Automatic Identification and Classification of **Tuberculosis Findings on Chest Radiographs** for Global Surveillance Programs TB or not TB....

L R Folio, DO, MPH (presenter)

of Health

National Institutes of Health (NIH), Clinical Center Jenifer Siegelman, MD, MPH National Institutes Brigham and Women's Hospital, Boston, MA Yi Xiang Wang MD

> The Chinese University of Hong Kong, Hong Kong P. X. Lu MD

Shenzhen No. 3 Hospital, China

Sameer Antani, PhD National Library of Medicine, NIH

Stefan Jaeger, PhD

National Library of Medicine, NIH

Presenter Disclosures/ Disclaimer

- Potentially related
 - Issued patent on CT processing/viewing method
 - Patent Pending on portable imaging inclinometer
 - Books published
 - Chest Imaging: An Algorithmic Approach to Learning • Combat Radiology
- Unrelated
 - Research agreement with Carestream Health
 - Patent Pending on CT compression to mp4

The content is solely the responsibility of the presenter and does not necessarily represent the official views of the National Institutes of Health

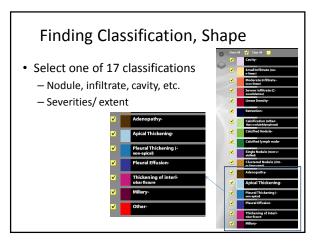
Background

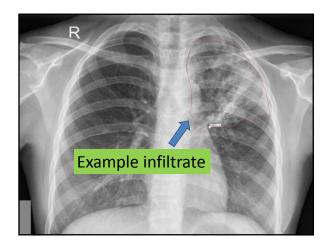
• One third of world population infected with TB* Countries with high TB incidence screen with CXR ** • Many with disproportionally reduced number of radiologists

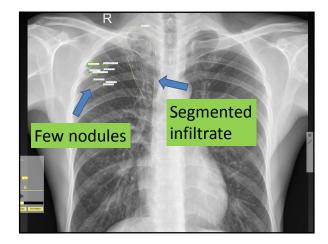
Purpose

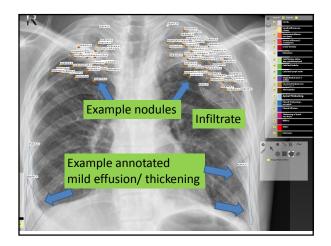
- Develop automated TB classification algorithm - In addition to abnormality detection on chest x-ray
- Evaluate ability to detect and classify (future)
- Help curtail spread of tuberculosis internationally - With improved TB mass-screening and surveillance

* CDC Global Tuberculosis Elimination: http://www.cdc.gov/globalhealth/programs/tb.htm ** van Cleeff MR. The role and performance of chest X-ray for the diagnosis of tuberculosis: a cost-effectiveness analysis in Nairobi, Kenya. BMC Infect Dis. 2005 Dec

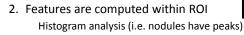

Methods

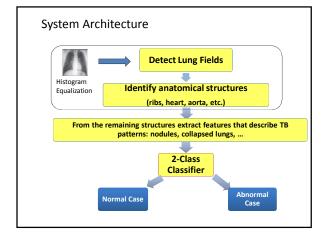

- · Two radiologists identified abnormal findings
 - In 342 CXRs of patients with confirmed TB • From The Shenzhen No. 3 People's Hospital in China
 - Compared to normal CXR
 - Annotated each CXR on Firefly annotation tool*

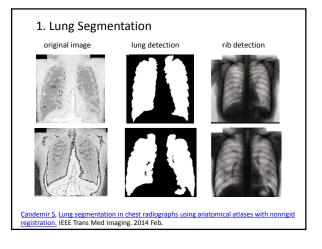



CXR Annotating Process 1. Identify and classify each abnormal finding 2. Choose drawing tool that approximates shape Polygon, circle, dot, etc. • • • * 3. Outline each abnormality on the CXR Radiologists applied intentional over-reading Advocated by the WHO Lime book*

* World Health Organization: Tuberculosis prevalence surveys: a handbook http://www.who.int/tb/advisory_bodies/impact_measurement_taskforce/resources_do cuments/thelimebook/en/






Automated Classification

1. Lung fields are segmented (identifies ROI) (image of lung outlined)

3. Feature vectors are classified (normal or not) *TB or not TB is work in progress..*

Methods: 2. Feature Computation

- Compute histogram-based texture features

 Including histogram of gradients (HOG),
 - Local binary patterns (LBP) and other features
- Features concatenated into a single feature vector – i.e. String of numbers for each chest x-ray image
- Resulting strings are used to train and test linear support vector machine (neural network best)
- Classifier assessed by AUC through cross validation
 - Compared with same number of normal CXR's

