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Abstract 

Malaria remains a major burden on global health, with roughly 200 million cases worldwide and 

more than 400,000 deaths per year. Besides biomedical research and political efforts, modern 

information technology is playing a key role in many attempts at fighting the disease. One of the 

barriers towards a successful mortality reduction has been inadequate malaria diagnosis in 

particular. To improve diagnosis, image analysis software and machine learning methods have 

been used to quantify parasitemia in microscopic blood slides. This paper gives an overview of 

these techniques and discusses the current developments in image analysis and machine learning 

for microscopic malaria diagnosis. We organize the different approaches published in the 

literature according to the techniques used for imaging, image pre-processing, parasite and cell 

segmentation, feature computation, and automatic cell classification. Readers will find the 

different techniques listed in tables with the relevant papers cited next to them, for both thin and 

thick blood smear images. We also discussed the latest developments in sections devoted to deep 

learning and smartphone technology for future malaria diagnosis. 
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1. Introduction 

 Malaria is caused by protozoan parasites of the genus Plasmodium that are transmitted 

through the bites of infected female Anopheles mosquitoes and that infect the red blood cells. 

Most deaths occur among children in Africa, where a child dies almost every minute from 

malaria, and where malaria is a leading cause of childhood neuro-disability. According to the 

WHO World Malaria Report 2015 [1], an estimated 3.2 billion people in 95 countries and 

territories are at risk of being infected with malaria and developing disease, and 1.2 billion are at 

high risk (>1 in 1000 chance of getting malaria in a year). There were about 214 million cases of 

malaria globally in 2015 and about 438 000 malaria deaths. The burden was heaviest in the 

African region, where an estimated 92% [2] of all malaria deaths occurred, and in children aged 

under 5 years, who accounted for more than two thirds of all deaths (see also the malaria death 

rates from an earlier WHO report in Figure 1). Typical symptoms of malaria include fever, 

fatigue, headaches, and in severe cases seizures and coma leading to death. 

 Hundreds of millions of blood films are examined every year for malaria, which involves 

manual counting of parasites and infected red blood cells by a trained microscopist. Accurate 

parasite counts are essential not only for malaria diagnosis. They are also important for testing 

for drug-resistance, measuring drug-effectiveness, and classifying disease severity. However, 

microscopic diagnostics is not standardized and depends heavily on the experience and skill of 

the microscopist [1]. It is common for microscopists in low-resource settings to work in isolation, 

with no rigorous system in place that can ensure the maintenance of their skills and thus 

diagnostic quality [1]. This leads to incorrect diagnostic decisions in the field [1]. For false 

negative cases, this leads to unnecessary use of antibiotics, a second consultation, lost days of 

work, and in some cases progression into severe malaria. For false positive cases, a misdiagnosis 

entails unnecessary use of anti-malaria drugs and suffering from their potential side-effects, such 

as nausea, abdominal pain, diarrhea, and sometimes severe complications. 

 This sober analysis of malaria diagnosis has prompted efforts to perform malaria 

diagnosis automatically. Automatic parasite counting has several advantages compared to 

manual counting: i) it provides a more reliable and standardized interpretation of blood films, ii) 

it allows more patients to be served by reducing the workload of the malaria field workers, and 

iii) it can reduce diagnostic costs. Several key processing steps are typically required to quantify 

parasitemia automatically. First, digital blood slide images need to be acquired, which often 
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requires preprocessing to normalize for lighting or staining variations. In a second step, blood 

cells and/or parasites need to be detected. For blood cells, this typically implies cell segmentation 

to identify individual cells in cell clumps to obtain accurate cell counts. In a third step, after cell 

detection and segmentation, features are computed to describe the typical visual appearance of 

infected and uninfected blood cells. In a final classification step, a classifier, who has been 

trained on an independent and typically manually annotated training set then discriminates 

between infected and uninfected cells. Once the number of infected and uninfected cells are 

known, computation of parasitemia is a straightforward mathematical equation, which includes 

clinical parameters such as hematocrit value for example. 

 The prospects of automating malaria diagnosis with its obvious advantages has attracted 

many researchers, especially in the last decade. The publications reflect all the major 

developments we have seen in the areas of automatic pattern recognition and machine learning in 

the last years. Our paper will give an overview of the papers that have been published, using the 

processing steps mentioned above as a framework and guide. This is not the first survey paper on 

the subject. In fact, several survey papers have already been published before, which bears 

testimony to both the importance of automated malaria diagnosis and the research dynamics and 

rapid system development. We refer readers in particular to the following surveys for additional 

information about the background of automatic malaria diagnosis and the image processing and 

machine learning methods used for automated microscopy diagnosis of malaria: [3, 4, 5]. In 

addition, more specific surveys have been published on cell features for malaria parasite 

detection [6], on malaria diagnosis [7], on malaria diagnostic tools [8], and on alternatives to 

conventional microscopy [9]. The purpose of our paper is not to replace these surveys, but rather 

to complement them and to provide the latest update of the state-of-the-art in image analysis and 

machine learning for malaria diagnosis as it presents itself at the end of the Year 2017. With 

about 160 literature citations, we have collected more references compared to the other surveys. 

We had the goal to include also maybe lesser known publications to provide a historical 

documentation of the work done. In addition, we included a section on deep learning, which is 

the latest development in malaria diagnosis and which arguably has the potential to render many 

of the old approaches obsolete, similar to the development in other imaging application areas. 

There have also been many developments in hardware for automatic malaria diagnosis, which 

are however out of the scope of this paper and deserve a separate paper. Nevertheless, we devote 
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a section to rapid diagnostic tests (RDTs) for malaria diagnosis because they are also widely 

used in the field. The bulk of our papers have been collected from the Journal of Microscopy, 

Malaria Journal, and PLOS ONE, including a few papers from Nature and others. We have also 

collected publications from IEEE conferences and other proceedings published by Springer and 

Elsevier. Furthermore, we have organized the papers into sections for preprocessing, cell 

detection and segmentation, feature computation, and classification. We have also added a 

separate section about deep learning and an extensive section about mobile smartphone 

applications for malaria diagnosis. A discussion of the latest developments and our conclusion 

mark the end of this paper. 

2. Malaria 

 There are five Plasmodium species that cause malaria in human: Plasmodium falciparum, 

Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and Plasmodium knowlesi. The 

two most common species are P. falciparum and P. vivax. P. falciparum is the most severe form 

and is responsible for most malaria-related deaths globally [1]. 

 Plasmodium falciparum is the most prevalent malaria parasite in sub-Saharan Africa, 

accounting for 99% of estimated malaria cases in 2016. Outside of Africa, P. vivax is the 

predominant parasite in the WHO Region of the Americas, representing 64% of malaria cases, 

and is above 30% in the WHO South-East Asia and 40% in the Eastern Mediterranean regions 

[162]. 

