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Approach for Biomedical Image Retrieval Using
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Abstract—This paper presents a classification-driven biomedical
image retrieval framework based on image filtering and similar-
ity fusion by employing supervised learning techniques. In this
framework, the probabilistic outputs of a multiclass support vec-
tor machine (SVM) classifier as category prediction of query and
database images are exploited at first to filter out irrelevant images,
thereby reducing the search space for similarity matching. Images
are classified at a global level according to their modalities based
on different low-level, concept, and keypoint-based features. It is
difficult to find a unique feature to compare images effectively for
all types of queries. Hence, a query-specific adaptive linear com-
bination of similarity matching approach is proposed by relying
on the image classification and feedback information from users.
Based on the prediction of a query image category, individual pre-
computed weights of different features are adjusted online. The
prediction of the classifier may be inaccurate in some cases and a
user might have a different semantic interpretation about retrieved
images. Hence, the weights are finally determined by considering
both precision and rank order information of each individual fea-
ture representation by considering top retrieved relevant images
as judged by the users. As a result, the system can adapt itself to
individual searches to produce query-specific results. Experiment
is performed in a diverse collection of 5 000 biomedical images of
different modalities, body parts, and orientations. It demonstrates
the efficiency (about half computation time compared to search on
entire collection) and effectiveness (about 10%–15% improvement
in precision at each recall level) of the retrieval approach.

Index Terms—Classification, classifier combination, content-
based image retrieval (CBIR), medical imaging, relevance feedback
(RF), similarity fusion.

I. INTRODUCTION

W ITH the advent of imaging, clinical care could be sig-
nificantly impacted with improved image handling. In

recent years, rapid advances of software and hardware tech-
nology have easied the problem of maintaining large medical
image collections. These images constitute an important source
of anatomical and functional information for the diagnosis of
diseases, medical research, and education. Effectively and effi-
ciently searching in these large image collections poses signif-
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icant technical challenges as the characteristics of the medical
images differ significantly from other general purpose images.

The image modality reveals anatomical and/or functional in-
formation of different body parts and pathologies. Each imaging
modality presents challenges for acquisition, storage [1], and re-
trieval. Currently, the images are retrieved primarily using text-
based searches [1], [2]. Search results in medical collections
might be improved by combining text attribute-based search ca-
pability with low-level visual features computed directly on the
image content, commonly known as the content-based image
retrieval (CBIR) [2], [3].

During the last decade, several medical CBIR prototypes have
been proposed [2], [4]–[8]. Majority of these are developed
around a specific imaging modality and retrieval methods in
these systems are task specific. There are a few systems that
have a goal of creating CBIR systems for heterogeneous image
collections [7]–[9]. To enable effective search in a large medical
image collection of diverse modalities, it might be advantageous
for a retrieval system to be able to recognize the image class
prior to any kind of postprocessing or similarity matching [10].
A successful categorization of images would greatly enhance
the performance of a CBIR system by filtering out irrelevant
images and, thereby, reducing the search space. For example, to
search posteroanterior (PA) chest X-rays with an enlarged heart
in a radiographic collection, database images at first can be
prefiltered with automatic categorization according to modality
(e.g., X-ray), body part (e.g., chest), and orientation (e.g., PA) at
different levels. The later similarity matching can be performed
between query and images in the filtered set to find the enlarged
heart as a distinct visual property. CBIR search under a specific
modality and body part based on the automatic categorization
of images would likely to perform better. In addition, the au-
tomatic classification of images could be utilized to adjust the
feature weights in similarity matching at query time. For ex-
ample, a color feature should have more weight for the images
under the category of microscopic pathology or dermatology,
whereas edge features are more important for the radiographs
and texture-related features are important for CT or MRI images.

