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ABSTRACT 

Cervical Intraepithelial Neoplasia (CIN) is a precursor to invasive cervical cancer, which annually accounts for 
about 3700 deaths in the United States and about 274,000 worldwide. Early detection of CIN is important to reduce the 
fatalities due to cervical cancer. While the Pap smear is the most common screening procedure for CIN, it has been 
proven to have a low sensitivity, requiring multiple tests to confirm an abnormality and making its implementation 
impractical in resource-poor regions. Colposcopy and cervicography are two diagnostic procedures available to trained 
physicians for non-invasive detection of CIN. However, many regions suffer from lack of skilled personnel who can 
precisely diagnose the bio-markers due to CIN. Automatic detection of CIN deals with the precise, objective and non-
invasive identification and isolation of these bio-markers, such as the Acetowhite (AW) region, mosaicism and 
punctations, due to CIN. In this paper, we study and compare three different approaches, based on Mathematical 
Morphology (MM), Deterministic Annealing (DA) and Gaussian Mixture Models (GMM), respectively, to segment the 
AW region of the cervix. The techniques are compared with respect to their complexity and execution times. The paper 
also presents an adaptive approach to detect and remove Specular Reflections (SR). Finally, algorithms based on MM 
and matched filtering are presented for the precise segmentation of mosaicism and punctations from AW regions 
containing the respective abnormalities.  
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1. INTRODUCTION

Cervical cancer is the third most common form of cancer in women, affecting over 9700 women in the United States 
and 493,000 women worldwide every year [1, 2], resulting in over 274,000 fatalities. Cervical cancer develops slowly 
and has a detectable and treatable precursor condition known as dysplasia, neoplasia or CIN. CIN can be detected 
through screening of women at-risk and treated to prevent the development of invasive cancer [3]. The most common 
cervical cancer screening tool is the Papanicolaou (Pap) smear test, which has reduced cervical cancer incidence and 
mortality by 70% when properly implemented [4]. However, the true sensitivity of conventional Pap smear has been 
reported to be as low as 51% [5], requiring multiple screenings to detect CIN, making it impractical to implement in 
resource-poor regions.  

Optical tests, such as Visual Inspection with Acetic acid (VIA), cervicography and colposcopy [6, 7] that employ 
visual examination of the cervix are becoming increasingly popular as diagnostic tests. In these tests, healthcare 
professionals study the cervix at about one minute after application of 5% acetic acid. An area of suspected tissue around 
the cervix opening known as the Acetowhite (AW) region and other vascular abnormalities may appear. A permanent 
cervicography or colposcopy record of the cervix is often made at this time, in the form of a microfilm or digital image. 
The severity of the abnormalities is assessed either from the direct visualization or from the recorded image. Hence, the 
quality of the assessment is heavily dependant on the expertise of the physician. Even in expert hands, although the 
sensitivity to differentiate normal and abnormal lesions has been shown to be as high as 96%, the specificity has been 
shown to be very low at 48% [8]. A biopsy of abnormal regions, located using one of the optical tests, is usually 
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performed to confirm the presence of CIN. Because the locations are currently determined manually, they are prone to 
significant uncertainty owing to subjective variability and, often, due to lack of skilled personnel [9, 10, 11].  

 
As visual examination methods become more quantitative through the incorporation of digital image acquisition and 

analysis, it will become increasingly useful to apply medical image processing techniques to automatically and 
efficiently process this data in order to accurately identify and characterize the abnormal regions of the cervix. Accurate 
automated systems will also eliminate subjective variability, improve reliability and repeatability of diagnosis, and also 
help in accurate archival of diagnosis for posterity. Such a system would enhance the power of existing colposcopes and 
would make them immediately useful in resource-poor regions of the world, where skilled experts are scarce.  

 
The abnormalities due to CIN that may be observed during a colposcopy may be classified into two generic groups 

– AW change and vascular abnormalities. AW change is the most important of all colposcopic features, because all 
manifestations of CIN, unless covered by keratin, will exhibit some degree of acetowhiteness [4]. Regions of high 
acetowhiteness correlate with regions of higher nuclear density, caused usually by CIN. Vascular abnormalities are 
abnormal blood vessel structures caused by CIN. Vascular abnormalities are of three types, mosaicism, punctations and 
vasculature, and are usually observed in the AW region. Mosaicism is an abnormal pattern of small blood vessels 
suggesting a confluence of chicken-wire reddish borders forming a textured mosaic pattern [6]. Punctations are fine to 
coarse red dots due to stippled capillaries, seen end on. Vasculature is the name given to irregular vessels forming abrupt 
patterns that appear as commas, corkscrews or spaghetti. The vessels in vasculature form no specific patterns, unlike 
mosaicism or punctations, but often indicate an abnormal lesion.  

