 13 freely available software packages that can tokenize sentences and 

studied their performance comparatively. Although we have done this study in order to 

choose the right tokenizer(s) for an intramural research project [2], we believe that others 

might benefit from our experience as well. We here present our findings in a technical 

report format and hope that the documentation of our experience would help others to 

choose a tokenizer that suits to their needs.  
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2. Experiment Settings 

In this study, we initially downloaded 18 software packages, some of which were 

designed for different purposes but all can be utilized for tokenization. We then had to 

put the following tokenizers aside due to technical reasons, which we briefly state below: 

� Gate tokenizer 

� LingPipe tokenizer 

� Masao Utiyama’s tokenizer 

� YamCha tokenizer 

� FreeLing tokenizer 

 

Gate, LingPipe, and Masao Utiyama’ tokenizers need extra coding to run. YamCha 

tokenizer requires training sets to be created by users. We had difficulty to install 

FreeLing due to its complicated installation procedure. 

 

After eliminating the above mentioned packages, we ended up with a set of 13 tokenizers 

as shown in Table 1 (see Appendix A for detailed descriptions on the software packages 

that contain these tokenizers):  

 
Table 1: Tokenizers 

 

No. Tokenizer 

1 NLTK tokenizer [3] 

2 OpenNLP tokenizer [4] 

3 Mallet tokenizer  [5] 

4 SPECIALIST NLP tokenizer [6] 

5 Gump tokenizer [7] 

6 Dan Melamed’s tokenizer [8] 

7 Qtoken [9] 

8 UIUC word splitter [10] 

9 LT TTT tokenizer [11] 

10 MedPost tokenizer [12] 

11 Brill’s POS tagger [13] 

12 Stanford POS tagger [14] 

13 MXPOST tagger [15] 

 

 

All taggers in the above table perform tokenization. In order to compare their 

tokenization performances side-by-side, we discarded the tags if they were produced 

automatically.  

  

Some of the above software packages have two or more tokenizers, and we only chose 

the one that needs the least additional effort to run. For those tokenizers that require 

supervision (i.e., a training set), we used the trained language model supplied with 

corresponding tokenizer package. We exclude those tokenizers that require users to 

formulate regular expressions. The performance of a tokenizer that requires customized 

regular expression depends heavily on its user’s ability (more specifically, domain and 
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linguistic knowledge of the user and the user’s skills on formulating regular expressions); 

therefore, inclusion of such tokenizers would severely hamper our efforts for objective 

comparisons.  

3. Comparison of Tokenizers 

In our comparison, we observed that all tokenizers are different, except SPECIALIST 

NLP tokenizer and Qtoken, which produce identical results in our test. For a test 

document with 78 MEDLINE abstracts, the number of tokens varies from 14488 to 

17117.  The tokenizer with the smallest number of tokens was Mallet tokenizer, followed 

by NLTK tokenizer with 14977 tokens. The strategies of these two tokenizers were 

similar in delimiting tokens by white spaces only.  Mallet tokenizer also removed 

punctuations and numbers from the output. The SPECIALIST NLP tokenizer and the 

Qtoken yield the largest number of tokens. They used both white spaces and punctuations 

as token delimiters. The outputs of other systems were differing when tokenization was 

involving punctuations, compound words, numbers, parentheses and other non-

alphanumerical symbols, abbreviations, Unicode, chemical substances, other named 

entities (website, email address, date, unit, equation, reference etc.), or foreign language 

terms. 

 

In Appendix B, we present outputs from each tokenizer for a sample input sentence from 

MEDLINE: 

 
Independent of current body composition, IGF-I levels at 5 yr  
were significantly associated with rate of weight gain  
between 0-2 yr (beta = 0.19; P &lt; 0.0005), and children  
who showed postnatal catch-up growth (i.e. those who  
showed gains in weight or length between 0-2 yr by >0.67 SD  
score) had higher IGF-I levels than other children (P = 0.02). 

 

From the sample outputs, we observe that tokenizers (see Table 1 where each tokenizer is 

associated with a unique number) break sentences into tokens 

� at white spaces only (tokenizers 1, 3 and 13),  

� at white spaces and punctuations (tokenizers 4 and 7). 

Tokenizer 3 also removes all punctuations and numbers from the output.  

 

Outputs of other tokenizers (2, 5, 6, 8, 9, 10, 11, and 12) do not follow such simple rules 

and their outputs differ when the text in question involves hyphenated compound words 

such as catch-up, decimal numbers such as 0.19, range numbers such as 0-2, 

abbreviations such as  i.e. or HTML symbols such as &lt; (a substitute for  ASCII 

“less than” sign <). 

 

We have the following observations on tokenizers 2, 5, 6, 8, 9, 10, 11, and 12 (The � 

mark indicates token boundaries): 

� Tokenizers 6 and 9 break the hyphenated word catch-up into three tokens, 

and the other tokenizers keep it as one token.  

� All tokenizers except tokenizer 11 in this set keep the decimal number 0.19 as 

one token. Tokenizers 6 and 9 break the range number 0-2 into three tokens 

while the others kept it as one token. 
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� For the abbreviation i.e., there are three output variants.  Tokenizer 2 

breaks it into three tokens (i�.e�.), tokenizers 5, 8, 9, 10, and 12 keep it as 

one token, and tokenizer 6 and 11 break it into four tokens. 

� Only tokenizers 10 and 12 recognize the HTML symbol &lt; as a whole unit. 

