
Region of Interest Detection in Fundus Images Using Deep Learning and Blood 
Vessel Information 

 

Jongwoo Kim, Sema Candemir, and George R. 
Thoma 

Lister Hill National Center for Biomedical 
Communications 

National Library of Medicine 
Bethesda, Maryland, USA 

jongkim@mail.nih.gov 

Emily Y. Chew 
Division of Epidemiology & 

Clinical Applications,  
National Eye Institute 

National Institutes of Health 
Bethesda, Maryland, USA 

echew@nei.nih.gov
 
 

Abstract— Ophthalmologists use the optic disc to cup ratio as 
one of the factors to diagnose glaucoma. The region of interest 
(ROI) for glaucoma in fundus images is the area that locates 
optic disc and cup in the center. Therefore, ROI detection is 
used as a preprocessing step for automatic detection of optic 
disc and cup areas. This paper proposes an automated method 
to detect ROI using deep learning. Convolutional Neural 
Networks (CNNs) are used to classify ROI and non-ROI 
images. The structure of our CNNs is composed of two 
convolutional layers, two Max Pooling layers, two fully 
connected layers, and one output layer. We train two CNNs 
using fundus images from the MESSIDOR dataset, a public 
dataset containing 1,200 fundus images. In addition, we 
estimate blood vessels from the images and use the images 
embedded with the blood vessels to train two other CNNs. The 
proposed method moves a window in the horizontal and 
vertical directions in each fundus image, estimates a 
probability of each window using the CNNs, and selects the 
window with the highest probability as ROI. The experimental 
results are promising. The best-performing CNN from the first 
CNN group shows over 0.99 accuracy for the MESSIDOR 
dataset and over 0.93 accuracy for five other public fundus 
image datasets. The best CNN from the second CNN group 
shows more robust results: over 0.99 accuracy for the 
MESSIDOR dataset and over 0.97 accuracy for the five other 
image datasets.  

Keywords-Region of Interest (ROI); Deep Learning; 
Convolutional Neural Network (CNN); Optic Disc; Cup; Blood 
Vessels; Glaucoma. 

I.  INTRODUCTION 
Glaucoma is a serious disease that is caused by damage to the 

optic nerve, resulting in vision loss. Increased pressure in the eye 
and/or loss of blood flow to the optic nerve cause nerve fibers to 
begin to die and this makes the cup become larger in comparison 
to the optic disc. A cup to disc ratio (the diameter of the cup 
divided by the diameter of the optic disc) greater than 30% is 
considered to be suspicious for glaucoma [1]. There are several 
technical papers that process fundus images to estimate region of 
interest (ROI), the optic disc, cup, blood vessels, and eye diseases. 
ROI is the area (in the image) where the optic disc is in the center.  

ROI detection is used as a preprocessing step to estimate 
optic disc and cup areas for glaucoma. In addition, it can be 

used to distinguish lesions from the optic disc for age-related 
macular degeneration (AMD) since both lesions and the optic 
disc have high (bright) pixel values in fundus images.  

The sum of high pixel values (e.g., the highest 0.5% in a 
fundus image) within an area is commonly used to estimate 
ROI [2, 3] since the optic disc usually has the highest pixel 
values in fundus images. However, the rim and lesion also 
can have high pixel values. A circular shape filter is used to 
remove bright fringes in the rim areas from the optic disc 
candidates [2]. However, lesions are not removed by the 
filter. Therefore, blood vessels are used as key information 
to estimate ROI since the blood vessels are emanating from 
the optic disc [3, 4, 5, 8].  

There are several methods to segment blood vessels in 
fundus images. Smoothing, low pass filtering, Otsu 
threshold, and morphology (Opening, Closing, Top-Hat 
transformation) are commonly used to differentiate blood 
vessels from surrounding structures [6, 7, 8]. Image 
enhancement is frequently used as a preprocessing step to 
normalize images [8, 9] and to improve estimation results. 
However, it is difficult to find blood vessel detection and 
image enhancement algorithms that work consistently 
across images from different sources. The enhancement can 
degrade the original images. Some fundus images have 
lower intensity pixels in optic disc areas, making it difficult 
to recognize blood vessels passing through the optic disc. 
Therefore, it could be a problem if algorithms depend 
heavily on the blood vessels as a tool for ROI detection. 