 Each of these parasite species goes through stages during their development cycle (48 

hours), which gives the parasites a different visual appearance that can be observed under the 

microscope. In chronologic order, these stages are the ring stage, trophozoite stage, schizont 

stage, and gametocyte stage. Figure 2 shows typical examples of all stages for each species. 

 In non-severe malaria mostly the young stages (< 24 hours old) of P. falciparum are 

present in the peripheral blood, while for severe malaria all stages can be present in the 

peripheral blood. For P. falciparum, the trophozoite-infected red blood cells disappear from the 

peripheral blood circulation by attachment to the walls of capillaries inside vital organs, which is 

a process called sequestration. If the capillaries are blocked for newly infected cells by already 

attached cells, more mature parasite stages (trophozoites and schizonts) will be visible in the 

peripheral blood, which indicates a severe infection and a bad prognosis. 
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 For P. falciparum, ring stages have a visible cytoplasm and one or two small chromatin 

dots. The infected blood cells are not enlarged but can feature multiple infections. P. falciparum 

trophozoites are rarely seen in peripheral blood smears. The cytoplasm of mature trophozoites 

tends to be more dense than in younger rings, while growing trophozoites can appear slightly 

amoeboid in shape (CDC). P. falciparum schizonts are also seldomly seen in peripheral blood. 

They are displaying several dark pigments (merozoites), which are clumped in one mass. 

Gametocytes of P. falciparum have a crescent, or sausage shape and can be seen in the blood 

smear one weak after a parasite infection. The chromatin is visible as a single mass or is diffuse. 

For more information about P. falciparum morphology, see for example the following references 

[163, 164]. Similar observations can be made for the stages of the other parasite species. For 

example, for P. vivax, hosts cells are often enlarged and have irregular shape. Trophozoites are 

amoeboid in shape and for severe infections multiple infections of single blood cells are not 

uncommon. For P. malariae, host cells are not enlarged. Trophozoites have a strong tendency to 

form as a band across the diameter of infected red blood cells. Multiple infections are extremely 

rare for P. malariae. On the other hand, for P. ovale, host cells are slightly enlarged and have an 

oval shape with tufted ends, often fimbriated. Parasites are slightly enlarged and trophozoites are 

amoeboid in shape. Multiple infections of a single cell are more common than for P. vivax. For P. 

knowlesi, infected red blood cells do not appear enlarged. The parasite erythocytic cycle is only 

24 hours, which is shorter than P. falciparum’s cycle (48 hours) and much shorter than P. 

malariae’s cycle (72 hours), which will lead to the same stage seen in peripheral blood every day 

at a given time. The morphology of P. knowlesi parasites is similar to P. malariae. Trophozoites 

can feature pigments spread as a band like P. malariae, but their cytoplasm is more irregular and 

multiple parasites infecting one single red blood cell can be seen like in P. falciparum. 

 Figure 3 shows two examples of different parasite stages in the same thin blood slide 

image. In the first slide image, P. falciparum trophozoites and gametocytes can be seen together 

with white blood cells. The latter are larger and have a pronounced nucleus compared to the 

many red blood cells in the image. In the second image, P. falciparum ring stages are together 

with schizonts. In addition, other objects such as parasite outside cells and staining noise are 

visible in both images. Staining noise in particular can be confused with parasites by an 

unexperienced microscopist. 

3. Malaria Diagnosis 
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 Malaria is a curable disease with drugs available for treatment, including drugs that can 

help prevent malaria infections in travelers to malaria-prone regions. However, there exists no 

effective vaccine against malaria yet, although this is an area of active research and field studies. 

Once infected, malaria is a rapidly progressing disease, with a serious risk of developing into 

severe and cerebral malaria with neurological symptoms for P. falciparum infections. Therefore, 

a timely diagnosis of malaria is very important. Although malaria can be diagnosed in many 

different ways, there is room for improvement for current malaria diagnostic tests including 

reducing cost, increasing specificity and improving ease of use. Because automated malaria 

diagnosis for resource-poor settings is the main topic of this survey, we have devoted two 

subsections to light microscopy and Rapid Diagnostic Tests (RDTs), which are by far the two 

most heavily used diagnostic means in these areas. We also briefly discuss the other options for 

malaria diagnosis, although they are arguably less suited for the conditions in remote malaria 

regions. For more information about malaria diagnosis, we refer readers to the surveys in [7] and 

[9], and the following references: [8, 13, 16]. 

 Detecting the presence of parasites is the key to malaria diagnosis. In addition, 

identifying the parasite species and presence of potentially mixed infections is important, as well 

as the observation of the stage development of P. falciparum parasites in relation to the severity 

of the disease. Counting parasites for determining the level of parasitemia is not only important 

for identifying an infection and measuring its severity, it also allows monitoring patients by 

measuring drug efficacy and potential drug-resistance. 

3.1. Light Microscopy 

 The current gold standard method for malaria diagnosis in the field is light microscopy of 

blood films, which is the main focus of this paper. Although other forms of diagnosis exist and 

have become popular in recent years, in particular Rapid Diagnostic Tests, microscopy remains 

the most popular diagnostic tool, especially in resource poor settings. With microscopy, all 

parasite species can be detected. It allows computing the level of parasitemia, clearing a patient 

after a successful treatment, and monitoring drug-resistance. Furthermore, it is less expensive 

than other methods and widely available. However, its biggest disadvantages are the extensive 

training required for a microscopist to become a proficient malaria slide reader, the high cost of 

training and employing, maintaining skills, and the large component of manual work involved. 

Page 6 of 54



 To diagnose malaria under a microscope, a drop of the patient’s blood is applied to a 

glass slide, which is then immersed in a staining solution to make parasites more easily visible 

under a conventional light microscope, usually with a 100x oil objective. Two different types of 

blood smears are typically prepared for malaria diagnosis: thick and thin smears. A thick smear 

is used to detect the presence of parasites in a drop of blood. Thick smears allow a more efficient 

detection of parasites than thin smears, with a 11 times higher sensitivity [5]. On the other hand, 

thin smears, which are the result of spreading the drop of blood across the glass slide, have other 

advantages. They allow the examiner to identify malaria species and recognize parasite stages 

more easily. 

 The actual microscopic examination of a single blood slide, including quantitative 

parasite detection and species identification takes a trained microscopist 15-30 minutes. 

Considering that hundreds of thousands of blood slides are manually inspected for malaria every 

year, this amounts to a huge economic effort required for malaria diagnosis. 

3.2. Rapid Diagnostic Tests 

 The main advantage of microscopic malaria diagnosis lies in its low direct cost, which 

gives it a distinct advantage in resource poor settings [1]. Other existing diagnostic methods, and 

any new method, have to prove that they can provide the same ease of use and price point as 

microscopy given the limited financial resources typically available in malaria-prone regions. 

Arguably the only and main competitor in this sense are Rapid Diagnostic Tests (RDTs). They 

detect evidence of malaria parasites (antigens) and take about 10-15 minutes to process. Their 

detection sensitivity is lower but comparable to manual microscopy, and they do not require any 

special equipment and require only minimal training. 