Some approaches have been explored in recent years to au-
tomatically classify medical image collections into multiple se-
mantic categories for effective retrieval [10]–[12]. For example,
in [11], the automatic categorization of 6 231 radiological im-
ages into 81 categories is examined by utilizing a combination of
low-level global texture features with low-resolution scaled im-
ages and a K-nearest-neighbor (KNN) classifier. Although these
approaches demonstrate promising results for medical image
classification at a global level, they do not directly relate classi-
fication to retrieval. Another effective approach for improving
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Fig. 1. Block diagram of the classification-driven image retrieval framework.

retrieval is to include user feedback, known as relevance feed-
back, (RF) [13], [14].

Due to the limitations in low-level feature representations
and motivated by advances in machine learning, we present a
learning-based retrieval framework that uses novel image fil-
tering and similarity matching approaches. In this framework,
several different image features are extracted to train multi-
class support vector machines (SVMs) and perform similarity
matching. Probabilities output from the SVM are considered as
category-specific information for query and database images,
and are used to first filter out irrelevant images before apply-
ing a linear combination of similarity matching functions. The
features are finally unified by a dynamically weighted linear
combination of similarity matching functions to overcome ma-
chine learning or user classification errors. The feature weights
are calculated by considering both the precision and the rank or-
der information of the top set of retrieved relevant images. This
paper is an extended version of our previous work [15]. Here,
we report advances in feature representation, similarity match-
ing, and evaluation. The “bag of concepts” and different low-
level features are augmented with a “bag of keypoints”-based
feature, which is invariant to affine transformations. An image
filtering approach is also proposed to filter out irrelevant images
and, thereby, reducing the search space for similarity matching.
The similarity matching function is now dynamically updated
(fused) based on the user’s feedback information. In addition, we
performed exhaustive experimental evaluation and result analy-
sis by considering different parameters and retrieval scenarios.

The block diagram of the proposed image retrieval frame-
work is shown in Fig. 1. As can be seen from the top portion
of Fig. 1, various image features are extracted offline (A) in a
feature extraction subsystem (C) and stored in a feature index
(E) for the database images. In addition, image features are com-
bined and classified by the SVM to generate a category index
file where for each images the class confidence or probability
scores are stored for later filtering purpose. For a query image,
similar feature extraction is performed (D) as database images
as shown in the bottom portion of Fig. 1. However, instead of
performing the similarity matching, the category of a query im-
age is determined as probabilistic outputs or class confidence
scores based on the classification subsystem. Next, this output
is sent to the filtering subsystem to select candidate images for
further similarity matching. In addition, based on the online

category prediction (B), the predefined category-specific fea-
ture weights are utilized in a linear combination of similarity
matching function as shown in the middle portion (F). After
obtaining a ranked-based retrieval result (as shown in the left
side of the Fig. 1), users next provide the feedback about rele-
vant images and that information is utilized to update the final
feature weights for the next retrieval iterations.

The rest of the paper is organized as follows. Section II
presents the different feature representation schemes at the con-
cepts, keypoints, and low-level feature spaces. Section III de-
scribes the image categorization and filtering approaches at a
global level by utilizing the multiclass SVM. The similarity fu-
sion approach based on image classification and RF is presented
in Section IV. The experiments and the analysis of the results
are presented in Sections V and VI, respectively, and finally
Section VII provides the conclusion.

II. IMAGE FEATURE REPRESENTATION

The performance of a classification and/or retrieval system
depends on the underlying image representation, usually in the
form of a feature vector. In a heterogeneous medical image col-
lection, it is possible to identify specific local patches in images
that are perceptually and/or semantically distinguishable, such
as homogeneous texture patterns in gray level radiological im-
ages, differential color, and texture structures in microscopic
pathology and dermoscopic images. The variation in the local
patches can be effectively modeled as local concepts [16] analo-
gous to the keywords in text documents by using any supervised
learning-based classification techniques, such as the SVM [16].