Deep learning has been used in fundus image analysis: 
vessel segmentation [9], disc and cup segmentation [10], 
etc. Unlike other classifiers, deep learning uses original 
images as input and extracts features from the images. 
Therefore, it is not necessary to develop handcrafted 
features. We propose a deep learning algorithm that uses a 
Convolutional Neural Network (CNN) to estimate ROI from 
fundus images. The training datasets are collected by 
cropping the original images (without preprocessing). 

All machine learning algorithms, including CNN, need 
a large dataset to train the algorithm more robustly. 
Collecting the dataset and training the algorithms are very 
time consuming. Therefore, we also propose to use a feature 
(blood vessels) to efficiently train the CNNs using a limited 
number of training images. 
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The remainder of this paper is organized as follows. 
Section II describes overview of the paper. Section III 
describes vessel segmentation. The details of our CNNs and 
ROI detection algorithm are presented in Section IV and V. 
We discuss experimental results in Section VI, and show 
conclusions in Section VII. 

II. OVERVIEW 
We use two types of datasets to train the CNNs to detect 

ROIs: (1) original fundus image dataset, and (2) an 
additional dataset that contains the original fundus images 
embedded with blood vessel information.  

The procedure is as follows. First, train the CNNs using a 
dataset collected from original fundus images. This training 
set will be used to classify ROI and non-ROI images. 
Second, estimate blood vessels from the original images. 
Third, train other CNNs using the training dataset collected 
from the images embedded with the blood vessels. Last, 
apply each CNN to classify ROI in fundus images and 
compare the performance of the CNNs. 

III. VESSEL SEGMENTATION 
ROI in fundus images contains the optic disc in the 

middle with blood vessels emanating from the optic disc. 
Therefore, blood vessels are an important feature to estimate 
ROI in the images. The following method (step sequence) is 
used to estimate the main blood vessels from fundus images. 

1. Let I(x, y) be an input image, Ig(x, y) be the green 
channel of I(x, y), and Ir(x, y) be the red channel of I(x, y).  
2. Estimate a binary image Irb(x, y) from Ir(x, y) using Otsu 
threshold to distinguish the retina area from background. 
3. Estimate an edge image Irbe(x, y) from Irb(x, y) using 
Canny operator, and estimate an ellipse from Irbe(x, y) 
using OpenCV [11] to estimate the longest diameter of 
the ellipse d. d is used to decide the filter sizes and ROI 
window size later. 
4. Apply median operator with window size [3×3] and 
CLAHE histogram equalization operator to I(x, y) to have 
a contrast enhanced image Ic(x, y).  
5. Apply the average operator to Ic(x, y) with window size 
= d/(3.5×4) to have Icb(x, y). The window size is close to a 
third or a half of the optic disc diameter. 
6. Subtract Ic(x, y) from Icb(x, y) to have a blood vessel 
image Id(x, y).  
Id(x, y) = Icb(x, y)-Ic(x, y), if Icb(x, y)>Ic(x, y) and Irb(x, y)>0 
               0,                        Otherwise  

7. Apply morphological closing using [3×3] square to 
Id(x, y) to have Idc(x, y). The closing fills missing blood 
vessel pixels inside the vessels. 
8. Normalize Idc(x, y) from 0 to 255 to have Idcn(x, y).  
9. Apply Otsu threshold to Idcn(x, y) to have a binary 
image Ib(x, y). This step removes pixels that belong to 
minor blood vessels and noise. 
10. Select the top five large blood vessel blob pieces and 
remove other pieces from Ib(x, y). Remove pieces when 

number of pixels in the piece is less than 20. Let Ivb(x, y) 
be the binary blood vessel image after removing useless 
blood vessel pieces in Ib(x, y).  
11. Estimate a gray level blood vessel image Ivg (x, y). 