 Although RDTs are currently more expensive than microscopy in high burden areas [165], 

a valid question is whether these tests can replace microscopy in the near future. At the time of 

this writing, according to WHO [1], more countries use microscopy more than they use RDTs [2]. 

RDTs are used more in rural areas where microscopy is not available. About 47% of malaria 

tests in malaria endemic countries worldwide were made by RDT [2]. 

 The use of RDTs, however, does not eliminate the need for malaria microscopy. A major 

disadvantage is that RDTs do not provide quantification of the results. Therefore, at this point in 

time, microscopy and RDTs are more complementing each other than one replacing the other. 

3.3. Other Tests 
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 Several methods for diagnosing malaria are available. Important criteria are cost per test, 

sensitivity and specificity of the method, time per test and the required skill level of the user. 

Furthermore, quantification of the number of infected red blood cells is important as a prognostic 

indicator [64]. 

 • Polymerase Chain Reaction. A molecular method called Polymerase Chain Reaction 

(PCR) has shown higher sensitivity and specificity than conventional microscopic examination 

of stained peripheral blood smears [7]. In fact, it is considered the most accurate among all tests. 

It can detect very low parasite concentrations in the blood and can differentiate species. However, 

PCR is a complex high-cost technology that takes many hours to process by trained staff. 

According to [7], PCR is not routinely implemented in developing countries because of the 

complexity of the testing and the lack of resources to perform these tests adequately and 

routinely. Quality control and equipment maintenance are also essential for the PCR technique, 

so that it may not be suitable for malaria diagnosis in remote rural areas or even in routine 

clinical diagnostic settings. 

 • Fluorescent Microscopy. Quantitative buffy coat (QBC) is a laboratory test to detect 

infection with malaria or other blood parasites, using fluorescent microscopy. A fluorescent dye 

makes parasites visible under ultraviolet light. According to [166], this test is more sensitive than 

the conventional thick smear. Nowadays, portable fluorescent microscopes with fluorescent 

reagent to label parasites, are available commercially. Although the QBC technique is simple, 

reliable, and user-friendly, it requires specialized instrumentation, is more costly than 

conventional light microscopy, and is poor at determining species and numbers of parasites [7]. 

 • Flow Cytometry. This is a laser-based cell counting and detection methods that allows 

to profile thousands of cells per second. Although flow cytometry offers automated parasitemia 

counts, this is offset by a rather low sensitivity. Flow cytometry is less suitable as a diagnostic 

technique in the field, when a direct answer is required for treatment decisions. However, in 

developed countries it can be applied in the clinical setting for accurate counting of parasite 

numbers, for instance in the follow-up of drug treatment (van Vianen et al., 1993). 

4. Staining methods 

 Over 100 years ago, Giemsas stain (1902) was applied for the first time for the diagnosis 

of malaria. Since then, it received increased attention. Because of its low cost, its high sensitivity 

and specificity, it is currently widely used in microscopical malaria examinations (Keiser et al., 
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2002). However, Giemsa staining requires multiple reagents, experienced personal, and is labor 

intensive and time consuming (it typically requires at least 45 min to stain a slide; Keiser et al., 

2002). 

 Other stains have been used, too, like Field stain that significantly reduces the staining 

time, although it requires drying of samples before and during staining (Houwen, 2002). 

However there are also disadvantages with Field’s stain, especially in under-resourced health 

centers in which the stain might be used. Poor blood preparations often result in the generation of 

artifacts commonly mistaken for malaria parasites, such as bacteria, fungi, stain precipitation, 

dirt, and cell debris. These can frequently cause false positive readings. 

 Another stain is Leishman’s stain (1901), which has a high sensitivity, is cheap, and 

relatively easy to perform. Among the other stains being used is, for example, the 

Wright-Giemsa stain, which is a combination of Wright and Giemsa stain, and where the former 

facilitates the differentiation of blood cell types. 

 In 1970s, Sodeman et al. [167] investigated the effect of Fluorochrome staining in 

identifying the malaria parasites at low-level infection. It has been shown that Fluorochrome 

staining is more sensitive and less time-consuming than Romanowsky and Giemsa staining 

methods [60, 168, 169] but requires considerable practice and training, and suffers from artifacts 

including photobleaching and phototoxicity [170, 171]. Moreover fluorescence microscopes are 

more expensive than standard light microscopes, which is a factor in tropical resource-poor 

regions where malaria is endemic [167, 172, 168]. 

 Table 1 shows the blood smear types and staining techniques used for the approaches 

published in the literature. Clearly, the vast majority of publications has been for thin smears. 

Certainly, one reason for this lies in the fact that thin smears allow to determine the parasite 

species and stages more easily, in addition to the parasitemia. So, in some sense, thin smears are 

more versatile and contain more information. Another important reason is probably that the 

presence of red blood cells gives the problem of parasite detection more structure, and makes the 

problem easier to a certain degree, as parasites need to be detected only inside cells. For thick 

films, parasite detection may be harder due to noise and staining artifacts that can lead to false 

positives. Nevertheless, because of the importance of thick smears for practical malaria diagnosis, 

it is very likely that more approaches for thick films will be implemented in the future. However, 
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if convincing optical hardware solutions are found to scan multiple fields in thin smears and 

achieve a sensitivity comparable to thick smears, then this may be a moot point [37, 122]. 

 Table 1 also shows that the majority of approaches, for both thin and thick smears, have 

adopted the most popular stain in practice, Giemsa. While stains like Leishman provide very 

good results for malaria parasites, Giemsa stain has proved to be the best all-round stain for the 

routine diagnosis of malaria. It has the disadvantage of being relatively expensive, but this is 

outweighed by its stability over time and its consistent staining quality over a wide range of 

temperatures. 

5. Automated Diagnosis of Malaria 

 This section provides the core information of our survey, namely a compilation of 

references that should cover the vast majority of papers ever published on automated microscopy 

for malaria diagnosis, with the bulk of the papers published in the last ten years. The work that 

has been done in this area is quite diverse. Nevertheless, a system for automated cell microscopy 

usually implements a sequence of key processing steps that can serve as a guideline. Therefore, 

each of the following subsections will focus on one specific aspect of the processing pipeline. 

 The first step is usually the acquisition of digital images of blood smears, which largely 

depends on the equipment and materials being use. Section 5.1 breaks down the different 

approaches for the different types of microscopy, blood slides (thin or thick), and staining. 

 Following image acquisition, most systems perform one or several pre-processing 

methods to remove noise and to normalize lighting and color variations inherent in the image 

acquisition and staining process. Section 5.2 sorts the publications according to the 

pre-processing methods implemented. 

 The next step usually involves the detection and segmentation (outlining) of individual 

blood cells and maybe other objects than can be visible in a blood slide image, such as parasites 

or platelets. Section 5.3 gives an overview of all the segmentation methods that have been used 

for microscopic malaria diagnosis. 