For the SVM training, the initial input to the system is the fea-
ture vector set of the patches along with their manually assigned
corresponding concept labels. Images in the dataset are anno-
tated with the concept labels by fixed partitioning each image Ij

into l regions as {x1j
, . . . ,xkj

, . . . ,xlj }, where each xkj
∈ �d

is a combined color and texture feature vector. For each xkj
,

the concept probabilities are determined by the prediction of the
multiclass SVMs as [17]

pikj
= P (y = i|xkj

), 1 ≤ i ≤ L. (1)

Finally, the category label of xkj
is determined as cm , which is

the label of the category with the maximum probability score.
Based on this encoding scheme, an image Ij is represented as a
vector of weighted concepts as

f concept
j = [w1j

, . . . , wij
, . . . wLj

]T (2)

where each wij
denotes the weight of a concept ci, 1 ≤ i ≤ L

in image Ij , depending on its information content. The popular
“tf–idf” term-weighting scheme [18] is used in this paper, where
the element wij

is expressed as the product of local and global
weights.

In a heterogeneous medical collection with multiple modal-
ities, images are often captured with different views, imaging
and lighting conditions, similar to the real world photographic
images. Ideally, the representation of such images must be flex-
ible enough to cope with a large variety of visually different
instances under the same category or modality, yet keeping the
discriminative power between images of different modalities.
In this paper, we extract such robust and invariant features from
images as “bag of keypoints” [19].
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In addition to the previous features, the MPEG-7 [20]-based
color layout descriptor (CLD) f cld and edge histogram descrip-
tor (EHD) f ehd and descriptors from the lucene image retrieval
library [21], such as fuzzy color texture histogram (FCTH) f fcth

and color edge direction descriptor (CEDD) f cedd are extracted
to represent images from different perspectives.

III. MULTICLASS SVM-BASED CATEGORIZATION

The variation of the medical image categories at a global
level (e.g., modalities, body parts, and orientations) can be ef-
fectively modeled by using any supervised learning techniques.
The SVM [22] is used to classify images to multiple categories.
A number of methods have been proposed for its extension to
multiclass problems to separate M mutually exclusive classes
essentially by solving many two-class problems and combining
their predictions in various ways [23]. In this research, we uti-
lize a multiclass classification method by combining all pairwise
comparisons of binary SVM classifiers, known as one-against-
one or pairwise coupling (PWC) [17]. PWC constructs binary
SVM’s between all possible pairs of classes. Hence, this method
uses M ∗ (M − 1)/2 binary classifiers, each of which provides
a partial decision for classifying a data point. During the test-
ing of a feature x, each of the M ∗ (M − 1)/2 classifier votes
for one class. The winning class is the one with the largest
number of accumulated votes. In [24], it was shown that the
one-against-one method is more suitable for practical use then
the other method, such as one-against-all.

For the SVM training, the input is a feature vector set of
training images in which each image is manually annotated
with a single category label selected out of M categories. So,
a set of M labels are defined as {ω1 , . . . , ωi, . . . , ωM }, where
each ωi characterizes the representative global image category.
In this context, given a feature vector x, the multiclass estimates
the probability or confidence scores of each category as

pm = P (y = ωm |x), for 1 ≤ m ≤ M. (3)

The final category of a feature is determined based on the max-
imum probability score.

A. Classifier Combination

The feature descriptors as described in Section II are com-
plementary in nature and represent image data that can lead to a
better or robust classification result. There are two approaches
to using different features: 1) concatenate features to a long
composite vector and 2) use multiple classifiers on individual
feature vectors—here the order and selection of classifiers of
importance [25].

Four popular classifier combination techniques derived from
Bayes’s theory, such as the product, sum, max, and mean
rules [25] are considered for the expert combination strategies.
Since the outputs of the classifiers are to be used in combina-
tion, the a posterior probabilities in the range of [0, 1] for each
category will serve this purpose [15]. A multiclass SVM classi-
fier on a combined feature space (e.g., early fusion) or several
classifiers on individual feature spaces are combined or fused
by the previous rules (e.g., late fusion) and finally classify the
unknown query images to the category with the highest obtained
probability value.

