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Abstract 
Descriptive metadata, such as an article’s title, authors, 

institutional affiliations, keywords and date of publication, 

collected either manually or automatically from documents 

contents, is often used to search and retrieve relevant documents in 

an archived collection. This metadata, especially for a large text 

corpus such as a biomedical collection, may encapsulate patterns, 

trends, and other valuable information, usually revealed by using 

specialized data analysis software to answer specific questions. A 

more useful, generalized approach is to repurpose this metadata to 

serve as a knowledgebase to answer appropriate semantic queries  

At the US National Library of Medicine (NLM), we recently 

archived a large biomedical collection comprising annual 

conference proceedings containing research findings on cholera, 

conducted between the years 1960-2011 under the “US-Japan 

Cooperative Medical Science Program” (CMSP). This program 

was established to address health problems in Southeast Asia and 

other developing countries. An R&D information management 

system developed at NLM, called “System for the Preservation of 

Electronic Resources” (SPER), automatically extracted descriptive 

metadata from this text corpus and built a DSpace-based archive 

for accessing the conference articles. SPER also used this 

metadata to get detailed information regarding the CMSP research 

community, timelines of important drugs and discoveries and 

international collaboration, etc., using special purpose data 

analysis software. 

In this paper, we describe the occurrence and extraction of 

metadata from the CMSP document set, and present an alternative 

approach in which this metadata is used to build a knowledgebase 

to support semantic queries about the CMSP Program. 

Specifically, we show the OWL-based hierarchical ontology model 

created to represent the CMSP Program with its publications, 

participants and international collaboration over time. We discuss 

the technique used to convert the extracted metadata from 

relational database tables to OWL/RDF assertions suitable for 

supporting semantic queries. We show examples of queries 

performed against this CMSP knowledgebase, and discuss some 

scalability issues. Finally we describe how this approach could be 

customized for other large textual collections, including one from 

the Food and Drug Administration previously archived by the 

SPER system. 

Introduction 
Digital repositories often archive large document collections 

on specific subjects, whose contents carry important facts about 

these subjects and thus may constitute a useful source of 

knowledge for those domains. However, such context-sensitive 

information is often either ignored, or used simply as “descriptive 

metadata” to search and retrieve individual items in the collection. 

A major reason for ignoring this type of metadata is rooted in the 

labor intensive nature of their identification, capture, and 

dissemination. However, when such metadata is available for a 

document corpus, it may be further used to create a searchable 

knowledgebase for the collection, revealing important patterns and 

trends – helping researchers gain insight into the field. This is 

deemed especially true in the biomedical domain, comprising 

massive knowledge in biomedical literature – with research 

articles, case studies and reviews, which often carry additional 

information related to research, policies, participants and the 

contemporary understanding of health science.  

One such collection is from the Joint Cholera Panels of the 

U.S.-Japan Cooperative Medical Science Program (CMSP), a joint

commitment by the United States and Japan, founded in 1965 and

continued till 2011 - to address health problems in Southeast Asia

and other developing countries through an expanded, collaborative

international medical research effort [1]. The complete set of

publications of these Panels comprise conference proceedings from

1965 to 2011 (plus an earlier one from 1960) with research articles,

lists of panelists and attendees, additional annual reports, as well as

separate lists of reviewers overseeing  the CMSP Program. An

important goal of archiving this collection is to create a knowledge

source about the timelines of various cholera-related drugs and

discoveries, the CMSP research community, and factors affecting

the effectiveness of the program.

The CMSP collection, held by the National Institute of 

Allergy and Infectious Diseases (NIAID), was archived by an 

R&D information management system called the “System for the 

Preservation of Electronic Resources” (SPER) [2] developed at the 

US National Library of Medicine. Using machine learning 

techniques, SPER identified and automatically extracted relevant 

metadata from the digitized text of conference articles, and various 

lists of contributing personnel. While the article contents and 

related metadata were used to build a DSpace-compatible archive 

[3], the combined set was used to build a knowledgebase suitable 

for conducting specific data analysis.  

In the following sections, we provide a background to the 

types and occurrence of metadata in the CMSP collection and their 

automated extraction by the SPER system. Then we discuss the 

creation of an ontology for the CMSP Program, and the process of 

transforming the stored metadata from a flat relational database to 

a hierarchical OWL/RDF [4] knowledgebase with this ontology to 

support semantic queries - using open source tools and in-house 

developed software. We display the results of certain queries 

performed using a RESTful Web browser, and discuss some issues 

related to performance. Finally we outline how this approach could 

be customized for other large datasets, including a collection of 

historic medico-legal documents (“Notices of Judgment”) from the 

FDA - labeled FDANJ [5] and previously archived by SPER, to 

access domain-specific knowledge contained in the dataset. 