 For most papers, cell segmentation is followed by the computation of a set of features, 

which describe the visual appearance of the segmented objects in a mathematical succinct way. 

Section 5.5 presents the different features and potential feature selection strategies that can be 

found in the literature. 
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 In the last step, a mathematical discrimination method that classifies the segmented 

objects into different classes based on the computed features is implemented. For example, 

labeling each red blood cell as either infected or uninfected is a key classification task performed 

in this step, which then allows to compute the parasitemia. Section 5.6 lists all the classification 

methods used in the literature for malaria diagnosis. 

 Later in the paper, in Section 6, we will present references for the latest classification 

trend, deep learning, which skips the feature computation step and sometimes even the 

segmentation step. Furthermore, in Section 7, we will discuss how smartphones can be used for 

microscopic malaria diagnosis and list the systems that have already been implemented and 

published. 

5.1. Image Acquisition 

 Table 2 lists all published systems according to the type of microscopy used. Because 

light microscopy is the most common form of malaria diagnosis in resource poor settings, where 

automation will also have the largest impact on healthcare and economy, it is not surprising that 

most authors implemented systems for standard microscopy. We have also added all other 

imaging techniques that we found in the literature and for which automated systems have been 

developed. For more detailed information about these approaches we refer to the references 

listed in the table and the reference list at the end of this paper [7, 9, 13, 16, 8]. 

  

5.2. Pre-processing 

 Table 5.2 lists all preprocessing approaches that have been applied to automatic analysis 

of digital blood slide images. 

 Pre-processing is mainly applied to improve the quality of the image and to reduce 

variations in the images that would unnecessarily complicate the subsequent processing steps. 

Three key objectives can be identified: noise removal, contrast improvement, illumination and 

staining correction. 

 For noise removal, the most popular approaches have been well-established filters, such 

as mean and median filters, or Gaussian low pass filtering. In addition, applying morphological 

operations is very popular. For contrast improvement, contrast stretching techniques, and 

histogram equalization in particular, have been the most popular approaches. For illumination 
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and staining variations, color normalization techniques have been applied, including the popular 

use of gray-scale colors. 

5.3. Red Blood Cell Detection and Segmentation 

 Table 4 shows the different segmentation techniques applied to thin smears. The vast 

majority of these techniques are thresholding techniques, such as Otsu thresholding in 

combination with morphological operations. However, these techniques may not be dominating 

because of their superior performance compared to other methods but rather because of their 

relative simplicity. Other methods include Hough transform, which makes assumptions about the 

blood cell shape, and unsupervised k-means pixel clustering. Cell segmentation needs to be 

accurate to compute the correct parasitemia. However, touching cells in particular complicate the 

identification and segmentation of individual cells. For this problem, methods like Watershed 

and active contours have been applied. 

 Table 5 shows the different segmentation techniques in the literature for thick smears. 

The segmentation situation for thick smears is different in that white blood cells and parasites 

need to be segmented. However, white blood cells are bigger than red blood cells and have more 

texture, which makes their segmentation much easier. Furthermore, white blood cells just need to 

be identified and not to be processed or classified further. In addition, parasites are very small 

and their reliable identification is most important. Therefore, the detection of these objects is 

practically more important than their segmentation, which may explain again the dominance of 

thresholding techniques and morphological operations. 

5.4. Feature Extraction and Selection 

 Table 6 lists the different features used in the literature to describe the appearance of red 

blood cells, infected and uninfected, in thin smears. Obviously, because parasites have been 

stained, color features are most natural and indeed used by many papers. In addition, several 

texture and morphological features have been used to describe the inside of red blood cells. The 

idea is that in case of infected cells, these features can pick up the typical appearance of ring 

structures with visible cytoplasm and other unique parasite characteristics. Generally speaking, 

most of the features used are tried and trusted features that have already been applied in other, 

often non-medical, application domains. For example, Haralick’s texture features, Local Binary 

Patterns, co-occurence matrices, Histogram of Gradients (HOG), and many others have been 
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successfully used across a wide range of applications. This also includes morphological shape 

features and moments. 

 Most notably here is the use of different color spaces, which leads to sets of more 

malaria-specific features, depending on the color space used. While most papers remain in the 

standard RGB color space, we think that there is a perfectly good reason to use a different color 

space better suited to extract the typical staining colors, which often range from a blue or purple 

to brownish shade. The HSV color space is favored by many papers, and several other papers use 

the green channel of RGB to extract staining-related color information in gray-scale. 

 Table 7 shows the features used for thick smears. Because of the smaller number of 

publications for thick smears, a smaller number of features has been experimented with in the 

literature. Nevertheless, authors have used similar, if not identical, features compared to the ones 

used for thin smears, experimenting with established features as well as different color spaces. 

5.5. Feature Extraction and Selection 

 Some papers compute a large set of many different features and then for practicality 

reasons cut down on these features by selecting the most discriminative feature subset using 

feature selection strategies. Specifically, the feature selection techniques used to reduce feature 

dimensionality include Principal Component Analysis (PCA), F-statistic, One-way-Anova, 

information gain, and SVM-based recursive feature elimination [51, 65, 72, 109, 138, 143, 147]. 

 However, such classical approaches to feature computation and selection run the serious 

danger of being superseded soon by techniques not relying on hand-crafted features, such as 

Deep Learning in particular, which we will discuss in Section 6. 

5.6. Parasite Identification and Labeling 

 Table 8 lists all classification methods that have been used for either discriminating 

between infected and uninfected red blood cells in thin smears or identifying parasites in thick 

smears. 

 Virtually all classification methods popular in the last decade have been applied to 

malaria diagnosis, ranging from decision trees and basic artificial neural networks over support 

vector machines to random tree classifiers. Very few papers have developed classification 

technologies specifically for cell discrimination or parasite detection. Most of the 

malaria-specific domain knowledge lies in the interplay of segmentation, features, and 

classification. 
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 Comparing the performance of the published systems is very hard. The systems have 

been evaluated on blood slides from entirely different origins with largely varying parameters for 

image acquisition and slide preparation. Very often the evaluation set is too small or too limited 

to allow making a statement about the general system performance. Currently, there exists no 

publicly available image benchmark set, small or large, which could be used for fair comparisons 

of systems. Therefore, although many papers are reporting quite high performance numbers in 

terms of accuracy, sensitivity, specificity, and area under the ROC curve (AUC), we prefer not to 

compare these numbers in this survey paper. 