     Ivg (x, y) = 255 – Idcn(x, y), if Ivb(x, y) > 0 
                      0,                       Otherwise 

12. Generate an image IV(x, y) by embedding the blood 
vessels (Ivg(x, y)) to original fundus images I(x, y). The 
blood vessel pixels are added in the channels if Ig(x, y) > 
Ivg(x, y).  

     IVi(x, y) = Ivg(x, y), if Ivg(x, y) < Ig(x, y) 
                      Ii (x, y), Otherwise 

where Ii(x, y) is the i channel of I(x, y), IVi(x, y) means the 
i channel of IV(x, y), and i = b, g, and r. I.e., Ig(x, y) means 
the green channel of I(x, y) and IVb(x, y) means the blue 
channel of IV(x, y).  

Fig. 1 shows fundus images from MESSIDOR. Fig. 2 shows 
the estimated blood vessel images from Fig 1. Fig. 3 shows fundus 
images embedded with the blood vessels (Fig. 2). IV(x, y) has   
Ivg(x, y) in the blue, green, and red channels of the Fig. 1.  

Most ROI detection algorithms and optic disc detection 
algorithms [6, 7, 8] use binary level blood vessels as a 
feature. Therefore, the threshold for the blood vessel 
binarization plays a critical role for the performance of the 
algorithms. We use grey level blood vessels to alleviate the 
blood vessel detection issue of the binarization process. 

  
Figure 1. Fundus images (I(x, y)). 

 

  
Figure 2. Estimated grey level blood vessels from Fig. 1 (Ivg(x, y)). 

 

  
Figure 3. Fundus images embedded with grey level blood vessels (Fig. 2) 
in the three channels (IV(x, y)).  
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IV. CONVOLUTIONAL NEURAL NETWORKS 
CNN is one of the deep learning algorithms actively used 

in image classification and segmentation. Therefore, we use 
the CNN for the classification of ROI images. The 
architecture of the CNN used in our experiments is shown in 
Table I. We use two different kernel sizes M (5 and 11) and 
two different strides N (1 and 2) for the first convolutional 
layers. Stride is defined as the amount of shift applied to a 
filter on each step as the filter traverses the image. The 
kernel filter is used to extract features on each step. We train 
the CNN using two different training datasets as we discuss 
in Section II. In the table the output size 80 in layers 1 and 2 
means we use 80 filters to extract features. The total feature 
size depends on M and N. For example, if M=11 and N=1 in 
layer 1, the total feature size becomes 80×90×90. “Output 
size 3000” in the Fully Connected layers (5 and 6) means 
we use a 1×3000 vector for the layers. Figure 4 shows the 
architecture of the CNN. 

TABLE I.  CNN ARCHITECTURE USED 

Layer Layer Type Output Size Kernel Size Stride 
0 Input (100×100×3)    
1 Convolutional 80 M×M N, N 
2 Max Pooling 80 2×2 2, 2 
3 Convolutional 160 5×5 1, 1 
4 Max Pooling 160 22 2, 2 
5 Fully Connected 3000   
 Dropout (0.5)    
6 Fully Connected 3000   
 Dropout (0.5)    
7 Output 2   

 

 
Figure 4. CNN architecture used in the experiments (M=11 and N=1). 

V. REGION OF INTEREST (ROI) DETECTION 
There are several steps to estimate ROI from fundus 

images after training CNNs. Fig. 5 shows the pixel values of 
three channels in the green horizontal line in the fundus 
image. The red channel shows unique values in the retina 
and the green channel shows the distinction between 
background, retina, and disc areas. The blue channel shows 
similar values as the green channel. Therefore, we use the 
red channel to classify the retina area from the background. 
Fig. 6 shows the workflow of the proposed method when 
original fundus images (Fig. 1) are used as input.  