� All tokenizers treat parentheses as separate tokens. However, tokenizers 8 and 

12 use other symbols replacing parentheses.  

4. Tokenization Choices 

As noticed in the previous example, tokenizers make different choices on what 

constitutes a token. In this section, we are going to elaborate these different tokenization 

schemes. 

 

First, we present a few simple cases (Set I), where usually only one type of punctuation is 

involved. We want to use these cases to show the differences among tokenizers from 

punctuation point of view.  

 

Then, we present a second set (Set II), which constitutes more complex cases, most of 

which can be categorized as named entities such as chemical substances, mathematical 

formulas, and URLs, which usually involve several types of punctuations. These cases 

show differences among tokenizers from named entity point of view.  

 

Here the term “word” refers to those words separated by white spaces in the original text; 

whereas, the term “token” refers to smaller pieces of text constructing a “word”. 

 

Case Set I 

In this set, we include the following categorized examples (see Appendix C for outputs 

from each tokenizer): 

� Hyphenated compound words (e.g. bottle-fed, Bottle-fed) 

� Words with letters and slashes (e.g. insertion/deletion, mg/day, 

Bethesda/MD) 

� Words with letters and apostrophes (e.g. years’, Freud’s, haven’t, 

o'clock, ’reportorie cloning’, O’Neill) 

� Words with letters and brackets (e.g. (tissue), (Dipnoi), (TP) 

[GABAergic]) 

� Words with letters and periods (e.g. i.e., e.g.) 

� Words with letters and numbers (e.g. CO2, 12th) 

� Words with numbers and one type of punctuations (e.g. 3,000,000, 1/2, 

76%, 1.4, 1-20) 

 

There are two main tokenization schemes that are operational on Case Set I: One scheme 

keeps the word as a whole unit; whereas, the other breaks it into several tokens at 

punctuations or numbers. However, there are a few exceptions.  For example, for the 

word haven’t, there is an extra scheme that breaks it into have and n’t, where n’t is 

treated as a special form of not.  
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When breaking word into tokens, the places where to break are not always consistent 

even in the same category. For example, hyphenated compound words bottle-fed and 

Bottle-fed are treated by tokenizer 9 differently. The former is kept as a single token, 

while the latter is broken into three tokens. Another inconsistent example is tokenizer 2 

on dealing with parentheses, where (tissue) is split into two tokens, (tissue and ), 

and(Dipnoi) is split into two tokens, ( and Dipnoi), but (TP) is split into three tokens 

(, TP and ). 

 

By examining these simple cases, we acquired a basic understanding about the choices, 

assumptions, and behavior of each tokenizer. Readers who are interested in choosing a 

tokenizer have a simple list of what to look for in a tokenizer.  Additionally, if readers 

consider using the set of tokenizers that are studied here, they can easily eliminate those 

tokenizers that do not fit their requirements. On the other hand, the analysis that has been 

outlined above is merely the tip of the iceberg. When inputs are more complex than the 

ones presented above, to make a decision on the right/acceptable tokenizer is not a trivial 

one. The following case set and the rest of the report address to those complex issues and 

intend to shed some light on the types of tokenization schemes that are involved. 

 

Case Set II 

In this set, we include the following categorized examples: 

� a DNA sequence: 5’-ATGCAAAT-3’ 

� a chemical substance: 3,4-epoxy-3-methyl-1-butyl-diphosphate 

� two arithmetical expressions: 76.8+/-14.2 and 8.4-13.8% 

� a hypertext markup symbol: &lt; 

� a URL: http://www.tobaccoarchives.com 

 

Outputs of tokenizers for Case Set II are provided in Appendix C: Case Set II. As seen in 

the outputs, there are a number of different sets of token—in one case, nine different 

outputs were produced by 13 tokenizers.  

 

As these words are named entities, users usually have preferences on how to tokenize 

them. Those preferences may be driven by word senses, document context, and/or other 

conventions. We hope the Case Set II would be a starting point for developing a guideline 

for the reader. It is a starting point, since the limited scope of our effort prevents us from 

developing a more complete set of named entities such as gene symbols (e.g. PrP33-35C, 

F23H11.1), drug names, temporal expressions (date, time and other temporal references), 

spatial references (e.g., geographical locations and mailing addresses), organization 

names, email addresses, and various units combined with their measures (e.g., 

100mg/dl/day). Different tokenizers output different token sets for these entities. Some 

outputs can be misleading in later NLP stages. For these cases, it may be helpful if a 

tokenizer can first recognize them as named entities and use the information to perform 

tokenization.  
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5. Factors for Decision Making 

We observed a wide variance among outputs of these 13 tokenizers of this study. 

Awareness of the details of the tokenization schemes is critical to the user in order to 

choose the right tokenizer and/or devise algorithms that can effectively use the resulting 

tokens with the minimum loss of information. Below, we listed some of those details and 

factors that need to be taken into account when the user makes decision on choosing a 

particular tokenizer. 

 

1. In many NLP tasks, tokenization is usually followed by a POS tagging; 

therefore, the choice of a tagger directly affects the choice on tokenization. 

For example, in a Penn Treebank tagger, years’ would be tagged as 

years/NNS and ’/POS. It is not appropriate to choose a tokenizer that would 

treat years’ as one token. Therefore, if the user has a particular preference 

on a POS tagger, the user would be better of to use POS tagger as the 

tokenizer.  

