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Abstract—The algorithm described in this paper aims to 
classify the spine x-ray images according to image characteristics 
that exhibit gender. We developed a customized sequential CNN 
model which is trained from scratch using the spine images first 
and tested it on the NHANES II dataset hosted by the U.S. 
National Library of Medicine (NLM). Aiming to improve the 
performance, we then developed a method for extracting the 
region-of-interest (ROI) in the cervical spine images using a 
content-based image retrieval (CBIR) method and compared the 
results of using the original images vs. the ROI images. Later, we 
applied/tested the method of fine-tuning a DenseNet model that 
was pre-trained with the ImageNet dataset with the spine images, 
and this approach gets the best result, achieving classification 
accuracy of 99% for cervical spine image set and 98% for the 
lumbar spine image set.   

Keywords-spine x-ray; deep learning; gender classification; 
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I. INTRODUCTION 
In recent years, deep learning has become a popular and 

effective technique in the field of computer vision (especially 
for natural image classification) due to the availability of large 
annotated datasets, affordability of GPU cards, and 
collaboration within the research community for providing open 
access to source codes and trained models. In this paper, we 
attempt to detect the gender of the imaged person based on their 
characteristics imaged in the spine x-rays. This was motivated 
by the observation that gender information is sometimes missing 
due to lack of proper acquisition procedures or aggressive de-
identification processes. According to [1, 2], there are 
anatomical gender differences in cervical/lumbar spines (such as 
vertebral geometry and spinal curvature). There are also sex 
differences in characteristics associated with spinal diseases 
(such as clinical and radiological manifestations) [3, 4]. As 
shown in Figure 1 and Figure 2, in addition to the spinal area 
that may exhibit gender differences, other regions such as the 
head-neck segment (in the cervical spine image) or the breast 
region (in the lumbar spine image) may also present 
characteristics that are gender identifiable. It is very challenging 
to hand-engineer features that are effective for capturing gender-
differentiating morphological characteristics. Therefore, we 
examine the use of the deep convolutional neural network 
(CNN) which learns feature representation automatically from 
raw image data. 

There has been some work in the research literature on 
classifying gender from images, with the majority being 
applications to visible light or infrared face images [5, 6] or NIR 
Iris images [7, 8]. Very few works use medical images to 
identify gender.  Such efforts that have been made include [9], 
based on hand x-rays, and [10], based on x-ray images of femur 
bone. Both of [9, 10] use conventional methods that are based 
on hand-crafted features. Our group has applied deep learning, 
specifically, transfer learning (using CNN-based feature 
extractor plus conventional classifier), to identify gender from 
the patient’s frontal chest x-ray [11].  In [11], we compared six 
CNN feature extractors (AlexNet [12], VggNet-16 [13], 
VggNet-19 [13], GoogleNet [14], ResNet-50 [15], and ResNet-
152 [15], all pre-trained using ImageNet [16] data) plus two 
conventional classifiers (SVM and Random Forest).  

 

Female Male 

Figure 1. Examples of cervical spine images 

 

Female Male 

Figure 2. Examples of lumbar spine images 
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In this paper, we work on the spine images obtained by the 
second National Health and Nutrition Examination Surveys 
(NHANES II dataset) in which the gender information was 
provided with each image. For developing a CNN-based 
classifier to identify gender information from spine x-ray 
images, we evaluated a customized sequential CNN model 
which is trained from scratch using the spine images at first. In 
order to improve the performance, we then developed a method 
for extracting the region-of-interest (ROI) in the cervical spine 
images using a content-based image retrieval method (CBIR, 
similarity-searching). This method aims to alleviate the negative 
effect on the classifier of the irrelevant information in the image 
border regions. We compared the results from using the cropped 
ROI images as input with the results from using the original, 
uncropped images. Later, we test the method of fine-tuning a 
DenseNet [17] model that was pre-trained with the ImageNet 
dataset with our spine images and this approach obtains the best 
result. 