Results

- Radiologists labeled 1671 abnormal findings in 342 CXRs
- Our system classified CXRs as either normal or abnormal
 - With 95% AUC (area under ROC curve)
 Sensitivity and specificity is 99.76%
- Abnormalities are classified with variable accuracy;
 Infiltrates were correctly classified in 90% of cases
 - Severity were correctly graded in 87% of cases
 Consistently for both radiologists.
- Degree of similarity (Using feature-specific distance function)

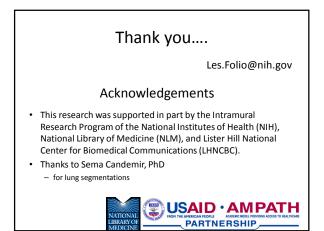
 between previously annotated regions and suspicious regions
 in newly presented CXRs for interactive computer-aided diagnostics

Global Deployment Aims

- Prevents losing patients from rural clinics – Immediacy, minimizes disease spread, etc.
- Triage: severe patients get images read first
- Reduce radiologist footprint

 from days to hours (since radiologists are scarce)
- Commonly two scenarios

 Patients without prior drug treatment
 Avoid drug incompatibilities in HIV infected


Significance of Conclusions

- Potential for automated TB identification/ classification
 Based on our pilot radiologist /automation comparison
- Current prototype discerns abnormalities in 95%
- Our resultant statistics provide clues

 To frequency/ common locations of TB manifestations
- Help establish TB / HIV screening in developing regions
 Per WHO recommendations

- Images now available on line*
- Segmented dataset will soon be available
- Labeling: looking for volunteer radiologists

References

- <u>Candemir S, Jaeger S</u>, Palaniappan K, Musco J, Singh RK, <u>Xue Z</u>, <u>Karargyris A, Antani SK, Thoma GR, McDonald CJ. Lung</u> segmentation in chest radiographs using anatomical atlases with <u>nonrigid registration</u>. IEEE Trans Med Imaging. 2014 Feb;33(2):577-90. doi: 10.1109/TMI.2013.2290491. Epub 2013 Nov 13.
- TB Screening:
- For Scherning, S. Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan FM, Xue Z, Palaniappan K, Singh RK, <u>Antani SK, Thoma GR</u>, Wang Y, Lu P, McDonald CL. Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging. 2014 Feb;33(2):233-45. doi: 10.1109/TMI.2013.2284099. Epub 2013 Oct 1.

Table 1 Comparison table of TB detection methods							
	Preprocessing methods	Texture features	Geometry features	Classification	Dataset # images)	Accuracy	TB manifestation
Noor (57)		Daubechies Wavelet Coefficients		Clustering			Al
Ku (58)		LBP, HOG, GICOV & KLD	Template matching & Circularity	SVM	35	82.8%	Cavities
Song (59)	Rib detection with curve fitting and rules		Curve fitting		200	85%	Focal TB
Maduskar (26)	Bone suppression	Intensity moments of Gaussian derivatives	Relative position within lung	kNN	1,765		All
Rijal (60)		Phase Congruency & statistical measures		Euclidean distance	100	100%	All
Leibstein (61)	High-pass FFT filter & rib suppression	LBP & LoG					Nodules
Koeslag (62)			Template matching on Fourier domain	Hard threshold	120	94%	Millary
Sarkar (63)	Detection of anatomical structures using intensity profile & local contrast enhancemen		Size	Adaptive threshold			Infiltration & Cavitation
Le (64)	A rule-based Watershed segmentation to detect lung fields	Average and maximal grey levels of pixels in a moving window		Local threshold			Nodules
Hariharan (65)	Clustering to perform lung segmentation & Fuzzy-based contrast enhancement						
Noor (3)		12 texture measures on the Daubechies Wavelet coefficients		PCA, probability ellipsoids & discrimi- nant functions	100	94%	All
Shen (18)	Predefined mask to segment lungs	GICOV	Circularity	Bayesian	131	82.35%	Cavities
Tan (66)	Semi-automatic lung segmentation	Mean, Variance, En- tropy & Third moment		Decision tree	95	94.9%	All
Arzhaeva (67)		Central moments		LDC& voting		42-95%	All
Lieberman (68)		Central moments			1,200		All
laeger (48)	Histogram equalization & statistical lung shape model	Intensity, LBP	Hessian shape features	SVM	138	83% (AUC)	All