 

2. Since the choice of tokenizer would affect indexing, it is necessary to plan the 

indexing strategy considering the tokenization schemes at hand. As discussed 

in the introduction, given the word alpha-T, if an inverted index is built using 

three separate tokens alpha, -, and T, this word would not be directly 

accessed, but a combination strategy for search needs to be devised. 

 

3. The tokenization scheme must be consistent with the scheme of each of the 

following NLP steps. For example, in tokenizer 9, capital hyphenated 

compound words are broken into three or more tokens but lowercase ones are 

kept as one token. If any of the following NLP processes expects all 

hyphenated compound words be treated uniformly, the results would be 

problematic to the least. For other word forms such as abbreviations, the 

situation may become more complex.  

 

4. Frequently, the ability of reconstructing the text into its original format is 

necessary. In these cases, tokenizers that perform normalization may not be 

good candidates. For example, tokenizer 8 converts both parenthesis ( and 

square bracket [ to  –LBR-, and it is impossible to recover the original text 

from such normalized token set. 

 

5. The domain, in our case biomedical and clinical sciences, may play a 

significant role in choosing the right tokenizer. Many tokenizers are trained 

using texts from the Wall Street Journal and they usually perform better than 

others on newspapers and/or on financial texts.  

 

Other factors such as programming languages, training prerequisites, and lexicon 

prerequisites may also affect the choice of tokenizer. 
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6. Discussion 

In this section, we discuss pros and cons of the tokenizers we have tested, see Appendix 

D for a tabulated comparison. 

 

Tokenizer 1 (NLTK tokenizer) is too simplistic for many realistic tokenization tasks. For 

users familiar with Python, in which the software is written, it might be a platform for 

building research prototypes. 

 

Tokenizer 2 (OpenNLP tokenizer) is a tokenizer with a grammar model that is trainable. 

The user can either train the system with a customized training set or apply only a default 

syntax model provided with the OpenNLP system. It preserves hyphenated compound 

words and various numerical forms within a single token boundary. However, it treats 

parentheses inconsistently as we show in Case Set I, which is the main concern of this 

tokenizer. It may be corrected by using different trained language model. This tokenizer 

comes with a Java API. 

 

Tokenizer 3 (Mallet tokenizer) is a bare-bone word tokenizer, which is hardly suitable for 

any real-world NLP task.  

 

Tokenizer 4 (SPECIALIST NLP tokenizer) breaks a given text into small pieces by 

delimiting at both white spaces and punctuations.  It is possible to reassemble these 

tokens to larger lexical items, using another module that comes with SPECIALIST NLP 

Tools software. Another feature of this tokenizer is that it also outputs the number of 

white spaces between successive tokens, which facilitates reconstructing tokens back to 

the original form of the text. The tool is written in Java and comes with a Java API as 

well as the source code. 

 

Tokenizer 5 (Gump tokenizer) is designed for Brill’s POS Tagger, and its output is 

similar to that of tokenizer 2. Although it may be sufficient for general purpose 

tokenization, its source code is written in Gump, which might be undesirable for users 

who plan to customize the tokenization process. 

 

Tokenizer 6 (Dan Melamed’s tokenizer) breaks text into small tokens as those in 

tokenizer 4, except for some word forms such as hyphenated compound words and 

arithmetical expressions, which, unlike in tokenizer 4, are broken into multiple tokens as 

well. It usually keeps numbers with decimal points and commas together. It also 

conserves genitive word forms in single tokens. It is written in Perl and its source code is 

available. 

 

Tokenizer 7 (Qtoken) has produced outputs identical to tokenizer 4 in our tests. It is 

written in Java, but its source code is not available.  

 

Tokenizer 8 (UIUC word splitter) performs similarly to tokenizers 2 and 5, though it 

breaks numbers from letters (e.g., 1st � 1 and st, and CO2 � CO and 2). The input of 

this tokenizer can only be one sentence, which means that it is necessary to preprocess 

the text with a sentence splitter before using this tokenizer. Another drawback of this 
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tokenizer is that it converts parentheses and squared brackets into the same normalized 

tokens (-LBR- or –RBR-).  

 

Tokenizer 9 (LT TTT tokenizer) has some distinguishing features in treating hyphenated 

compound words and in treating words that contain both letters and numbers.  

 

Tokenizer 10 (MedPost tokenizer) is part of the MedPost tagger package. MedPost is 

designed as a tagger, but its “–token” option makes it work as a tokenizer. It preserves 

hyphenated compound words and most of the numeric word forms in a single token 

structure. However, it breaks words at slash and percentage signs. It is the only tokenizer 

in our set of tokenizers that is designed to deal with Unicode. It is written in C++ and 

Perl. 

 

Tokenizer 11 (Brill’s POS tagger) is designed as a POS tagger. It is not suitable to be a 

tokenizer since it removes some tokens, and performs poorly for words in Case Set II.  

 

Tokenizer 12 (Stanford POS tagger) is designed as a POS tagger and can be used as a 

tokenizer. It does not tokenize complex words, such as those tested in Case Set II. It is 

written in Java. This tokenizer also converts parentheses and squared brackets into the 

same normalized tokens (-LRB- or –RRB-).  

 

Tokenizer 13 (MXPOST tagger) is a trainable, maximum entropy POS tagger, but its 

tokenization scheme is too simplistic as it breaks text only at white spaces.  It is written in 

Java, but the source code is not available.  