The rest of the paper is organized as follows. In Section II, 
we present the image data. In Section III, we describe the 
sequential CNN model, the method of ROI image generation, 
and the corresponding experimental results and comparison. In 
Section IV, we present the method of DenseNet fine-tuning and 
the corresponding results analysis and discussions. Section V 
concludes the paper and describes future work.      

II. IMAGE DATA 
The U.S. National Library of Medicine (NLM) has a 

collection of 17,100 spine (cervical and lumbar) x-ray images. 
The images were collected during the second National Health 
and Nutrition Examination Surveys (NHANES II), carried out 
by the National Center for Health Statistics, Centers for Disease 
Control (NCHS/CDC) during the years 1976-1980. Besides 
images, related text data such as demographic information, 
anthropometric data, and health and medical history were also 
collected. Detailed information on this dataset can be found on 
this NLM web site [18]. This large dataset is a valuable resource 
which has been previously used by researchers in various studies 
such as bone morphometry education, vertebra segmentation, 
and content-based image retrieval [19, 20]. The data in 
NHANES II contains 9667 cervical spine images and 7428 
lumbar spine images. The cervical spine images have size 1462 
x 1755, and the lumbar spine images, 2048 x 2487. Among 
cervical spine images, 5053 are female and 4614 are male. For 
lumbar images, there are 2833 female images and 4595 male 
images. The images were acquired as a part of a public health 
survey and have been de-identified.  

III. APPROACH I: CUSTOMIZED SEQUENTIAL CNN MODEL 

A. Customized Sequential CNN Model 
The architecture of the CNN model tested in this study is 

shown as in Figure 3.   Since each layer connects only to the 
previous and following layers, we refer to this conventional 
CNN as a “sequential CNN model”.  This model is trained from 
scratch using the spine images. The proposed model 
encompasses five convolutional and three fully-connected 
layers. Input images of dimension 227 × 227 × 3 are fed into the 
input layer. There are 96 filters in the first convolutional layer, 

each of dimension 7×7 and stride 2. A Rectified Linear unit 
(ReLU) activation follows each convolutional layer to enhance 
learning [21]. All the other convolutional layers have filters of 
dimension 3×3. Weights are initialized from a zero-mean 
Gaussian distribution. A local response normalization (LRN) 
layer is included after the first and second convolutional layers 
to aid in generalization, motivated by the lateral inhibition 
process of biological neural networks [12]. Max-pooling layers 
with a pooling window of 3×3 and stride 2 follow the LRN 
layers and the fifth convolutional layer. There are three fully-
connected layers, the first two fully connected layers having 
4096 neurons each; the third fully connected neurons has two 
neurons which feed into the Softmax classifier. Dropout 
regularization is achieved by dropping 50% of the neurons in the 
first and second fully-connected layers during the process of 
training, to alleviate over-fitting issues. The proposed model is 
trained by optimizing the multinomial logistic regression 
objective using stochastic gradient descent (SGD) with 
momentum. The model is optimized for its hyper-parameters by 
a randomized grid search method [22]. L2-regularization is used 
with a weight penalty of 5×10-4. The learning rate is initialized 
to 0.001 and is reduced three times before convergence. The 
mini-batch size is 10 and the training is stopped after 60 epochs. 
The proposed model achieves faster convergence due to implicit 
regularization imposed by smaller convolutional filter 
dimensions, greater depth, usage of L2-regularization 
parameter, and dropouts in the fully-connected layers.  