 We can observe a trade-off between the processing pipeline’s run-time performance and 

its accuracy. Typically, as the accuracy of a technique increases, its computational complexity 

increases all the same. For example, sophisticated level-set methods for cell segmentation 

perform better than Otsu thresholding but also require a longer runtime. Furthermore, feature 

computation can affect system efficiency. Some papers therefore apply feature selection methods 

to reduce feature dimensionality and remove non-discriminative features, which can improve 

both accuracy and efficiency. Finally, the runtime of cell classification depends on the 

classification architecture used. For example, a support vector machine’s classification is much 

faster than the classification by a deep neural network. While many papers do not report runtimes 

for their systems, we think that most of the cited systems will perform their task many times 

faster than a microscopist, or at least will perform faster than a human after a little optimization 

of their implementation. We have also found two papers in which the authors developed 

dedicated hardware devices with motorized stage units to increase throughput [173, 122]. 

 In combination with software, this will fully automate the slide screening process so that 

a microscopist does not need to move the microscope dish to take an image of the next field. 

This will also result in a higher throughput that can increase the sensitivity of the system by 

allowing to inspect more fields in the same time. 

 To improve system accuracy, there seems to be a trend to follow the mainstream 

classification method at the time of publication to take advantage of the latest classification 

architecture and performance improvements it brings. Consequently, we are now seeing the first 

Deep Learning papers entering the scene, as listed in the next section. 

6. Deep Learning 
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 Deep learning is the latest trend in machine learning, which has already boosted the 

performance in many non-medical areas. Deep learning can be seen as an extension of the 

well-known multi-layer neural network classifiers trained with back-propagation, except that 

many more layers are used. There are also different kind of layers that are used in typical 

successions. Because deep learning is supervised learning, it requires large training sets. This is 

the reason why medical applications have been among the last applications to adopt deep 

learning, as annotated training images are significantly harder to obtain due to expert knowledge 

requirements and privacy concerns. The first paper to apply deep learning to malaria diagnosis is 

by Liang et al. [47], who use a convolutional neural network to discriminate between infected 

and uninfected cells in thin blood smears, after applying a conventional level-set cell 

segmentation approach. This is an ideal application for deep learning because images of 

segmented red blood cells are a natural input for a convolutional neural network. Deep learning 

does not require the design of handcrafted features, which is one of its biggest advantages. Other 

authors who have applied deep learning to cell segmentation are Dong et al. [43, 46] and 

Gopakumar et al. [173], who used Convolutional Neural Networks, and Bibin et al. [48], who 

used Deep Belief Networks. 

 Since deep learning is the overarching machine learning technique nowadays, we can 

expect many more publications to appear soon for cell classification, cell staging, cell 

segmentation, and other sub-problems in automated malaria diagnosis. 

7. Mobile Smartphones for Malaria Diagnosis 

 The ideal hardware solution for microscopic malaria diagnosis in resource-poor settings 

would be a small portable slide reader into which a blood slide could be inserted and which 

would then output the parasitemia. While modern technology is heading this way, we are still far 

from having a field-usable device. In particular, the relatively high optical magnification needed 

(up to 1000x) for malaria diagnosis in combination with oil immersion is a major miniaturization 

obstacle, unless alternatives are found. The next best solution are small camera-equipped 

computing devices, such as smartphones, which can be attached to a magnifying device and can 

then compute the parasitemia automatically, using image analysis and machine learning. Modern 

smartphones have become powerful computing devices and their cameras provide sufficient 

resolution for malaria diagnosis. Moreover, Android phones have become relatively cheap and 

are often already in the possession of healthcare workers, even in resource-poor settings. While 
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cellular network connectivity can help with the information exchange between field workers and 

hospital, it is not immediately needed for malaria diagnosis and the actual cell counting. Small 

magnifying devices that can be attached to a smartphone’s camera, allowing true optical 

magnification compared to mere digital zooming, are commercially available. However, from the 

authors’ experience, these devices are still lacking in the image quality provided. Therefore, a 

more practical approach is to simply attach the smartphone to the eyepiece of a regular 

microscope with an adapter so that blood slide pictures can be taken with the smartphone’s 

camera. 

 A few experimental set-ups along these lines have been reported in the literature. In [15], 

Breslauer et al. built a mobile phone mounted light microscope and demonstrated its potential for 

clinical use by imaging P. falciparum-infected and sickle red blood cells in brightfield and M. 

tuberculosis-infected sputum samples in fluorescence with LED excitation. In all cases resolution 

exceeded that necessary to detect blood cell and microorganism morphology. For tuberculosis 

samples, they took advantage of the digitized images to demonstrate automated bacillus counting 

via image analysis software. 

 In [94], Pirnstill and Cote present a cost effective, optical cell-phone based transmission 

polarized light microscope system for imaging the malaria pigment known as hemozoin, which is 

a disposal product of the parasite’s blood digestion. It can be difficult to determine the presence 

of the pigment from background and other artifacts, even for skilled microscopy technicians. The 

pigment is much easier to observe using polarized light microscopy. However, implementation 

of polarized light microscopy lacks widespread adoption because the existing commercial 

devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be 

expensive, and would require re-training for existing microscopy technicians. The cell-phone 

based polarimetric microscopy design presented by Pirnstill and Cote shows the potential to have 

both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform. 

 Rosado et al. presented an image processing and analysis methodology using supervised 

classification to assess the presence of P.falciparum trophozoites and white blood cells in Giemsa 

stained thick blood smears [77]. Using a support vector machine (SVM) and a mix of geometric, 

color, and texture features, their automatic detection of trophozoites achieved a sensitivity of 

80.5% and a specificity of 93.8%, while their white blood cell detection achieved 98.2% 

sensitivity and 72.1% specificity. 
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 In [85], Quinn et al. presented their 3D-printable design of an adapter to attach a 

smartphone to a microscope, although all images for their experiments were taken with a 

dedicated microscope camera, which offered a higher pixel resolution than their smartphone 

camera. They presented a workflow for automated analysis of thick blood smears, which 

involved the computation of morphological and moment features and an ensemble tree classifier 

trained on these features to discriminate between abnormal patches containing parasites and 

normal patches. The performance they reported was 97% AUC (area under the ROC curve). 

 Skandarajah et al. built a custom mobile phone microscope that is compatible with 

phones from multiple manufacturers [14]. They demonstrated that quantitative microscopy with 

micron-scale spatial resolution can be carried out with multiple phones and that image linearity, 

distortion, and color can be corrected as needed. Specifically, they showed that phones with 

greater than 5 MP cameras are capable of nearly diffraction-limited resolution over a broad range 

of magnifications, including those relevant for single cell imaging. Furthermore, they found that 

automatic focus, exposure, and color gain standard on mobile phones can degrade image 

resolution and reduce accuracy of color capture if uncorrected, and they devise procedures to 

avoid these barriers to quantitative imaging. 

 Dallet et al. describe a mobile application platform for Android phones that can diagnose 

malaria from Giemsa-stained thin blood film images [52]. The main imaging component consists 

of elaborate morphological operations that can detect red and white blood cells, and identify 

parasites in the infected cells. The application also recognizes the different life stages of parasites 

and calculates the level of parasitemia. The application takes less than 60 seconds to give a 

diagnosis, and has been tested and verified on several version and types of Android mobile 

phones and tablets. 