7. Conclusion 

In this study, we tested and evaluated 13 tokenizers, which are freely available. We 

examined their various treatments on several scenarios and provided some qualitative 

guidelines for choosing a word tokenizer that may suit to the user needs. We outlined 

major differences in various tokenization schemes, which hopefully serve well to the 

NLP community and others who are interested in tokenization of free text.  
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Appendix A 

Additional information on the software packages that are mentioned in this report are 

provided below: 

1. NLTK (Natural language Toolkit) developed at the University of 

Pennsylvania is an NLP package written in Python.  We tested the tokenizer 

by running tokenize.simple.space() provided  in NLTK-LITE version 0.6.3.  

2. OpenNLP Tools is an open source project that contains a variety of NLP 

tools written in Java. It is based on the maximum entropy model. We tested 

the software package (version 1.3) by running 

opennlp.tools.lang.english.Tokenizer with   EnglishTok.bin.gz as the underlying 

model of English. 

3. Mallet developed at the University of Massachusetts at Amherst is a 

collection of Java codes for statistical NLP, document classification and 

clustering, information extraction, and various machine learning 

applications to text. We tested package 

edu.umass.cs.mallet.base.pipe.CharSequence2TokenSequence from Mallet 

version 0.4. 

4. SPECIALIST NLP Tools developed at the U.S. National Library of 

Medicine constitutes a set of Java objects for the analysis of free text 

documents and identification words, terms, phrases, sentences and sections 

in the document. The tokenizer we tested was 

gov.nih.nlm.nls.nlp.tokenizer.TokenizerMain from textTools_V2.4.A. 

5. Gump is a tokenizer written in a programming language with the same 

name. It was developed by Torbjörn Lager.  

6. Dan Melamed’s tokenizer, written in Perl (File name: tokenize), is one of his 

NLP tools. 

7. Qtoken is a tokenizer developed by Oliver Mason at the University of 

Birmingham. It is written in Java. 

8. Word Splitter was developed at the University of Illinois at Urbana 

Champaign. It requires running the Sentence Segmentation Tool (developed 

by the same group), prior running the tokenization module. It is a Perl 

module which inputs one sentence at a time and outputs the words and 

punctuation marks delimited by spaces.   

9. LT TTT (Text Tokenisation Tool) is a toolset developed at the University of 

Edinburgh. It provides individually-tailored tokenization of text. We tested 

the sample script runplain from TTT version 2. 

10. MedPost is a POS tagger developed at the U.S. National Library of 

Medicine and is written in Perl/C++. We tested it via sh medpost –text -

specialist. 
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11. Brill’s POS tagger algorithm was designed by Eric Brill. The Java package 

that we used in our tests was developed by Jimmy Lin. We tested the 

software by running edu.mit.csail.brill.BrillTagger command. 

12. Stanford POS tagger is developed at Stanford University. It is written in 

Java.  We tested this package (version 2006-1-20) by running 

edu.stanford.nlp.tagger.maxent.MaxentTagger with train-wsj-0-18 as the 

underlying model. 

13. MXPOST tagger, developed by Adwait Ratnaparkhi, is a maximum entropy 

POS tagger. We tested the package by running command tagger.TestTagger. 



 13 

Appendix B 

In the following, we present outputs from each tokenizer for a sample sentence from 

MEDLINE. The � mark indicates token boundaries.  

  

The input sentence: 
Independent of current body composition, IGF-I levels at 5 yr  
were significantly associated with rate of weight gain  
between 0-2 yr (beta = 0.19; P &lt; 0.0005), and children  
who showed postnatal catch-up growth (i.e. those who  
showed gains in weight or length between 0-2 yr by >0.67 SD  
score) had higher IGF-I levels than other children (P = 0.02). 

 

(1) NLTK tokenizer: 
Independent�of�current�body�composition,�IGF-I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0-2�yr�(beta�=�0.19;�P�&lt;�0.0005),�and�children� 
who�showed�postnatal�catch-up�growth�(i.e.�those� 
who�showed�gains�in�weight�or�length�between�0-2�yr�by�>0.67�SD� 
score)�had�higher�IGF-I�levels�than�other�children�(P�=�0.02). 
 

(2) OpenNLP tokenizer: 
Independent�of�current�body�composition�,�IGF-I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0-2�yr�(�beta�=�0.19�;�P�&lt�;�0.0005�)�,�and�children� 
who�showed�postnatal�catch-up�growth�(�i�.e�.�those�who� 
showed�gains�in�weight�or�length�between�0-2�yr�by�>0.67�SD� 
score�)�had�higher�IGF-I�levels�than�other�children�(�P�=�0.02�)�. 
 

(3) Mallet tokenizer: 
Independent�of�current�body�composition�IGF�I�levels�at�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�yr�beta�P�lt�and�children� 
who�showed�postnatal�catch�up�growth�i�e�those�who� 
showed�gains�in�weight�or�length�between�yr�by�SD� 
score�had�higher�IGF�I�levels�than�other�children 
 

(4) SPECIALIST NLP tokenizer: 
Independent�of�current�body�composition�,�IGF�-�I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0�-�2�yr�(�beta�=�0�.�19�;�P�&�lt�;�0�.�0005�)�,�and�children� 
who�showed�postnatal�catch�-�up�growth�(�i�.�e�.�those�who� 
showed�gains�in�weight�or�length�between�0�-�2�yr�by�>�0�.�67�SD� 
score�)�had�higher�IGF�-�I�levels�than�other�children�(�P�=�0�.�02�)�. 
 