 

 
Figure 3. Architecture of our CNN (conventional sequential model) 

 

B. ROI Image Cropping 
As shown in Figure 4, there are images that contain 

unwanted border regions (Figure 4a and 4b) or notably larger 
regions of background or shoulder (Figure 4c and 4d). To 
analyze the effect of these unwanted regions on the classification 
accuracy of CNN models, we propose a CBIR-based method to 
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remove them (at least partially) and focus more on the ROI. In 
our previous work on cervical vertebra segmentation [19], we 
collected 136 images in which the rectangular regions 
containing the spine were marked.  Several examples of these 
spinal-ROI marked images are shown in Figure 5.  We use these 
136 images as the retrieval database. For each cervical spine 
image, we first compare it with all the images in the retrieval 
database to find the most similar one. The feature we use to 
represent the image content is the PHOG  (Pyramid Histogram 
of Oriented Gradients) feature [23]. The similarity measure is 
Euclidean distance. We then use the coordinates of the center 
point of the marked spinal ROI in the image returned from the 
database to extract a square ROI image of size 1400 x 1400 from 
the query image; this square ROI is centered on the point 
obtained from the database image. We chose not to use the ROI 
from the database image “as-is” for two reasons:  1) Since 
gender differences are not only exhibited on the spine but also 
on nearby structures (such as the base of the skull), our ROI 
needs to include these important areas as well as the spine; 2) As 
shown in Figure 5, the size of the marked spinal ROI is not the 
same across the 136-image dataset. If the variable size spinal 
ROI images are used as input to the CNN models, since each 
image needs to be resized to a constant value, the anatomical 
regions in the image will be resized disproportionally across the 
dataset. Since the relative size of certain anatomical regions 
(such as vertebra width and disc-facet depth) may indicate 
gender difference [2], the size of the cropped images should be 
consistent across the dataset. Figure 6 shows examples of 
images with ROI extraction results. 

 

 
(a) (b) 

 
(c) (d) 

Figure 4. Examples of cervical spine images 

 
 

 
(a) (b) (c) 

Figure 5. Examples of collected images with spinal ROI marked 

 
(a) (b) (c) 

Figure 6. Examples of ROI extraction results 

 

C. Experimental Tests 
We evaluate the performance of this customized sequential 

CNN model on the cervical spine image set. For the 
experiments, we randomly split the images into training set, 
validation set, and test set (in approximate proportions of 
80%/10%/10%). The number of cervical spine images in each 
set is shown in Table 1. The confusion matrix and classification 
accuracy for the customized sequential CNN model on the 
original cervical spine images are shown in Table 2. It obtains 
accuracy of 88.9%. We then use the cropped ROI images as the 
input to the model to see if it improves the performance 
compared to using the original cervical spine images, however, 
as shown in Table 3, the result of accuracy is almost the same. 
This suggests that the network is able to learn to ignore 
irrelevant, noisy information in the images and focus on the key 
features.  

 
Table 1. Cervical Spine Images 

 Training Validation Test Total 
Female 4000 500 553 5053 
Male 3680 460 474 4614 

 

Table 2. Results For Cervical Images (the customized sequential CNN Model 
on the original images) 

Original Images 
Confusion matrix Accuracy 

Predict -> Female Male 
0. 889 F 506 47 

Male 65 409 
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Table 3. Results For Cervical Images (the customized sequential CNN Model 
on the original images) 

Cropped ROI Images 
Confusion matrix Accuracy 

Predict -> Female Male 
0. 890 Female 486 67 

Male 47 427 
 

IV. APPROACH II: FINE-TUNING DENSENET 

Later, we apply/test the method of fine-tuning the ImageNet-
pre-trained DenseNet with the spine dataset to see if it gets better 
classification result than that of the customized sequential CNN 
model.  

 