 The authors of this survey paper have developed a smartphone application to compute 

parasitemia in Giemsa-stained thin blood film images [174, 47, 175]. In order to segment 

individual red blood cells, we applied Marker-Controlled Watershed MC-W to thin blood smears 

to efficiently detect and segment individual cells, separate touching cells, and meet the demand 

of real-time processing. In the cell detection step, we apply a multi-scale Laplacian of Gaussian 

(LoG) filter on the green channel of an RGB color slide image. The local extrema of the LoG 

response indicate the approximate centroids of the individual cells that will serve as the 

approximate centroids for the MC-W segmentation step. The cell foreground mask is estimated 
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using Otsu thresholding and cell edges are extracted by computing the gradient magnitude over 

the minimum values of the green and blue channels. Then, in the segmentation step, we apply 

watershed transform on cell markers, foreground masks, and edge information to segment and 

separate touching cells. For cell classification, we follow a deep learning approach and use a 

convolutional neural network for discriminating infected from uninfected cells [47, 175]. 

 Cesario et al. discuss mobile support for vector-borne diseases in areas where specialist 

healthcare is scarce [134]. They focus on the image analysis and classification component of a 

system that aims to reduce the chance of misdiagnosing less common diseases as malaria and to 

assist health professionals. Their paper largely describes work in progress towards the image 

analysis and classification component, but feedback from health care professionals has been 

generally positive. 

 Herrera et al. tested the diagnostic performance of a device for automated interpretation 

of RDTs, which uses smartphone technology and image analysis software [87]. The diagnostic 

performance of the device was comparable to visual interpretation of RDTs; without significant 

differences for P. falciparum and P. vivax. Providing standardized automated interpretation of 

RDTs in remote areas, in addition to almost real-time reporting of cases and enabling quality 

control, would greatly benefit large-scale implementation of RDT-based malaria diagnostic 

programs. 

 In similar work, Mudanyali et al. demonstrated a cellphone-based rapid-diagnostic-test 

(RDT) reader platform that can work with various lateral flow immuno-chromatographic assays 

and similar tests [113]. Their compact and cost-effective digital RDT reader attaches to the 

existing camera unit of a cellphone, where RDTs can be inserted to be imaged. Captured raw 

images of these RDTs are then digitally processed through a software application running on the 

cellphone for validation of the RDT and for automated reading of its diagnostic result. In 

addition, this smart RDT reader platform running on cellphones provides real-time 

spatio-temporal statistics for the prevalence of various infectious diseases, which allows tracking 

epidemics. 

8. Discussion 

 From the very different methods published during the last ten years, we can see that there 

has been a lot of experimenting done to reach the current state-of-the-art. However, despite the 

large number of publications, the performance numbers that have been published are very 
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unsatisfying from a clinician’s point of view. It is actually very hard to quantify the current 

state-of-the-art. Many of the papers just present performance numbers in terms of sensitivity and 

specificity for classification, representing only one operating point among many on a receiver 

operating characteristic, which would present a more complete evaluation of any method for 

different sensitivity requirements. Furthermore, the data used for evaluation has very often been 

simply too small to allow a convincing statement about a system’s performance. Many different 

training and test sets have been used to evaluate the proposed methods, but the lack of uniformity 

and standardization across all papers makes a fair comparison almost impossible. Extensive field 

studies on patient level or for tracking disease severity over time are needed to establish a 

baseline for standardized comparisons in the future. 

 A well-performing system will require the interplay of several factors, such as the 

characteristics of the microscope, the type of staining, the slide preparation, and the image 

analysis and machine learning software. However, no clear winners for each of these factors 

have emerged yet. 

 Nevertheless, progress has been made as can be seen by the natural development of 

methods used for image analysis and machine learning. In fact, this development has largely 

followed the development in other fields and has adopted major techniques and successfully 

applied them to malaria diagnosis. Many of these methods are general-purpose methods that are 

independent from the application domain. This being said, there has been a lot of fine-tuning of 

these methods to make them perform better for blood smear images, and more so for the image 

analysis methods than for machine learning. There is certainly the potential that some of these 

methods gain importance outside malaria diagnosis, in particular for pre-processing and for 

detecting and segmenting red blood cells in other applications. 

 For example, the filters used for preprocessing, as listed in Table 3, are a good example 

of known methods applied to malaria diagnosis. The same holds for the detection and 

segmentation methods in Tables 4 and 5, with established methods like k-means clustering, 

Hough Transform and active contour models, among others. Watershed in particular was a 

preferred technique to split touching cells. For feature computation, we can find the whole gamut 

of features used in other computer vision areas, ranging from the first Haralick features and chain 

codes to established and widely-used local binary patterns and other texture measures. The same 

holds for the classification methods in Table 8, which nicely reflect the historical development of 
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classification methods over the last ten years. We can see the older decision tree methods, 

followed by the then-popular Ada-boost classification strategy and support vector machines, 

culminating in the modern deep learning networks. 

9. Conclusion 

 We wrote this survey paper on image analysis and machine learning methods to give an 

update on the latest development in automated malaria diagnosis with image analysis and 

machine learning. This is a very dynamic area of research that has seen an extensive number of 

publications in the last decade. However, with the advent of new deep learning approaches, 

which have already left a deep impression, the research is seeing a new exciting development 

that is nothing short of a revolution. So far, only a few papers have been published, but it is 

already evident that this will be the dominating technique in the foreseeable future. This will 

render many of the former classification approaches dispensable. Moreover, because deep 

learning takes the difficult task of designing features for classification from the user, many of the 

handcrafted features used so far may become useless. In addition, because deep learning can be 

used not only for cell classification but also for cell segmentation, many of the cell segmentation 

approaches presented so far could become outdated very soon. Even the pre-processing 

techniques, which play an important role, are not safe from this development. One way of 

thinking is that neural networks can learn how to process different staining and lighting 

variations if only enough training data is being presented to the network. Given the recent 

developments and future possibilities, there is in fact a good chance that most of the papers 

referenced in our and other surveys will become a mere historical side note very soon, describing 

the state-of-the-art before the advent of deep learning. All of the deep learning papers published 

so far have concentrated on thin blood smears, but it is very likely that we will see papers for 

thick films very soon. Given the wide acceptance of deep learning, the importance of large 

annotated data image repositories for training is now widely understood, leading to a great 

support of data acquisition efforts. This will likely lead to larger test suites on patient level, 

allowing for more standardized evaluations and extensive field testing. Given these 

developments, automated microscopy is very much in the race towards a cheap, simple, and 

reliable method for diagnosing malaria. 
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Figure 1: World-wide malaria death rates (Source: World Malaria Report - WHO). 

Figure 2: Five different human malaria Plasmodium species and their life-stages in thin blood 

film (Source: K. Silamut and CDC). 