B. Image Filtering

We utilize the information about category prediction of query
and database images for image filtering to reduce the search
space. The output of the previous classification approach form
a M -dimensional category vector of an image Ij as follows:

pj = [pj1 , . . . , pjm
, . . . , pjM

]T . (4)

Here, pjm
, 1 ≤ m ≤ M , denotes the probability or class con-

fidence score that an image Ij belongs to the category ωm in
terms of the feature vectors based on applying the previous early
or late fusion strategies for classification.

During the offline indexing process, this outputs as category
vector of the database images are stored as category index along
with the feature indices in a logical database. When the system
is searched based on an unknown query image, similar feature
extraction and category prediction stages are performed online.
The category vector of a query image Iq based on (4) and the
similar vectors of the database images (stored as a category
index) are considered to find out whether a target image is a
good candidate for similarity matching, thereby filtering out
irrelevant images for further consideration.

In this approach, instead of only considering the image cate-
gories based on the highest obtained probability values, n < M
nearest classes of the query and target images are considered
based on their sorted outputs of the classification. Next it is
verified whether there is any overlap of classes between the
query and target images. Generally, the value of n is kept much
smaller compared to the total number of classes M in order to
ignore the distant classes and perform the filtering effectively. A
target image is only selected for further matching if at least one
common category is found out between the top n categories of
the query image and itself. By performing this step, we decrease
the risk of searching images entirely in a wrong place due to the
missclassification error.

The steps of the filtering algorithm are presented in
Algorithm 1.

IV. SIMILARITY FUSION

It is challenging to find a unique feature representation to
compare images accurately for all types of queries. Feature de-
scriptors at different levels of image representation are in diverse
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forms and may be complementary in nature. In information re-
trieval (IR), more specifically in text retrieval, data fusion or
multiple-evidence combination describes a range of techniques
where multiple pieces of information are combined to achieve
improvements in retrieval effectiveness [26], [27]. Many re-
searchers have argued that better retrieval effectiveness may be
gained by exploiting multiple query representations, retrieval
algorithms, or feedback techniques and combining the results
of a varied set of techniques or representations [27].

CBIR also adopts some of the ideas of the data fusion research
in document retrieval. The most commonly used approach here
is the linear combination of similarity matching of different
features with predetermined weights. In this framework, the
similarity between a query image Iq and target image Ij is
described as

Sim(Iq , Ij ) =
∑

F

αF SF (Iq , Ij ) (5)

where F ∈ {Concept,Keypoint,EHD,CLD,CEDD,FCTH}
and SF (Iq , Ij ) are the similarity matching function (generally
Euclidean) in individual feature spaces and αF are weights
(generally decided by users or hard coded in the systems)
within the different image representation schemes within our
framework. However, there is a problem with the aforemen-
tioned hard-coded or fixed weight-based similarity matching
approach. In this approach, for example, a color feature
will have the same weight for the search of the microscopic
pathology or X-ray images. Although, the importance of the
color feature is negligible for many modalities, such as X-ray,
CT, or MRI. The following sections presents a fusion-based
linear combination scheme based on the online category
prediction of a query image.

A. Category-Specific Similarity Fusion

In this approach, for a query image, its category at a global
level is determined by employing the SVM learning. Based on
the online category prediction of a query image, precomputed
category-specific feature weights (e.g., αF ) are utilized in the
linear combination of the similarity matching function. Based on
this scheme, for example, a color feature will have more weight
for microscopic pathology and dermatology images, whereas
edge and texture related features will have more weights for the
radiographs. The steps involved in this process are depicted in
Algorithm 2.

From the previous algorithm, we can see that instead of using
the predetermined hard-coded or fixed weight-based approach,
the precomputed category-specific feature weights (e.g., αF )
based on the online category prediction are utilized in the linear
combination similarity matching function for each query.

B. RF-Based Dynamic Similarity Fusion

A user might have a different interpretation of the semantic
description in his/her mind or the prediction of the classifier
might go wrong. Hence, it may be advantageous to have the
option to interact with the system to refine the search process,
such as RF. This section presents a RF-based similarity fusion
technique where feature weights are updated at each iteration by
considering both the precision and the rank order information of

relevant images in the individual result lists based on the feed-
back from the users. As a result, the final rank-based retrieval is
obtained through an adaptive and linear weighted combination
of overall similarity fusing individual level similarities.