 

 

Background and Related Work 
Knowledge extraction from structured sources in a machine 

readable/interpretable format, an area of active research, has 

benefited in recent years with the publication of several standards 

and availability of reliable open source tools [6]. The W3C 

specifications on Resource Definition Format, RDF [7], SPARQL 

query language [8] and Web Ontology Language, OWL [4] have 

facilitated the creation of knowledgebases and retrieval of 

information therein. Large relational databases, storing valuable 

information about various domains, may thus be transformed to 

Web accessible knowledgebases [9] for obtaining information not 

easily available otherwise in those fields. This mechanism offers 

an interesting avenue to make context-sensitive information in a 

document corpus, stored as “descriptive metadata” in relational 

database tables of digital archives, accessible for gaining further 

knowledge in corresponding fields. 

However, it is often non-trivial and prohibitively expensive to 

manually acquire potentially useful context-sensitive metadata. We 

developed the SPER system to identify, locate and extract such 

metadata cost-effectively from the contents of semi-structured text 

using machine learning. SPER has been used earlier to perform 

automated metadata extraction (AME) and to archive the FDANJ 

collection, and recently, the CMSP collection. To meet the needs 

of NIAID for quantitative analysis of CMSP, SPER also extracted 

additional metadata from the CMSP document set to determine 

patterns and trends related to cholera, vaccine developments, 

therapies, and the characteristics of its research community - using 

special data analysis software. 

Furthermore, it was deemed useful to transform the metadata 

in the CMSP archive to a knowledgebase for semantic query by 

researchers and policy makers interested in CMSP activities. This 

was accomplished by using the knowledge extraction techniques 

mentioned above, implemented by developing a pipeline process 

using selected open source tools. A prototype Web application was 

also created to receive query requests, perform semantic search on 

the knowledgebase, and return the results in graphical form. The 

techniques and tools, used for the CMSP dataset and extensible to 

others, are discussed in the following sections. 

Metadata Extraction from CMSP Document 
Corpus using SPER 

CMSP Metadata 
The CMSP document corpus consists of annual conference 

proceedings in the form of short presentations and full papers (both 

types referred to here as articles) on cholera-related research, a set 

of five-year annual reports discussing the overall progress in the 

field, and a roster of Study Section Reviewers responsible for 

reviewing and funding different research areas over the years. The 

metadata required to perform an analysis of the CMSP program, 

determine the degree of international research collaboration, and 

identify the most active cholera researchers are in the following 

three categories: 

1. Publication metadata (Article level) - titles, authors, 

institutions, and subject keywords from research articles.  

2. Investigator metadata (Conference level) - name, role, 

designation and affiliation of panelists and attendees from the 

conference proceedings rosters. 

3. Study Section metadata (CMSP Program level) - names and 

affiliations of CMSP Program reviewers from separate Study 

Section rosters.  

Table 1 presents statistics related to the CMSP corpus. The term 

“instances” refers to all occurrences (not necessarily unique 

values) of a specific data type in the document set. 

Table 1: Statistics related to CMSP Document Set (1960-2011) 

Number of Conference Proceedings 57 

Number of Articles 2,812 

Instances of Author 13,437 

Instances of Panelist 610 

Instances of Conference Attendee 4,723 

Instances of Participating Institution 4,416 

Instances of Study Section Reviewer 3,110 

Automated Metadata Extraction using SPER 
Because of the large number of metadata elements to be 

captured for the CMSP collection, SPER was used to automatically 

identify and extract metadata from the OCR’ed text of the 

document pages. Since the CMSP documents were generated over 

a span of more than 50 years, the format, layout, font and legibility 

of their contents varied widely. Some examples of the metadata 

layouts are given below. Each box in Figure 1a shows the location 

of metadata fields in the title page of an article; Figure 1b shows 

location of contributors (panelist/attendee/reviewer) in rosters. 

 
Figure 1a.  Metadata location in title pages in sample CMSP Articles 

 
Figure 1b.  Metadata location in sample CMSP Rosters 

SPER used keyword matching and layout analysis techniques 

to identify different types of documents from the OCR’ed 

document pages. Three metadata models were developed, using a 

combination of Support Vector Machine [10] and Hidden Markov 

Models [11], to handle AME for articles, panelist/attendees and 

Study Section reviewers respectively. These models were then 

used to classify the text lines in each page by recognizing the 

named entities such as a person’s name, address or affiliation, and 

determine the bounding box for each item. Regular expression 

matching and gazetteer look-up was used to identify individual 

metadata elements (article title, author name, institution, address 

etc.) within a bounding box. Once the metadata elements for a 



 

 

batch of items were extracted through AME, they were reviewed 

and validated by an operator to correct for poor document quality 

and model errors, if any. The validated metadata for the CMSP 

articles was then stored in a MySQL database. This metadata, 

along with the scanned images and PDF derivatives of the articles, 

was used to build a DSpace-based repository with standard 

search/retrieval capability for individual articles. 