A. DenseNet Fine-Tuning 
Compared to conventional CNNs in which layers only 

connect to adjacent layers, the DenseNet includes densely-
connected blocks named dense blocks. Within a dense block, 
each layer is connected to all the preceding layers and all the 
subsequent layers. (To contrast the DenseNet architecture with 
conventional CNNs, we refer to it as an example of a “non-
sequential CNN model”.) Therefore, instead of using only the 
feature maps output from the closest preceding layer as the 
inputs, each layer in the dense block uses the feature maps from 
all the preceding layers as the inputs and its own feature maps 
are used as inputs to all the subsequent layers in the block [17]. 
Typically, each dense block is followed by transition layers 
which contain a pooling layer for reducing the feature map size. 
Figure 7 shows an example of a DenseNet with four dense 
blocks. The integration of the dense connections in the 
architecture enables DenseNet to promote feature reuse and 
feature propagation. As a result, it achieves high performance 
while being computationally efficient [17, 24]. Implementations 
of the DenseNet and pre-trained models have been made 
available by the authors at [25].  For our application, we use the 
DenseNet-121 model that is pre-trained with ImageNet data. It 
consists of 4 dense blocks, 4 transition layers and 1 classification 
layer. The 4 dense blocks contain 6, 12, 24, and 16 pairs of 
convolutional layers respectively. Each transition layer consists 
of a convolutional layer and a pooling layer. The classification 
layer consists of a pooling layer, a fully connected layer and a 
Softmax layer. The size of the images is 224 × 224 × 3. For the 
detailed DenseNet-121 architecture and parameters, please refer 
to [17]. To fine-tune the pre-trained DenseNet-121 model using 
our spine image data, we replace the original 1000-D fully-
connected layer (for ImageNet classes) with a 2-D fully-
connected layer. The learning rate is set as 0.001 initially and 
decays over time. The momentum is set as 0.9. The mini-batch 
size is 4 and the number of epoch is set to be 60. The 
optimization method is SGD and the cross-entropy loss function 
is used. Both batch normalization and dropout are applied.  

 

B. Experimental Tests 
We evaluate the performance of this approach on the same 

training/validation/test cervical image set used by the approach 
I.  Figure 8 shows the training and validation loss of the model 

over the number of epochs and Figure 9 shows the training and 
validation accuracy of the model over the number of epochs. 
Table 4 lists the confusion matrix and classification accuracy for 
the test set. It obtains accuracy of 0.99 for the test set which is 
much higher than that of the first approach, which demonstrates 
the advantages of the network architecture of DenseNet (with 
significant feature reuse and propagation) and the transfer 
learning (pre-trained with large image set) over our customized 
sequential CNN model trained from scratch using a relatively 
small dataset. We apply the method of fine-tuning DenseNet to 
the lumbar spine original images as well. The number of lumbar 
spine images randomly split into three sets (in approximate 
proportions of 80%/10%/10% for training/validation/test) is 
shown in Table 5. The corresponding confusion matrix and 
accuracy for the test set is shown in Table 6. For lumbar spine 
images, the test set accuracy is 0.98. 

 
Figure 7. Diagram of a DenseNet with four dense blocks.  DenseNet is a non-
sequential model. 

 
Figure 8. The model loss over the number of epochs 

 
Figure 9. The model accuracy over the number of epochs 

 

Table 4. Results For Cervical Images (DenseNet/Original Images) 

Confusion matrix Accuracy 
Predict -> Female Male 

0.99 Female 546 7 
Male 2 472 
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Table 5. Lumbar Spine Images 

 Training  Validation  Test  Total 
Female 2260 280 293 2833 
Male 3670 450 475 4595 

Table 6. Results For Lumbar Images (DenseNet/Original Images) 

Confusion Matrix Accuracy 
Predict -> Female Male  

Female 283 10 0.98 
Male 7 468  

 

V. CONCLUSION 
In this paper, we process spinal x-ray images to detect the 

gender of the imaged person. We first developed a customized 
sequential CNN model which was trained from scratch using the 
spine images in the NHANES II. We then examined if using the 
ROI images as the input to the CNN model yields better 
performance compared to using the original cervical spine 
images. However, it obtained almost the same results as using 
the original images, which indicates that the CNN model is quite 
effective in learning effective features while ignoring irrelevant 
information. We then applied the method of fine-tuning the 
ImageNet-pretrained DenseNet. The fine-tuned DenseNet 
achieves much better performance, obtaining 99% accuracy for 
the cervical set and 98% accuracy for the lumbar set. In the 
future, we will work on applying deep learning techniques for 
processing other tasks on the NHANES II dataset such as 
vertebra segmentation, and comparing with the traditional 
method we developed. 
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