In this approach, to update the feature weights (e.g., αF ), we
at first perform similarity matching based on equal weighting
of each feature. After the initial retrieval result, a user needs
to provide a feedback about the relevant images from the top
K returned images. For each ranked list based on individual
similarity matching, we also consider top K images and measure
the effectiveness as

E =
∑K

i=1 Rank(i)
K/2

∗ P (K) (6)

where Rank(i) = 0 if image in the rank position i is not relevant
based on user’s feedback and Rank(i) = (K − i)/(K − 1) for
the relevant images. Hence, the function Rank(i) monotonically
decreasing from 1 (if the image at rank position 1 is relevant)
down to zero (e.g., for a relevant image at rank position K). On
the other hand, P (K) = RK /K is the precision at top K, where
Rk be the number of relevant images in the top K retrieved re-
sult. Equation (6) is basically the product of two factors, rank
order and precision. The rank order factor takes into account the
position in the retrieval set of the relevant images, whereas the
precision is a measure of the retrieval accuracy, regardless of the
position. Generally, the rank order factor is heavily biased for
the position in the ranked list over the total number of relevant
images and the precision value totally ignores the rank order of
the images. To balance both the criteria, we use a performance
measure that is the product of the rank order factor and preci-
sion. If there is more overlap between the relevant images of a
particular retrieval set and the one from which a user provides
the feedback, then the performance score will be higher. Both
terms on the right side of (6) will be 1, if all the top K re-
turned images are considered as relevant. The raw performance
scores obtained by the previous procedure are then normalized
by the total score as Ê(fF ) = α̂F = E(fF )/

∑
f E(fF ) to yield

numbers in [0, 1] where
∑

f Ê(fF ) = 1. For the next iteration
of retrieval, these normalized scores are utilized as the weights
for the respective features in the linear combination of similarity
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measures as

Sim(Iq , Ij ) =
∑

F

α̂F SF (Iq , Ij ) =
∑

F

α̂F SF (f̂F
q , f̂F

j ) (7)

where
∑

F α̂F = 1. The steps involved in the weight updating
and similarity matching processes are described in Algorithm 3.

V. EXPERIMENTS

To evaluate the effectiveness of the proposed retrieval ap-
proach, exhaustive experiments were performed in a medical
image collection. The collection comprises of 5 000 biomedi-
cal images of 30 manually assigned disjoint global categories,
which is a subset of a larger collection of six different datasets
used for retrieval evaluation campaign in ImageCLEF 1 under
the medical image retrieval track in 2007 [28]. In this collection,
images are classified into three hierarchical levels. In the first
level, images are categorized according to the imaging modali-
ties (e.g., X-ray, CT, MRI, etc.). Next level is the image body-
part, and the final level is the orientation. The categories are
selected based on analyzing the visual and some mixed-mode
query topics during the last three years (2005, 2006, and 2007) of
ImageCLEF campaign under the medical retrieval task. Around
80% of the images are gray level (e.g., X-ray, CT, MRI) and
20% are color images (e.g., microscopic pathology, histology,
dermatology) with varying resolutions.

A. Training

A training set of about 2 400 images is used for SVM learning
to categorize images at a global level. The images are classified
into one of eight modalities (viz., computerized tomography
(CT), graphics (GX), magnetic resonance imaging (MR), X-ray
(XR), positron emission tomography (PET), optical imaging
(PX), and ultrasound (US)) as defined in the the modality detec-
tion task in ImageCLEF 2010 [29]. There can be considerable
intraclass heterogeneity in this classification, e.g., the PX class
contains both microscopic images as well as photographs. For
the SVM training, the RBF kernel is used with a tenfold cross
validation (CV) to find the best values of tunable parameters C
and γ. The kernel parameter γ controls the shape of the kernel
and regularization parameter C controls the tradeoffs between
margin maximization and error minimization.