Metadata Post-processing 
Post-processing was needed to clean up the metadata and 

store certain static information to support analysis of the CMSP 

Program. The steps were: 

a) Disambiguation of investigator/reviewer names so as to 

uniquely identify the contributions of a single individual over 

the years – especially difficult since the same name was 

expressed in many different ways in the documents. 

b) Determining the country of an institution when not explicitly 

specified. 

c) Building a static table assigning a “group number” to each 

country, based upon its gross domestic product or GDP - to 

assess international collaboration by such groups. (For 

example, all developing countries have group number 3.) 

This updated relational database was then used, by 

customized data analysis modules, to determine various patterns 

and trends useful for assessing the success of CMSP. This has been 

presented in a separate paper [12]. 

Development of a Knowledgebase from the 
CMSP Metadata 

Modeling and Generating a Knowledgebase  
Creation of a knowledgebase (KB) from structured or 

unstructured data related to a domain is a multi-step process. The 

sequential steps we have followed to generate a KB from a 

relational database are shown in Figure 2a, with the numbered 

boxes 1-4 showing the resultant data structure after each step. A 

brief description of these processing steps is given below. 

1. Developing the Domain Ontology - The first and most 

critical step is the selection of entities, their attributes and 

relationships, and the associated rules that would form the 

foundation of the KB. The relations may be hierarchical 

where one entity is a subtype of another (parent) entity. This 

conceptual design is then transferred to a machine readable 

and machine-interpretable form, along with the rules and 

restrictions pertaining to the entities and their relations, and is 

called the ontology (or informally, the taxonomy) for the 

domain [13]. The ontology for a domain, therefore, provides 

an explicit specification of conceptualization for that domain. 

It is often expressed using the W3C OWL specification and 

referred to as an ontology model. 

2. Generation of the RDF Graphbase - In the next step, the 

corresponding relational database (RDB) is transformed to a 

representation consisting of RDF graphs or triples of Subject, 

Predicate, and Object.  First, an RDF schema representing an 

Entity-Relation model [14] is generated from the correspond-

ing RDB schema, using the RDB table and column names and 

their properties. Next, using this RDF schema, each row of an 

RDB table is converted to the corresponding set of RDF 

triples (Figure 2b), resulting in an Entity-Relation-based 

structure (with subjects and objects as the entities and  

predicates as the relations) known as an RDF graphbase. 

3. Creation of the Concepts database - The third step 

transforms the triples in the RDF graphbase to a hierarchical 

form based upon the ontology model created in step 1, and in 

compliance with the rules and restrictions therein. This output 

structure, also expressed in RDF, is called the Concepts or 

Assertion database, where each graph constitutes an assertion. 

4. Adding the Inferences - In the last step, additional RDF 

assertions are derived from the base assertions by applying 

inference rules in the ontology model through an inference 

engine or reasoner. This complete set of assertions then 

constitutes the knowledgebase for the specific domain. Note 

that this step is usually performed at runtime, when subsets of 

inferences, corresponding to individual queries, are generated 

dynamically. Generating all inferences statically offline and 

inserting them into the existing assertions could be both error-

prone and expensive, especially for large, complex datasets. 

 

 
Figure 2a. Transformation of a Relational database to a Knowledgebase 

 
Figure 2b. Conversion of a Relational database table row to RDF triples 

Building the CMSP Knowledgebase 
The CMSP KB was created following the steps 1-4 discussed 

above. The three types of metadata (listed earlier), extracted from 

the CMSP document corpus and stored in the CMSP’s DSpace-

based repository, served as the critical input for this function. 

However, some data reformatting was necessary as all 

metadata fields for the cholera articles were stored in one database 

table (coded with item IDs, metadata field IDs and their values) in 

the repository. This structure does not map directly to an entity-

relation model, which requires each metadata field to be 

represented in its own column so that an explicit relationship 

between an article and that metadata field could be created and the 

corresponding triples (such as: Article, hasAuthor, Author) be 

generated for  searches on that field. Hence, using an SQL script, a 

new MySQL database was created from the original CMSP 

database, with a restructured metadata table. Furthermore, only the 

subset of original tables required to build the CMSP KB were 

included in its schema. This streamlined database was called the 

CMSP Entity-Relation (E-R) database, since it directly converts to 

the corresponding RDF entity-relation graphbase. 