Figure 3: Parasite stages in a single thin blood smear. 
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Table 1: Blood Smear types and staining methods for malaria diagnosis 

Blood Smear Staining 

Thin Giemsa [11, 17, 19, 20, 22, 24, 25, 26, 28, 31, 

30, 32, 34, 38, 35, 39, 41, 47, 48, 53, 67, 69, 

71, 75, 79, 81, 8, 86, 90, 93, 97, 99, 102, 106, 

110, 112, 114, 116, 118, 128, 135, 140, 142, 

152, 154, 158, 160, 36, 37, 40, 42, 44, 49, 52, 

54, 62, 70, 80, 82, 89, 92, 96, 98, 100, 103, 

106, 115, 119, 121, 125, 126, 127, 132, 134, 

136, 143, 151, 131, 153, 157, 159] 

Leishman [23, 33, 55, 57, 65, 137, 72, 101, 

109, 138, 141, 145, 147, 149] 

Leishman-Methylene Blue [63] 

Combination of DNA and RNA fluorescent 

[12] 

Wright [14, 43, 51] 

Fluorochrome [169, 167, 168, 172, 13, 15, 18, 

86] 

Romanowsky [60] 

Acridine Orange (AO) [64] 

DAPI/Mitotracker [18] 

Toluidine blue [16] 

Unstained [10, 21, 73, 88] 

Thick Giemsa [29, 77, 8, 91, 120, 122, 45, 53, 56, 74, 

85, 87, 117, 123] 

Leishman [143] 
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Table 2: Malaria Image Acquisition 

Imaging Techniques 

Light Microscopy [17, 19, 21, 26, 33, 41, 61, 65, 72, 81, 110, 111, 112, 118, 20, 25, 28, 30, 31, 

32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59, 62, 63, 67, 

70, 71, 74, 76, 77, 80, 82, 85, 88, 90, 91, 92, 93, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 

109, 116, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 128, 132, 135, 136, 138, 

141, 142, 143, 145, 147, 148, 149, 150, 151, 157, 158, 159, 160] 

Binocolor Microscopy [96, 153, 131, 152] 

Fluorescent Microscopy [169, 167, 168, 172, 13, 15, 18] 

Polarized Microscopy [94] 

Image-based Cytometer [11] 

Sub-pixel Resolving Optofluidic Microscopy (SROFM) [16] 

Quantitative phase imaging (QPI) [10] 

Quantitative Cartridge-scanner System [64] 

Scanning electron microscopy (SEM) [73] 

Fiber array-based Raman imaging [75, 78] 

Serial block-face scanning electron microscopy (SBFSEM) [79] 

SightDx Digital Imaging Scanning [86] 
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Table 3: Image pre-processing techniques applied to enhance malaria blood smear images 

Blood 

Smear 

Challenges Pre-Processing 

methods 

Remarks 

Thin Noise 

reduction 

Mean Filtering 

[126, 155] 

 

Median Filtering 

[11, 19, 24, 26, 

31, 33, 35, 39, 41, 

32, 34, 38, 40, 76, 

80, 82, 96, 98, 

109, 125, 138, 

147, 157] 

Remove 

impulse noise 

and preserve 

edges 

Geometric Mean 

Filtering [66, 72, 

141] 

 

Wiener Filtering 

[62] 

 

Gamma 

Equalization [76] 

 

SUSAN 

Non-linear 

Filtering [152, 

152, 131] 

 

Gaussian 

Low-pass 

Filtering [74, 92, 

136] 

 

Non-linear 

Diffusion 

Filtering [67] 

 

Gamma  
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Transformation 

14] 

Orthogonal 

Wavelet-based 

Threshold [27] 

 

Interscale 

Orthogonal 

Wavelet-based 

Thresholding [27] 

 

Perona-Malik 

Denoising Model 

[44] 

 

Morphological 

Operations [26, 

31, 43, 71, 114, 

118, 124, 128, 

137, 158, 32, 34, 

38, 52, 71, 147] 

Remove 

unwanted small 

objects, hole 

filling, closing 

and opening 

Low Image 

Contrast 

Laplacian 

Filtering [39, 82, 

102] 

Edge detection 

Adaptive/Local 

Histogram 

Equalization [45, 

81, 90, 146, 39, 

40, 44, 74, 90, 

115, 125] 

Enhance image 

resolution 

Forward Discrete 

Curvelet 

Transform [125] 

 

Contrast Contrast 
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Stretching 

Techniques [31, 

45, 42, 56, 147] 

enhancement 

Uneven 

Illumination 

Low-pass 

Filtering [70, 

103] 

Remove high 

frequency 

components 

Morphological 

Top-hat 

Operation [71, 

128, 158, 158] 

Remove 

nonuniform 

illumination 

effects 

Cell 

Staining 

Variation 

Linear Model 

[25] 

 

Color 

Normalization 

[119] 

Illumination 

correction 

Gray World Color 

Normalization 

[22, 110, 66, 72, 

109, 121, 134, 

138] 

Normalization 

of image color 

profile 

Histogram 

Matching 

 

Thick Noise 

reduction 

Median Filtering 

[77, 91] 

 

Laplacian Spatial 

Filter [122] 
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Table 4: Segmentation techniques for thin blood smears 

Blood Smear Segmentation 

Techniques 

Remarks 

Thin Otsu Thresholding 

[18, 26, 33, 39, 41, 

114, 145, 158, 18, 

26, 33, 41, 114, 145, 

158, 26, 32, 40, 50, 

62, 82, 145, 147, 

149, 157, 173] 

Calculates 

optimum 

threshold 

assuming that 

image contains 

bi-modal 

histogram 

(Adaptive) 

Histogram 

Thresholding [11, 

15, 23, 10, 21, 25, 

35, 37, 43, 49, 51, 

73, 91, 140, 11, 21, 

25, 10, 44, 96, 100, 

107, 127] 

Difficult to 

determine the 

thresholding value 

Zack Thresholding 

[137] 

Triangle-based 

method 

particularly 

effective with a 

weak peak in the 

image histogram 

Poisson Distribution 

Thresholding [154] 

Finding a 

threshold that 

separates 

foreground and 

background using 

minimum error 

Morphological Mathematical 
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Operation [20, 24, 

71, 74, 80, 99, 118, 

120, 128, 28, 30, 34, 

36, 38, 119, 125, 

153, 155] 

morphology 

operations 

including 

Granulometry, 

opening, closing, 

etc. 