1http://www.imageclef.org/

The best values of C and γ for different feature represen-
tations are computed and used to train the SVM and generate
model files. We use the LIBSVM software package [30] for the
implementation of the SVM classifiers. For the local concept
model generation based on the SVM learning, 30 local concept
categories are manually defined, e.g., CT-Tissue-Brain, X-ray-
Chest-Bone, etc. The training set consists of only 5% images
of the entire dataset of 5 000 images (i.e., 250 images). To
generate the local patches, each image in the training set is at
first partitioned into an 8 × 8 grid generating 64 nonoverlap-
ping regions. Only the regions that conform to at least 80% of
a particular concept category are selected and labeled with the
corresponding category label. For the SVM training, we again
use the RBF kernel with a tenfold CV to find the best values
of tunable parameters C and γ. After finding the best values of
the parameters C = 200 and γ = 0.02 of the RBF kernel with
a CV accuracy of 81.01%, they are utilized for the final training
to generate the local concepts model. We utilized the LIBSVM
software package [30] for implementing the multiclass SVM
classifiers for both global and local concept classification.

To construct the codebook of keypoints based on the Self-
Organizing Map (SOM)-based clustering, the similar training
set of images as used for local concept learning are utilized.
To find the optimal codebook that can provide the best retrieval
accuracy in this particular image collection, the SOM is trained
at first to generate 2-D codebook of four different sizes as 256
(16 × 16), 400 (20 × 20), 625 (25 × 25), and 1600 (40 × 40)
units. After the codebook construction process, all the images in
the collection are encoded and represented as “bag of keypoints”
as described in Section II. For training of the SOM, we set the
initial learning rate as α = 0.07 due to its better performance. By
comparing the retrieval performances based on precision recall,
we finally choose a codebook of size 400 for the generation of
the keypoints-based feature representation and the consequent
classification and retrieval evaluation.

VI. RESULTS

To measure classification performance, we use a test set
of 2620 images provided by the ImageCLEFmed’10 organiz-
ers [29]. Individual classification accuracy is as follows: Con-
cept: 71%, Keypoint: 63%, EHD, and CLD: 52%, respectively,
FCTH: 63%, CEDD: 69%, and Combined: 79%. The best ac-
curacy is achieved when classification is performed in the com-
bined feature space, but at the computational expense of a much
larger feature vector. Different combination method accuracies
are as follows: 80%, sum: 80%, max: 76%, and mean: 79%.,
which is in line with the observation in [25]. As expected, com-
bining classifiers on uncorrelated and complementary features
benefits the performance.

For a quantitative evaluation of the retrieval results, we se-
lected all the images in the collection as query images and used
query-by-example as the search method. A retrieved image is
considered a match if it belongs to the same category as the
query image out of the 32 disjoint categories at the global level.
Precision (percentage of retrieved images that are also relevant)
and recall (percentage of relevant images that are retrieved)
are used as the basic evaluation measure of retrieval perfor-
mances [18]. The average precision and recall are calculated
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Fig. 2. PR graphs in different feature spaces.

Fig. 3. PR graphs for different similarity fusion approaches.

over all the queries to generate the precision–recall (PR) curves
in various settings. Fig. 2 presents the PR curves of the individ-
ual feature spaces when the similarity matching is performed
based on applying the Euclidean distance measure. The perfor-
mances are compared to a similarity fusion approach by pro-
viding equal weight to each feature in a linear combination.
By analyzing Fig. 2, we can observe that the best performance
is obtained in terms of precision at each recall level when the
similarity scores are combined for individual features. More
specifically, it is noticeable that the performance is improved in
terms of early recall (e.g., 0.0–0.4) when compared to the best
performed single concept-based feature. The performance of the
proposed similarity fusion approaches is shown in Fig. 3. For
the category-specific fusion, the weights of individual features
are assigned as follows: 1) for medical imaging modalities (CT,
MR, US, XR, NM, PET, and US), Concept, CLD, and EHD fea-
tures are weighted equally (in general) and twice as much as the
remaining features and 2) for photographs (PX), keypoint fea-
tures are most significant. For RF-based fusion, we consider top
20 (e.g., K = 20) retrieved images from the previous retrieval
iteration as the positive or relevant images to be considered for
the fusion algorithm in next iteration. In the IR, community re-
trieval precision at the top 5, 10, and 20 retrieved items has been
accepted as an adequate measure of performance. It is clear from
Fig. 3 that the performance of the category-specific similarity
fusion [e.g., Fusion (Category)] is improved when it is compared
with the fusion based on equal weighting [e.g., Fusion (Equal
Weight)] approach. In addition, the precision is further improved
when similarity fusion is performed by considering one [e.g.,