(5) Gump tokenizer: 
Independent�of�current�body�composition�,�IGF-I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0-2�yr�(�beta�=�0.19�;�P�&�lt�;�0.0005�)�,�and�children� 
who�showed�postnatal�catch-up�growth�(�i.e.�those�who� 
showed�gains�in�weight�or�length�between�0-2�yr�by�>�0.67�SD� 
score�)�had�higher�IGF-I�levels�than�other�children�(�P�=�0.02�)�. 
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(6) Dan Melamed’s tokenizer: 
Independent�of�current�body�composition�,�IGF�-�I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0�-�2�yr�(�beta�=�0.19�;�P�&lt�;�0.0005�)�,�and�children� 
who�showed�postnatal�catch�-�up�growth�(�i�.�e�.�those�who� 
showed�gains�in�weight�or�length�between�0�-�2�yr�by�>�0.67�SD� 
score�)�had�higher�IGF�-�I�levels�than�other�children�(�P�=�0.02�)�. 
 

(7) Qtoken:  

same as (4).  

 

(8) UIUC word splitter: 
Independent�of�current�body�composition�,�IGF-I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0-2�yr�-LBR-�beta�=�0.19�;�P�&�lt�;�0.0005�-RBR-
�,�and�children� 
who�showed�postnatal�catch-up�growth�-LBR-�i.e.�those�who� 
showed�gains�in�weight�or�length�between�0-2�yr�by�>�0.67�SD� 
score�-RBR-�had�higher�IGF-I�levels�than�other�children�-LBR-
�P�=�0.02�-RBR-�. 
 

(9) LT TTT tokenizer: 
Independent�of�current�body�composition�,�IGF�-�I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0�-�2�yr�(�beta�=�0.19�;�P�&�lt�;�0.0005�)�,�and�children� 
who�showed�postnatal�catch-up�growth�(�i.e.�those�who� 
showed�gains�in�weight�or�length�between�0�-�2�yr�by�>0.67�SD� 
score�)�had�higher�IGF�-�I�levels�than�other�children�(�P�=�0.02�)�. 
 

(10) MedPost tokenizer: 
Independent�of�current�body�composition�,�IGF-I�levels�at�5�yr� 
were�significantly�associated�with�rate�of�weight�gain� 
between�0-2�yr�(�beta�=�0.19�;�P�&lt;�0.0005�)�,�and�children� 
who�showed�postnatal�catch-up�growth�(�i.e.�those�who� 
showed�gains�in�weight�or�length�between�0-2�yr�by�>�0.67�SD� 
score�)�had�higher�IGF-I�levels�than�other�children�(�P�=�0.02�)�. 

 

(11) Brill’s POS tagger 
Independent�of�current�body�composition�,�IGF-I�levels�at�5�yr� 
were significantly�associated�with�rate�of�weight�gain� 
between�0-2�yr�(�beta�=�0�.�19�;�P�&�lt�;�0�.�0005�)�,�and�children� 
who�showed�postnatal�catch-up�growth�(�i�.�e�.�those�who� 
showed�gains�in�weight�or�length�between�0-2�yr�by�>�0�.�67�SD� 
score�)�had�higher�IGF-I�levels�than�other�children�(�P�=�0�.�02�)�. 

 

(12) Stanford POS tagger 
Independent�of�current�body�composition�,�IGF-I�levels�at�5�yr� 
were significantly�associated�with�rate�of�weight�gain� 
between�0-2�yr�-LRB-�beta�=�0.19�P�&lt;�0.0005�-RRB-�,�and�children� 
who�showed�postnatal�catch-up�growth�-LRB-�i.e.�those�who� 
showed�gains�in�weight�or�length between�0-2�yr�by�-RRB-�0.67�SD� 
score�-RRB-�had�higher�IGF-I�levels�than�other�children�-LRB-
�P�=�0.02�-RRB-�. 
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(13) MXPOST tagger 

Its output is the same as (1) for this example. Their outputs differ only if the input 

contains symbols such as ê. 
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Appendix C 

Case Set I 

Hyphenated compound words 

There are two main ways of tokenizing hyphenated compound words: to keep each 

compound word as one token or to break it to two or more tokens. Tokenizers 1, 2, 5, 8, 

10, 11, 12, and 13 follow the first strategy, and tokenizers 4, 6, and 7 follow the second 

strategy. However, tokenizers 3 and 9 are different. Tokenizer 3 removes hyphens from 

the output. Tokenizer 9 treats lower case hyphenated compound words differently from 

the upper case ones, with the former being one token and the latter being multiple tokens. 

For example: 

� bottle-fed 
→ bottle-fed (no change) by tokenizers 1, 2, 5, 8, 9, 10, 11, 12, and 13  

→ bottle�-�fed by tokenizers  4, 6, and 7  

→ bottle�fed by tokenizer 3 

� Bottle-fed 
→ Bottle-fed (no change) by tokenizers 1, 2, 5, 8, 10, 11, 12, and 13 

→ Bottle�-�fed by tokenizers 4, 6, 7, and 9 

→ Bottle�fed by tokenizer 3 

 

Words with letters and slashes  

Words with slashes can indicate alternatives (insertion/deletion), units (mg/day) and 

locations (Bethesda/MD) etc. There are also two main strategies for a word with slashes:  

1. Producing one token as done by tokenizers 1, 2, 5, 8, 9, 11, 12, and 13, or 

2. Producing two or more tokens by delimiting at slashes by tokenizers 3, 4, 6, 7, 

and 10 (tokenizer 3 does not keep slash as token). 