1. Extract the red channel from an input image and apply the 
average operator with window size [9×9] to remove noise.  
2. Binaries the red channel image with Otsu threshold.  
3. Estimate an edge image from the binary image using 
Canny operator. 

4. Estimate an ellipse from the edge image using an 
ellipse detection function in OpenCV.  
5. Set the window size W = longest diameter of the 
ellipse/3.5 and stride S = W/4.  
6. Move W×W window to the horizontal and vertical 
directions by S, estimate a CNN result of each window, 
and choose a window W1 that has the highest result. 
7. Let top-left coordinate of W1 be (x1, y1) and bottom-
right coordinate of W1 be (x2, y2).  
8. Move W×W window from (x1-W/2, y1-W/2) to (x2+W/2, 
y2+W/2) by stride S = W/16, estimate a CNN result of 
each W×W window, and choose the window with the 
highest result as ROI to fine tune the final ROI location. If 
more than one window has the same highest result, we 
average the window coordinates to have the final ROI. 

Fig. 7 shows an example of a final result. The blue color 
window is ROI at the sixth step and the green color window 
is the final ROI estimated at the eighth step. The green color 
window has the optic disc more in the center than the blue 
color window. 
 

 
Figure 5. Pixel values of the three channels in the horizontal line in the 
fundus image. 
 

 
Figure 6. Workflow of the ROI detection method. 

 

 
Figure 7. An example of ROI detection result of the proposed method. 
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VI. EXPERIMENTAL RESULTS 
There are two steps in the experiments. First, train four 

CNNs. Second, estimate ROI from fundus images using the 
CNNs. The following image datasets are used in these 
experiments: MESSIDOR [12], Chase_DB1 [13], 
DIARETDB0 [14], DIARETDB1 [14], DRIONS [15], and 
DRIVE [16]. 

There are 1,200 fundus images in the MESSIDOR dataset. 
Among them, 600 images are used to train the CNNs for ROI 
image classification (for the first step) and the remaining 600 
are used for testing (for the second step). Fig. 8 shows some 
ROI images used for training that are cropped from the 600 
training images. Top images (first row) are for ROI class, and 
bottom images (second row) are for non-ROI class. 1,200 
images are collected for each class. For ROI class, we collect 
the images two times from each fundus image manually. For 
non-ROI class, we manually collect 600 images. We then 
randomly select 600 additional images, using a random number 
generator. Fundus images can have different sizes (different 
widths and heights). Therefore, we use W×W window to 
collect images for the training dataset as we discuss in Section 
V. We use 400×400 window for images with size of 
2240×1488 and 250×250 window for images with size of 
1440×960 window to collect images for the training dataset and 
normalize them to 100×100. Fig. 9 shows some training 
images collected from fundus images embedded with grey 
level blood vessels (Fig. 3). We use the same sampling window 
coordinates to collect images in the same locations for the two 
different datasets as shown in Figs. 8 and 9. 

 
Figure 8. Training Images. (Top) Images for ROI class. (Bottom) Images 
for non-ROI class. 

 
Figure 9. Training Images embedded with grey level blood vessels in three 
channels. (Top) Images for the ROI class. (Bottom) Images for the non-ROI class. 

We train the CNNs without pretrained models and use 5,000 
epochs, 0.01 learning rate, Stochastic Gradient Descent, 
DeepLearning4J [17], Nivida GTX 1080, and a Dell Precision 
T5810 with Intel® Xeon® CPU E5-1620 v3 @3.50GHz to train 
and test the CNNs.  

We use two different datasets to test the CNNs. The first 
dataset contains 600 images from the MESSIDOR dataset. 
The second dataset contains 398 images (called Open 
Sources) from Chase_DB1, DIARETDB0, DIARETDB1, 
DRIONS, and DRIVE datasets. The second dataset is not 
used for training the CNNs. It is used only for testing the 
CNNs as we mentioned at the beginning of this section. 