 

 

Implementation of the Data Transformation Framework  
The KB generation steps discussed above and depicted in 

Figure 2a are implemented through the Java-based framework 

shown in Figure 3. It consists of a set of processes, which operate 

in a pipeline fashion and execute steps 1-4 below, to transform the 

CMSP E-R database to the corresponding knowledgebase. The 

rectangular boxes in the figure represent these processes and the 

ovals correspond to the data they operate upon. These processes 

are built with reliable open source tools and in-house modules (for 

mostly domain-specific tasks) and compliant with W3C standards.  

 
Figure 3. Framework for building the CMSP Knowledgebase 

1) CMSP Ontology creation: This crucial step (1a) is 

performed manually, using Protégé 3.4.6 Ontology Editor [15], to 

create the CMSP ontology in OWL format, presented in the next 

section. It is followed by the generation of a set of Java classes (as 

Java Beans) corresponding to this ontology, using the code 

generation function in Protégé 3.4.6 (step 1b). These classes are 

used to build the CMSP OWL assertion database later in step 3.  

2) CMSP Graphbase generation: This is a two part process; 

in the first one (2a), the Entity-Relation model (RDFS schema) and 

the RDF triples are created from the CMSP Entity-Relation 

database, using an in-house tool called DB2RDFConvert. This tool 

is derived from an open source tool, DB2RDF [16], modified to be 

scalable for large databases. Next, the RDF dataset is converted to 

persistent storage (as backend SQL tables), for faster performance, 

by Jena2 [17] invoked from the wrapper module PersistGen (2b). 

3) CMSP Assertion database creation: This is implemented 

by the in-house module AssertionGen, using lower level Jena 

modules and the CMSP ontology-specific Java classes created in 

Step 1b. Data is accessed from the persistent graphbase using 

Jena2 API, transformed into OWL-based structures using the Java 

classes and CMSP specific logic, and then stored as assertions in 

the output dataset in OWL format. 

4) CMSP Knowledgebase generation and usage: At query 

time, the QueryManager module accesses the data in the OWL-

based assertion dataset using Jena2. Jena2 supports several 

reasoners, and either Pellet [18] or OWL-DL may be used by the 

QueryManager with Jena2. Based upon the query, additional   

assertions are generated dynamically by the reasoner, creating a 

transient, memory-resident CMSP knowledgebase. 

There are additional tools/features we found useful during the 

development phase. For example:  using the Protégé 3.4 platform, 

one can test the validity of the assertion database by running a 

reasoner, and also by issuing SPARQL queries on it. Similarly, the 

SPARQL query server Fuseki (earlier name: Joseki) [19], may be 

used to query the assertion database from a Web browser. 

CMSP Ontology Structure 
The class hierarchy in the CMSP OWL ontology model, 

depicting the CMSP Concepts, is shown in Figure 4a, with the 

class “Thing” (superclass of all OWL classes) omitted for 

simplicity. Figure 4b displays main relationships between those 

classes, omitting superclass-subclass (:isa-a) relations. 

 
Figure 4a.  CMSP Concepts hierarchy as OWL Classes and Subclasses 

 
Figure 4b. Relationship between main CMSP OWL Classes  

CMSP Semantic Queries and Results 
Semantic queries were issued against the CMSP 

knowledgebase, described above, using SPARQL (V1.0). The text 

box below provides a simple example of a SPARQL query 

performed on the CMSP knowledgebase to retrieve information on 

all CMSP articles published by each country.   

  
The statement using the relationship 

cmsp:hasParticipatingCountry  fetches all Articles and the set of 

Country objects associated with each Article, whereas 

cmsp:isInCountryGroup retrieves the CountryGroup object for a 

specified  Country (corresponding to the country’s assigned group 

number, explained under the section “Metadata Post-processing”). 



 

 

To make the CMSP knowledgebase accessible to users over 

the Web, a prototype Web application was created and run under 

Tomcat.  The graphical rendering of query results was performed 

by using the PrimeFaces [20] library within the application. 

 
Figure 5a.  Web display of semantic query results on most active Countries 

 
Figure 5b.  Web display of semantic query results on CMSP Participants 

The results of two sample queries, along the lines of queries 

done for the CMSP data analysis task mentioned earlier, are 

presented in Figures 5a and 5b. The first one indicates the research 

activity of the top ten countries in the “developing world” in the 

20th century - highlighting international participation in the 

program during that period, as a pie chart. (The underlying 

SPARQL query is similar to the one shown in the example.) 