The first approach fails when a component on either side of slash is a hyphenated 

compound word (blood-air/water), or when a component on either side may form a 

phrase with the word before or after (North Carolina/USA). 

 

Words with letters and apostrophes 

Words with apostrophes can indicate possessive (e.g. years’ and Freud’s), 

contraction (e.g. haven’t and o’clock), words with single quotation (e.g. ’repertorie 

cloning’) and name (e.g. O’Neill) etc. There are a variety of tokenization strategies. 

� years’ 
→ years’ (no change) by tokenizers 1, 5, 6, and 13  

→ years�’ by tokenizers 2, 4, 7, 8, 9, 10, 11, and 12  

→ years by tokenizer 3 

� Freud’s 
→ Freud’s (no change) by tokenizers 1, 6, and 13 

→ Freud�s by tokenizer 3 

→ Freud�’�s by tokenizers 4 and 7 

→ Freud�’s by tokenizers 2, 5, 8, 9, 10, 11, and 12 

� haven’t 
→ haven’t (no change) by tokenizers 1, 6, 9, 10, and 13 



 17 

→ have�n’t by tokenizers 2, 5, 11, and 12 

→ haven�t by tokenizer 3 

→ haven�’�t by tokenizers 4 and 7 

→ haven�’t by tokenizer 8 

� o’clock 
→ o’clock (no change) by tokenizers 1, 2, 6, 9, 10, 11, 12, and 13 

→ o�’clock by tokenizer 8 

→ o�clock by tokenizer 3 

→ o�’�clock by tokenizers 4, 5, and 7 

� ’reportorie�cloning’ 
→ ’reportorie�cloning’ (no change) by tokenizers 1, 6, and 13 

→ ’reportorie�cloning�’ by tokenizers 2 and 11 

→ ’re�portorie�cloning�’ by tokenizer 5  

→ reportorie�cloning by tokenizer 3 

→ ’�reportorie�cloning�’ by tokenizers 4, 7, 8, 9, 10, and 12 

� O’Neill 
→ O’Neill  (no change) by tokenizers 1, 2, 6, 9, 10, 11, and 13 

→ O�’Neill by tokenizer 8 

→ O�Neill by tokenizer 3 

→ O�’�Neill by tokenizers 4, 5, 7, and 12 

 

Words with letters and one type of brackets 

There are basically four types of brackets: parentheses (), square brackets [], braces 

{}, and angle brackets <>. Tokenizers except 1, 2, 3, 9, and 13 separate parentheses and 

square brackets from the word attached to it; whereas, tokenizers 8 and 12 convert 

brackets to other symbols. Tokenizer 3 removes brackets altogether. Tokenizers 1, 9, and 

13 always keep parentheses with word together if there is no space between them. 

Tokenizer 2 is inconsistent. For example, (tissue) is split into two tokens, (tissue and 

), and(Dipnoi) is split into two tokens ( and Dipnoi), but (TP) is split into three 

tokens (, TP, and ). Note that all left angle brackets are replaced by symbol &lt; in 

MEDLINE. For angle brackets, however, it is still difficult to know if an angle bracket is 

truly a bracket or a less than or greater than sign. 

� (tissue) 
→ (tissue) (no change) by tokenizers 1, 9, and 13 

→  (tissue�) by tokenizer 2 

→ tissue by tokenizer 3 

→ (�tissue�) by tokenizers 4, 5, 6, 7, 10, and 11 

→ -LBR-�tissue�-RBR- by tokenizer 8 

→ -LRB-�tissue�-RRB- by tokenizer 12 

� (Dipnoi) 
→ (Dipnoi) (no change) by tokenizers 1, 9, and 13 

→ (�Dipnoi) by tokenizer 2 

→ Dipnoi by tokenizer 3 

→ (�Dipnoi�) by tokenizers 4, 5, 6, 7, 10, and 11 

→ -LBR-�Dipnoi�-RBR- by tokenizer 8 

→ -LRB-�Dipnoi�-RRB- by tokenizer 12 
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� (TP) 
→ (TP) (no change) by tokenizers 1, 9, and 13 

→ TP by tokenizer 3 

→ (�TP�) by tokenizers 2, 4, 5, 6, 7, 10, and 11 

→ -LBR-�TP�-RBR- by tokenizer 8 

→ -LRB-�TP�-RRB- by tokenizer 12 

� [GABAergic] 
→ [GABAergic] (no change) by tokenizers 1, 9, and 13 

→ [GABAergic�] by tokenizer 2 

→ GABAergic by tokenizer 3 

→ [�GABAergic�] by tokenizers 4, 5, 6, 7, 10, and 11 

→ -LBR-�GABAergic�-RBR- by tokenizer 8 

→ -LRB-�GABAergic�-RRB- by tokenizer 12 

 

Words with letters and periods  

Words with a period at the end usually indicate end of sentence. However, they may 

merely be abbreviations, such as i.e. and e.g.. There is no uniform scheme to 

differentiate tokenizers. Some tokenizers, such as tokenizer 9, use dictionary to identify 

abbreviated words and some others tokenizers, such as tokenizer 2, are trained using 

tokenized text.  