We first test the CNNs trained using original fundus 
images (Fig. 8). The results are shown in the first and 
second rows in Table II. CNN1 in the first row uses the 5×5 
kernel in the first Convolutional layer and CNN2 in the 
second row uses 11×11 kernel. The results are promising. 
CNN1 and CNN2 show 0.9950 and 0.9883 accuracies for 
the MESSIDOR dataset as shown in the fourth column. Fig. 
10 shows some of CNN1 results. Fig. 10(a) has small 
lesions. Fig. 10(b) has the optic disc close to the 
background. In Figs. 10(c) and (d), the optic discs are not as 
clear as Fig. 10(a), and blood vessels in optic discs are not 
clear. However, all results show that ROI windows (green 
window) have the optic discs in the center. CNN1 has errors 
in three images as shown in Fig. 11. We consider that an 
ROI location error has occurred when the optic disc is not 
inside the ROI boundary (Green square). All images have a 
lesion in or near the optic disc areas. The fifth column 
shows the test results of the CNNs for the Open Sources 
dataset. CNN1 has 0.9397 accuracy and CNN2 has 0.9497 
accuracy. The accuracies drop 5.79% and 3.9%. CNN1 has 
errors in 25 images and CNN2 has errors in 20 images. Fig. 
12 shows CNN1 errors from images in the Open Sources 
dataset. In the figure, blue color window is the pre-estimated 
ROI and green color window is the final ROI as we 
mentioned in Section V. Since CNN1 and CNN2 are trained 
on the MESSIDOR dataset and use a limited number of 
images for training, the CNNs could generate more errors 
for input images from other sources having different image 
characteristics. This problem can be resolved if we train the 
CNNs using fundus images from different sources. 

The third and fourth rows in Table II show the results of 
CNNs trained using the images embedded with blood 
vessels. CNN3 and CNN4 use training images in Fig. 9 that 
have grey level blood vessels. Each CNN uses different 
kernel sizes (5×5 and 11×11) for training. The fourth 
column shows the test results for the MESSIDOR dataset. 
CNN3 and CNN4 show 0.9933 accuracy. They have slightly 
lower accuracy than CNN1. CNN1 has three errors, and 
CNN3 and CNN4 have four errors. The fifth column shows 
the test results for the Open Sources dataset. CNN4 shows 
the best accuracy with 0.9774.  
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TABLE II.  ACCURACY OF ROI DETECTION 

CNN Input Image CNN Model 
First conv.  
layer 

MESSIDOR 
Test set 
(600) 

Open Sources
Test set  
(398) 

1 Original Images Kernel (5,5)  
Stride (2, 2) 

0.9950  
(3 errors) 

0.9397  
(25 errors) 

2 Original Images Kernel (11,11) 
Stride (1,1) 

0.9883  
(7 errors) 

0.9497 
(20 errors) 

3 Images 
embedded with 
Grey Blood 
Vessels 

Kernel (5,5)  
Stride (2, 2) 

0.9933  
(4 errors) 

0.9673 
(13 errors) 

4 Images 
embedded with 
Grey Blood 
Vessels 

Kernel (11,11)  
Stride (1, 1) 

0.9933  
(4 errors) 

0.9774 
(9 errors) 

 

  
(a)   (b) 

  
(c)   (d) 

Figure 10. ROI Detection results of CNN1 from images in the MESSIDOR 
dataset. 
 

 
Figure 11. ROI Detection errors of CNN1 from images in the MESSIDOR 
dataset. 
 

 
Figure 12. ROI Detection error of CNN1 from images in the Open Sources 
dataset. 