Fig. 4. Effect of the values of K.

Fusion (RF-1)] and two [e.g., Fusion (RF-2)] iterations of feed-
back information on top of the retrieval result obtained from the
category specific fusion. In general, we achieved around 10%–
15% performance improvement in precision at most recall levels
(0.1–0.9) when our proposed similarity fusion approaches are
compared to the equal weight-based similarity fusion. Overall,
from the PR curves in Fig. 3, we can conjecture that the super-
vised learning, either in the form of classification or RF, helps
to improve the retrieval results in terms of precision.

To test the retrieval effectiveness of the RF-based simi-
larity fusion in terms of considering the number of top re-
trieved images as relevant one, experiment is performed with
K = {10, 20, 30, 40, 50} as shown is Fig. 4. The performances
are compared by considering only one iteration of feedback in-
formation. From Fig. 4, it is observed that the best performance
is achieved when we consider only top ten images (e.g., K =
10). There is decrease in performances when the number of K
is increases as shown by the PR curves in Fig. 4. One possible
reason is that due to the automatic feedback for experimental
purpose, there can be many irrelevant images being considered
as relevant when the number of K increases and this affects
the retrieval performance. On the other hand, this is actually a
benefit for an interactive system like this as the users need to
judge less images to provide feedback information to achieve
an optimal precision.

To check the consistency in RF-based similarity fusion in
terms of number of iterations, we also consider 5 iterations of
feedback and compared the performances by calculating average
precision within the top 20 [e.g., P(20)] retrieved images. The
performances are compared by considering only one iteration
of feedback and two different setting for K = 10 and K = 20.
As the system converged, It was observed that the retrieval
performance is consistent across number of iterations and for
different values of K

Finally, the retrieval experiment was performed with and
without filtering on different fusion-based approaches to test
the effectiveness and efficiency of the proposed method. Top
three ranked category labels were used for the experiment and
applying the similarity fusion approaches in the filtered image
set, we achieved same PR curves as depicted in Fig. 3. This
suggests that search performed on a relevant subset of image
collection does not cause any degradation in retrieval accuracy
due to the fact that the filtering algorithm only discard those
images. Further, an important benefit of searching on a filtered



646 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 15, NO. 4, JULY 2011

image set is gain in computation time. We tested the efficiency
of the fusion-based search schemes by comparing the average
retrieval time with and without applying the filtering scheme.
The experiment was performed in an Intel Pentium Dual-Core
CPU at 3.40 GHz with 3.5 GB of RAM running Microsoft Win-
dows XP SP2 Professional operating system. The linear search
time without filtering was twice as much as search on the filtered
image set, suggesting that the proposed method is both effective
and efficient.

VII. CONCLUSION

In this paper, a novel learning-based and classification-driven
image retrieval framework is proposed for diverse medical im-
age collections of different modalities. In our approach, we
directly link classification to retrieval. In this framework, the
image category information is utilized directly to filter out irrel-
evant images and adjust the feature weights in a linear combi-
nation of similarity matching. We use the RF-based technique
to update the feature weights based on positive user feedback.
Retrieval performance is promising and clearly shows the advan-
tage of searching images based on similarity fusion and filtering
in terms of effectiveness and efficiency. Overall, this retrieval
framework is useful as a front end for large medical databases
where a search can be performed in diverse images for teaching,
training and research purposes.
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