� i.e. 
→ i.e. (no change) by tokenizers 1, 5, 8, 9, 10, 12, and 13 

→ i�e by tokenizer 3 

→ i�.�e�. by tokenizers 4, 6, 7, and 11 

→ i�.e�. by tokenizer 2 

� e.g. 
→ e.g. (no change) by tokenizers 1, 2, 5, 8, 9, 10, 12, and 13 

→ e�g by tokenizer 3 

→ e�.�g�. by tokenizers 4, 6, 7, and 11 

 

Words with only letters and numbers 

Tokenizers 8 and 9 separate numbers and letters: both split CO2 into CO and 2, but only 

tokenizer 8 splits 12th into 12 and th. Tokenizer 3 removes numeric portions from the 

word. All other tokenizers keep such words as whole unit.  

� CO2 
→ CO  by tokenizer 3 

→ CO�2 by tokenizers 8 and 9 

→ CO2 (no change) by others 

� 12th 
→ th  by tokenizer 3 

→ 12�th by tokenizer 8 

→ 12th (no change) by others 

 

Words with numbers and one type of punctuations 

Some simple examples for numbers are large numbers (e.g. 3,000,000), fractions (e.g. 

1/2), percentages (e.g. 76%), decimals (e.g. 1.4), and ranges (e.g. 1-20) etc. Most 

tokenizers either keep them as a whole or separate them at punctuations with some 
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exceptions—tokenizer 3 outputs no tokens, and tokenizers 11 and 12 sometimes miss 

some tokens in their outputs.  

� 3,000,000 
→ 3,000,000 (no change) by tokenizers 1, 2, 5, 6, 8, 9, 10, 12, and 13 

→ (nothing) by tokenizer 3 

→ 3�,�000�,�000 by tokenizers 4, 7, and 11 

� 1/2 
→ 1/2 (no change) by tokenizers 1, 2, 5, 9, and 13 

→ (nothing) by tokenizer 3 

→ 1�/�2 by tokenizers 4, 6, 7, 8, and 10  

→ 1 by tokenizer 11 

→ 1\ by tokenizer 12 

� 76% 
→ 76% (no change) by tokenizers 1, 5, and 13 

→ (nothing) by tokenizer 3 

→ 76�% by tokenizers 2, 4, 6, 7, 8, 9, 10, and 11 

→ 76 by tokenizer 12 

� 1.4 
→ 1.4 (no change) by tokenizers 1, 2, 5, 6, 8, 9, 10, 12, and 13 

→ (nothing) by tokenizer 3 

→ 1�.�4 by tokenizers 4, 7, and 11 

� 1-20 
→ 1-20 (no change) by tokenizers 1, 2, 5, 8, 10, 11, 12, and 13 

→ (nothing) by tokenizer 3 

→ 1�-�20 by tokenizers 4, 6, 7, and 9 

 

Case Set II 

The following cases illustrate finer differences among tokenizers, from named entity 

point of view. In these cases, each input involves more than one type of punctuations, and 

where to break depends on the punctuation processing priority and/or order in tokenizers.  

 

DNA sequences  

� 5’-ATGCAAAT-3’ 
→ 5’-ATGCAAAT-3’(no change) by tokenizers 1, 2, and 13 

→ ATGCAAAT by tokenizer 3 

→ 5’-ATGCAAAT-3�’ by tokenizers 10 and 11 

→ 5’�-�ATGCAAAT�-�3’ by tokenizer 6 

→ 5�’�-�ATGCAAAT-3�’ by tokenizers 5, 8, and 12 

→ 5�’�-�ATGCAAAT-�3�’ by tokenizer 9 

→ 5�’�-�ATGCAAAT�-�3�’ by tokenizers 4 and 7 

 

Chemical substances  

� 3,4-epoxy-3-methyl-1-butyl-diphosphate  
→ 3,4-epoxy-3-methyl-1-butyl-diphosphate (no change) by tokenizers 

1, 2, 8, 12, and 13 

→ 3,4�-�epoxy-3-methyl-1-butyl-diphosphate by tokenizer 5  
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→ 3�,�4-epoxy-3-methyl-1-butyl-diphosphate by tokenizers 10 and 

11  

→ epoxy�methyl�butyl�diphosphate by tokenizer 3  

→ 3,4�-�epoxy-3-methyl�-�1�-�butyl-diphosphate by tokenizer 9  

→ 3,4�-�epoxy�-�3�-�methyl�-�1�-�butyl�-�diphosphate by 

tokenizer 6  

→ 3�,�4�-�epoxy�-�3�-�methyl�-�1�-�butyl�-�diphosphate by 

tokenizers 4 and 7  

 

Arithmetic expressions 

Arithmetic expressions are words with numbers and multiple types of operators. There 

are usually many ways to tokenize them. As operators imply special meanings and 

precedences, the correctness of a particular tokenization approach is less subjective 

compared to that in free text. For example, the outputs from tokenizers 9 and 11 of the 

first example below and the outputs from tokenizers 5 and 9 of the second example below 

are undesirable. 