Fig. 13 shows ROI estimation results of CNN4 for images 
in the Open Sources dataset. CNN4 correctly find ROIs 
even if there are lesions in the image or the optic disc has 
lower pixel values. Fig. 14 shows some CNN4 errors from 
images in the Open Sources dataset. Fig. 14(a) shows that 

the center of the ROI window was moved to the right side. 
The right side of the disc rim area is labeled as blood vessels 
which may cause the window to move to the right side. Fig. 
14(b) shows that some areas of the lesion inside are 
mislabeled as blood vessels. Therefore, the lesion becomes 
similar to optic disc. Fig. 14(c) shows that the ROI window 
is moved upward. Fig. 14(d) shows that the optic disc does 
not have any common optic disc features. The optic disc 
area is darker than other retina area. It is also hard to 
estimate blood vessels passing through the optic disc. In the 
case of Fig. 14(a) and (b), poor blood vessel estimation 
affects the errors. We currently use a blood vessel detection 
algorithm to test the role of blood vessels in training CNNs. 
Therefore, CNN4 may correctly recognize ROIs of the 
images if we use more accurate blood vessel classification 
algorithms.  

We compare our proposed methods with other 
algorithms. Zhang et. al.’s ROI detection algorithm [2] 
shows 0.964 accuracy for 1,564 glaucoma and non-
glaucoma fundus images. Foracchia et. al.’s algorithm [5] 
for detecting optic disc location shows 0.98 accuracy for the 
STARE dataset. Marin et. al.’s algorithm [8] for detecting 
optical disc location uses optic disc radius (R) to evaluate 
their results using the MESSIDOR dataset. They have 
0.9975 accuracy for 1×R threshold. This means the distance 
between the real optic disc center and the estimated optic 
disc center should be equal or less than 1×R to be labeled as 
correct. In our case, we consider an error when the optic 
disc is not inside ROI boundary (green square) as shown in 
Figs. 11 to 14. Therefore, our performance in Table II will 
be improved if we use the 1×R threshold. The proposed 
method shows a slightly lower performance than Marin et. 
al.’s algorithm. However, we have a limited number of 
images for training the CNNs, and the training datasets for 
the CNNs do not have many images similar to Figs. 11 and 
14. Therefore, our performance will improve if we use more 
images similar to Figs. 11 and 14 to train the CNNs.  
As shown in Fig. 8, blood vessels usually are located on the 
left or right side of the optic discs and the brightest areas in 
the optic discs are located in the opposite side of the blood 
vessels (not in the center of the optic discs). Therefore, 
when blood vessels and/or the brightest optic disc areas are 
used to estimate ROI, the ROI will inaccurately appear to 
the left or right of the real ROI. In addition, the method will 
heavily rely on blood vessel estimation and the brightest 
area (in optic disc) estimation algorithms. However, the 
proposed method uses original images and rely less on the 
feature (blood vessels) than other algorithms. Therefore, the 
proposed method has more chance to have real ROI with the 
optic discs in the middle especially when the optic disc 
and/or blood vessels are not clear in fundus images.  
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Figure 13. ROI estimation results of CNN4 from images in the Open 
Sources dataset. 
 

  
(a) (b) 

  
(c) (d) 

Figure 14. ROI Detection errors of CNN4 from images in the Open Sources 
dataset. 

VII. CONCLUSIONS 
This paper proposes an automatic method to classify ROI 

from fundus images using deep learning. Two types of image 
datasets are used to train the CNNs: original fundus images, and 
original fundus images embedded with grey level blood vessels. 
We implement a blood vessel detection algorithm using 
smoothing, image enhancement, and morphological algorithms. 
We train multiple CNNs for each dataset using different sizes of 
kernel and stride in the first convolutional layer. The proposed 
method moves a window in the horizontal and vertical directions 
in each image, and applies CNNs to each window to find a ROI 
with the highest CNN result. The test results show promise. All 
CNNs in the two groups show over 98% accuracy, in the case of 
the MESSIDOR dataset. In the case of the Open Sources dataset, 
the CNN using the blood vessels shows the best performance 
overall: over 99% accuracy for the MESSIDOR dataset and over 
97% accuracy for the Open Sources dataset. Therefore, we 
conclude that it is efficient to train CNNs using features (blood 
vessels) to make the CNNs more robust.  

As a future task, we plan to improve the blood vessel detection 
algorithm to increase the accuracy of the proposed method. In 
addition, we will extend the method to segment optic disc and 
cup areas in fundus images. 
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