Similarly, Figure 5b shows the most active participants, their 

contribution in different roles and their periods of participation in a 

tabular form. (Note that we have displayed Participant IDs rather 

than their names since the CMSP repository is not yet in the public 

domain.) More specific queries, such as the development timeline 

of a particular vaccine, or the degree of collaboration between 

different country groups can be conducted using “Advance Query” 

forms, not shown here.  

Performance and Scalability 
The retrieval time for SPARQL queries against an OWL 

knowledgebase is dependent upon the number of assertions in the 

dataset as well as the structure of the query itself – although in 

general it is slower than equivalent SQL queries against a 

relational database. However, efficiency may be improved under a 

newer release of SPARQL (e.g. V1.1) with subqueries and count 

features, and other optimizations [21].  

In the prototype version of our CMSP Web application 

(which uses SPARQL V1.0), no effort was made to improve the 

retrieval time though special query optimization. Nevertheless 

typical retrieval times for some queries (conducted on a 

developmental Windows XP computer with a 2.67 GHz CPU) are 

presented in Table 2. Note that the last entry involves ten separate 

SPARQL queries to the KB to obtain the desired result set.  

Table 2. Retrieval Statistics for CMSP Knowledgebase 

Number of instances of all classes       65,727 

Number of statements     409,689 

Number of CMSP Participants         7,853 

Time to initialize OWL model for querying  15.53 sec 

Overhead of each query to the model    0.31 sec 

Time to retrieve all countries for all Articles   

( # of instances: 3597) 

   0.54 sec 

Time to retrieve all contribution data for all 

Participants (# of instances: 21,829 ) 

   1.02 sec 

Time to retrieve contributions of 10 selected 

Participants  by role (# of instances:1001) 

   3.86 sec 

 

It is expected that benchmarks on a “server quality” machine 

would improve performance by an order of magnitude, and storing 

certain static data to minimize number of queries for a search 

would enhance retrieval speed. However, scalability could still be 

an issue for very large datasets. In such cases other alternatives, 

such as converting SPARQL queries to SQL [22] may be pursued.  

Another scalability concern is related to the performance of 

different reasoners in dealing with large datasets. For example, we 

encountered memory problems in using Pellet against the full 

CMSP dataset, while it worked fine for smaller test sets. 

Application to Other Collections 
The technique of converting the context-sensitive metadata of 

a text collection to a knowledgebase, described in this paper, may 

be extended to other collections to discover patterns and trends, 

independent of the structure of such metadata. The components 

that need to be developed specifically for each collection are: 

a) Domain-specific ontology in OWL representing the dataset. 

b) Java classes corresponding to the ontology, usually produced 

by a code generator such as Protégé 3.4. 

c) The module to interface with Jena2 (in Figure 3) to convert 

the RDF graphbase to an OWL-based assertion database.  

The FDANJ Collection 
As an example, we discuss below the specific case of the 

FDANJ collection [5] archived by SPER, with a single metadata 

category (as opposed to three for CMSP). It comprises a set of 

70,000 published Notices of Judgment (NJ) on court cases for 



 

 

adulterated and misbranded foods, drugs, and cosmetics, released 

by the FDA between 1906 and 1964. The metadata fields include: 

• Case title, product name, issue (publication) date 

• Defendant name  

• Adjudicating court where the case was prosecuted  

• Seizure date and locations 

• Locations from where the product was shipped, and to where 

it was being shipped 

The ontology model developed to describe the relation 

between an NJ and its metadata elements is shown in Figure 6. 

 
Figure 6. Relationship between FDANJ OWL Classes 

The FDANJ knowledgebase built from its metadata set, using 

the procedure discussed in this paper, would be valuable in 

understanding the types of foods/drugs that were most often 

misbranded and/or adulterated in the USA in earlier periods, the 

routes of illegal inter-commerce trades, peak periods of such illegal 

activities, traders/drug companies involved in those activities, and 

the courts where such cases were prosecuted..  

Conclusion 
In this paper, we have shown the usefulness of context-

sensitive descriptive metadata from large textual collections in 

revealing important facts about a collection, not generally available 

otherwise – with the CMSP collection as a specific example. We 

have outlined how the CMSP metadata was located and extracted 

from the contents of the documents in a cost-effective manner 

using machine learning.  We have discussed our pipeline process 

and useful public-domain tools in transporting the metadata from a 

relational database to a knowledgebase for conducting semantic 

searches to find useful patterns and trends. Finally, we have 

discussed how this process could be applied to other collections to 

find useful domain related information. 
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