Edge Detection 

Algorithm [81, 105, 

115] 

Works well for 

high contrast 

images with sharp 

edges, false edge 

detections should 

be filtered out 

Hough Transform 

[21, 37, 43, 51, 146, 

92] 

Requires red 

blood cells 

circular measures 

including radius, 

shape 

K-means Clustering 

[31, 90, 116, 130, 

42] 

Unsupervised 

learning technique 

that iteratively 

assigns pixels to 

K clusters using 

their feature 

descriptors 

Watershed 

Algorithm [33, 59, 

97, 114, 159] 

Extract 

continuous 

boundary regions 

but 

over-segmentation 

is the typical issue 

Marker Controlled Mostly applied to 
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Watershed [65, 73, 

66, 72, 73, 109, 138, 

173] 

separate touching 

cells 

Active Contour 

Models [65, 90, 48, 

101, 174] 

Level-set based 

approaches that 

ensures 

topological 

flexibility, 

computationally 

expensive 

Rule-Based 

Segmentation [65, 

81] 

Requires 

knowledge about 

cells shape, size, 

color, etc. 

Fuzzy Rule-based 

Segmentation, 

Fuzzy Divergence 

[55, 136, 141] 

Building rules is 

not easy when 

uncertainty is high 

Neural Network 

[160] 

Requires 

discriminative and 

strong features to 

distinguish 

foreground and 

background pixels 

Template matching 

[25] 

 

Adaptive Gaussian 

Mixture Model 

Distance transform 

[98] 

 

Distance Transform  
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[58] 

Ada-boost [64]  

Look-Up Table 

[103] 
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Table 5: Segmentation techniques for thick blood smears 

Blood Smear Segmentation 

Techniques 

Remarks 

Thick Otsu Thresholding 

[158, 77] 

Calculates 

optimum 

threshold 

assuming that 

image contains 

two classes 

following 

bi-modal 

histogram 

Histogram Theshold 

[29, 122, 74, 85] 

Difficult to 

determine the 

thresholding 

value, Usually 

fused with other 

methods to 

improve 

performance 

Morphological 

Operations [158] 

Mathematical 

morphology 

operations 

including 

Granulometry, 

opening, 

closing, etc. are 

useful to 

characterize and 

represent blood 

cells circular 
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shape, size, 

boundaries, 

skeletons, 

texture, 

gradient, etc. 

Normalized-cut 

Algorithms [27] 

Computationally 

expensive 

Fuzzy C-means [76]  
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Table 6: Feature Computation for Malaria Parasite Classification in Thin Blood Smears [6] 

Blood 

Smear 

Features Type Feature Remarks 

Thin Color RGB [11, 15, 

17, 14, 16, 27, 

37, 27, 71, 88, 

97, 99, 106, 

110, 114, 116, 

118, 120, 142, 

142, 160, 32, 

38, 60, 80, 98, 

100, 103, 107, 

109, 115, 134, 

149, 157, 174] 

provide color 

information 

HSV [31, 35, 

27, 137, 23, 30, 

40, 48, 70, 136] 

YCbCr [27, 

130, 155] 

LAB [42, 62, 

136] 

Intensity [39, 

26, 41, 65, 88, 

90, 124, 34, 92, 

119, 151] 

color 

correlogram, 

color 

co-occurrence 

matrix [25, 110, 

134, 147] 
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Texture Haralick [33, 

51, 48] 

characterize the 

overall shape 

and size of the 

erythrocyte 

without taking 

the density into 

account 

Gray-level run 

length matrices 

(GLRLM) [51, 

72, 138] 

GLCM [64, 72, 

128, 138] 

Local Binary 

Pattern (LBP) 

[19, 48, 72, 138, 

147] 

Fractal [136] 

Wavelet 

transform [120] 

Gradient 

Texture [102, 

120, 17, 32, 

159, 173] 

gray level 

co-occurrence 

matrix [128, 48, 

141, 153] 

Entropy [43, 

133, 135, 72, 

126, 138] 

HoG [19] 

Multiscale 

Laplacian of 

Gaussian and 

Gabor [154] 

Page 49 of 54



Morphological Shape (area, 

perimeter, 

compactness 

ratio, 

eccentricity, 

bending energy, 

etc.) [12, 18, 10, 

39, 51, 67, 71, 

73, 91, 97, 99, 

106, 110, 110, 

114, 124, 133, 

140, 142, 30, 

36, 50, 58, 64, 

66, 72, 80, 96, 

121, 123, 125, 

128, 135, 145, 

153] 

encodes the 

spatial 

distribution of 

the intensity in a 

particular region 

Moments (zero, 

central, Hu) [43, 

51, 110, 66, 72, 

126, 132, 138] 

Area 

granulometry 

[71, 152, 28, 32, 

82, 107, 123] 

Roundness ratio 

[49] 
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Table 7: Feature Computation for Malaria Parasite Classification in Thick Blood Smears [6] 

Blood 

Smear 

Features Type Feature Remarks 

Thick Color RGB [77] provide color 

information HSV [122] 

LAB [143] 

Intensity [29, 

74] 

Texture Haralick [53] characterize 

the overall 

shape and size 

of the 

erythrocyte 

without taking 

the density into 

account 

Morphological Shape (area, 

perimeter, 

compactness 

ratio, 

eccentricity, 

bending 

energy, etc.) 

[53, 77, 85] 

encodes the 

spatial 

distribution of 

the intensity in 

a particular 

region 

Moment 

(zero, central, 

Hu) [53, 85] 

Roundness 

ratio [49] 
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Table 8: Classification Methods 

Blood 

Smear 

Classification methodology 

Thin Unsupervised K-mean Clustering 

[90] 

Quaternion Fourier 

Transform (QFT) 

[54] 

Supervised Thresholding [25, 35, 

40, 62, 92, 96, 100, 

112, 115, 119, 140, 

145, 159] 

Bayesian Classifier 

[73, 110, 26, 38, 72, 

134, 141, 173] 

Annular Ring Ratio 

Method [36, 52] 

Naiive Bayes Tree 

[65, 147] 

Logistic regression 

Tree [10, 33, 66] 

Linear Programming 

[150] 

Euclidean Distance 

Classifier [154] 

K-nearest Neighbors 

classifier [10, 71, 

110, 32, 42, 50, 103] 

Decision tree [18, 26, 

67, 81, 91, 102, 122, 
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127, 153] 

Template Matching 

[60, 99] 

Ada-boost [21, 64] 

Genetic Algorithm 

[53] 

Nearest Mean 

Classifier (NM) [10] 

Fuzzy Interface 

System [55] 

Normalized 

cross-correlation [20] 

Support Vector 

Machine (SVM) [12, 

11, 19, 39, 51, 77, 

114, 42, 70, 82, 105, 

141, 174] 

Linear Discriminant 

(FLD) [10] 

Neural Network [43, 

49, 65, 118, 120, 128, 

133, 142, 152, 160, 

107, 109, 121, 125, 

136, 138, 151] 

Deep Learning [43, 

47, 46, 48, 173] 

Thick Unsupervised K-mean Clustering 

[143] 

Supervised Naiive Bayes Tree 

[65] 
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Crowd Source Games 

[17] 

Randomized Tree 

Classifier [85] 

Nearest Mean 

Classifier (NM) [143] 

Thresholding [123, 

29, 91] 

Support Vector 

Machine (SVM) [53, 

77] 

Neural Network [120] 
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