 

� 76.8+/-4.2  
→ 76.8+/-4.2 (no change) by tokenizers 1, 2, and 13  

→ (nothing) by tokenizer 3  

→ 76.8�+/-4.2 by tokenizer 9  

→ 76.8�+/-�4.2 by tokenizer 10  

→ 76.8�+�/�-4.2 by tokenizer 12  

→ 76.8�+�/�-�4.2 by tokenizers 5, 6, and 8  

→ 76�.�8+/-4�.�2 by tokenizer 11  

→ 76�.�8�+�/�-�4�.�2. by tokenizers 4 and 7  

� 8.4-13.8%  
→ 8.4-13.8% (no change) by tokenizers 1 and 13  

→ (nothing) by tokenizer 3 

→ 8.4-13.8�% by tokenizers 2, 8, and 10  

→ 8.4�-13.8% by tokenizer 5  

→ 8.4-13�.8�% by tokenizer 9  

→ 8.4�-13.8�% by tokenizer 12  

→ 8.4�-�13.8�% by tokenizer 6  

→ 8�.�4-13�.�8�% by tokenizer 11  

→ 8�.�4�-�13�.�8�% by tokenizers 4 and 7  

 

 Hypertext markup symbols 

Some of the frequently observed hypertext markup symbols are &lt; and &quot; (for the 

double quotation mark). Only tokenizers 10 and 12 recognize these symbols as a whole 

unit. Tokenizers 1 and 13 keep them together with neighboring words. Other tokenizers 

break them into different set of tokens or remove punctuations. 

� &lt;  
→ &lt; (no change) by tokenizers 1, 10, 12, and 13  

→ lt by tokenizer 3  

→ &lt�; by tokenizers 2 and 6  

→ &�lt�; by tokenizers 4, 5, 7, 8, and 11  
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→ &#38;�lt�; by tokenizer 9  
� (P&lt;0.001) 

→ (P&lt;0.001) (no change) by tokenizers 1 and 13  

→ P�lt by tokenizer 3  

→ (�P&lt�;0.001�) by tokenizer 2  

→ (�P&lt�;�0.001�) by tokenizers 5 and 6  

→ (�P�&lt;�0.001�) by tokenizer 10  

→ -LRB-�P�&lt;�0.001�-RRB- by tokenizer 12  

→ -LBR-�P�&�lt�;�0.001�-RBR- by tokenizer 8  

→ (�P�&#38;�lt�;�0.001�) by tokenizer 9  

→ (�P�&�lt�;0�.�001�) by tokenizers 4, 7, and 11  

 

URL 

� http://www.tobaccoarchives.com  
→ http://www.tobaccoarchives.com (no change) by tokenizers 1, 2, 5, 

12, and 13  

→ http�:�//www.tobaccoarchives.com by tokenizer 9  

→ http�www�tobaccoarchives�com by tokenizer 3  

→ http�:�/�/�www.tobaccoarchives.com by tokenizers 8 and 10  

→ http�:�/�www�.�tobaccoarchives�.�com by tokenizer 11  

→ http�:�/�/�www�.�tobaccoarchives�.�com by tokenizers 4, 6, and 7  
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Appendix D 

Algorithms for these tokenizers can be categorized into two broad classes, using 

machine-learning techniques or using rules (see Table 2). Tokenizers 2, 11, 12, and 13 

belong to the first class. Tokenizers 2, 12, and 13 are based on maximum entropy 

approach, and are trainable if customized annotations provided (In our test, tokenizer 13 

acts like a simple splitter
∗
). Tokenizer 11 uses a transformation-based error-driven 

learning approach. All other tokenizers are rule-based. As mentioned in Section 3, 

tokenizers 1, 3, 4, and 7 follow simple rules. Other rule-based tokenizers follow more 

complicated rules; e.g., using regular expressions. To compare speed of tokenizers, we 

run each tokenizer for a collection of 50 MEDLINE abstracts (about 6000 words) on a 

Linux machine with a 3GHz Intel Pentium D processor. Processing 6000 words takes less 

than 1 second by some tokenizers, such as NLTK. As seen on Table 2, source codes are 

available for most tokenizers but not for tokenizers 7, 9, and 13. For tokenizers 7 and 13, 

only Java .jar files are made available. All tokenizers use some scripting languages, 

sometimes along with C/C++. 

 
Table 2: Comparison of Tokenizers 

 

No Name Algorithm 
Speed 

word/sec 

Open 

Source 
Language Other 

1 NLTK tokenizer Simple splitter∗ > 6000  Y Python  

2 OpenNLP tokenizer Maximum entropy  ~ 400 Y Java Trainable 

3 Mallet tokenizer Simple splitter∗ > 6000 Y Java  

4 SPECIALIST NLP tokenizer Simple splitter∗ ~ 600 Y Java  

5 Gump tokenizer Linguistic rules > 6000 Y Gump  

6 Dan Melamed’s tokenizer Linguistic rules > 6000 Y Perl  

7 Qtoken Simple splitter∗ ~1500 N Java  

8 UIUC word splitter Linguistic rules > 6000 Y Perl Sentence 

input 

9 LT TTT tokenizer Linguistic rules  ~1000 Partial Perl & 

others 

Multiple 

input formats  

10 MedPost tokenizer Linguistic rules  ~750 Y Perl/C++ Trainable 

11 Brill’s POS tagger Transformation- 

based error-driven 

learning 

~300 Y Java/C Java wrapper 

12 Stanford POS Tagger Maximum entropy  ~50 Y Java Trainable 

13 MXPOST tagger Maximum entropy ~200 N Java Trainable 

 

 

 

                                                 
 
∗

 A simple splitter follows a simple rule to break sentence into tokens either at white space only or at white 

space and punctuations. 

 

 

 