 
An ideal automated system should be able to segment and assess the aforementioned abnormalities due to CIN, if 

not provide a more complete annotation including all types of abnormalities of clinical importance, given a raw 
cervicographic or colposcopic image of the cervix. In practice, however, automated diagnosis is riddled with several 
problems. These problems include the variability in image acquisition methods, uneven shape of the cervix, lack of 
unique ground truth due to inter-grader variability, variations in scale, and the presence of other biological features 
which hinder the delineation of abnormal lesions. In the case of cervicographic images, the digital images are obtained 
by scanning the microfilms, which results in poor contrast and a lack of high frequency features. An automated system 
that works across all these problems may be very difficult to design. However, if some assumptions are made regarding 
the issues, and some minimal human intervention is incorporated, it is possible to design a semi-automated system for 
the detection, segmentation and assessment of abnormalities due to CIN.  

 
In the past, emphasis has been placed on the segmentation of the AW region. Specifically, in [12, 13, 14] the authors 

use principles from [15] to detect the AW regions as an individual “blob” on the cervix images. The problem of 
segmenting the AW region is treated as a probability density estimation of three multi-dimensional Gaussian mixtures, 
where each Gaussian in the mixture corresponds to one of three regions, AW, Columnar Epithelium (CE) or Squamous 
Epithelium (SE). The feature vectors used are a combination of color features from the Lab color space and a texture 
feature based on the number of similarly oriented gradients in the neighborhood of each pixel at an appropriate level of 
scale. In [16, 17] the authors present a boundary searching snake approach that uses image gradients and region features 
from images formed by a multiresolution Gaussian pyramid to delineate the AW regions. Two other methods, one based 
on the clustering technique of DA, and the other a fast segmentation technique based on a sequence of morphological 
operations, have also been presented [18].  

 
In this paper we review three of the above techniques, the MM-based segmentation approach, the DA-based 

approach and the GMM-based approach. We compare and contrast their advantages and shortcomings with respect to 
their use in automated segmentation of the AW region. We also present methods to segment mosaicism and punctations 
from regions containing the respective abnormalities, and discuss the way forward for building a fully automated system 
for the diagnosis of CIN. The rest of the paper is organized as follows. Section 2 presents the formulation of MM-based 
approach for segmentation of the AW region. A novel adaptive approach for the removal and interpolation of Specular 
Reflections (SR) is also presented in this section. In section 3, the elements of the GMM-based model are discussed. 
Section 4 presents the DA-based approach for AW segmentation. The three methods are compared in section 5. 
Mosaicism and punctation segmentation methods are presented in section 6. Section 7 presents future work and 
concludes the paper. 
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2. SEGMENTATION USING MATHEMATICAL MORPHOLOGY 

This method is motivated by the manner in which trained physicians draw AW contours. The method uses the 
Canny edge detector with a sequence of morphological operators to obtain the contour of the AW region. The inside of 
the contour is the required AW mask [18]. To detect the AW contours using the method, the Specular Reflections (SR) 
on the image should first be removed. SR occur due to the presence of moisture on the uneven cervix surface, which 
function like mirrors that directly reflect the light from the illumination source. Thus uneven parts of the cervix with 
high moisture content, that simply reflect the light from the source, appear as bright spots heavily saturated with white 
light, which are referred to as SR. Apart from camouflaging the actual features, the SR also affect the subsequent 
segmentation routines, and hence must be removed. However, while the crux of the SR regions may be easily spotted, 
the contours of the SR are often ambiguous, and it is not easy to determine the boundaries of the SR regions. At the same 
time, it is also important to ensure that the SR removal method does not remove too much or too little of the SR. If the 
SR removal method removes too little, then some very bright pixels remain in the SR-removed image, skewing the 
subsequent AW segmentation algorithm. If the SR removal method removes too much then it is possible that some of the 
interesting texture due to abnormal lesions is lost.  
 

A simple and effective two-step process is proposed here to remove SR. The method is an extension of the SR 
removal procedure outlined in [18]. It is based on the observation that the non-SR pixels in the image are predominantly 
red leading to low green and blue values in the RGB color space, while the SR pixels are heavily saturated with white 
light, leading to large values for all three colors in the RGB color space. In the first step, the SR pixels are identified 
using mathematical morphology. The process involves morphologically opening the image using a structuring element, 
SE, about as large as the extent of the largest SR. This has the effect of greatly smoothing the regions of the original 
image, I, that fit the SE, while generally smoothing the image as such. The image here is the raw colposcopic or 
cervicographic image. If the opened image is Iopened, then subtracting it from I produces an image which predominantly 
contains the foreground objects in I, which in this case is the SR. An adaptive threshold is found using the Otsu method 
[19], which selects a threshold, T, that maximizes the distance between the intraclass variance and the interclass 
variance. Mathematically, the sequence of operations can be written as 

                                                                                 
SEIIopened o=

,                                                                                 (1) 

where o  denotes the opening operation.  
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The size of SE is chosen adaptively by increasing it from 5x5 pixels to 25x25 pixels and choosing the size at which the 
maximum [R, G, B] values of the residual non-SR pixels is less than [200, 200, 200]. A maximum size of 25x25 pixels 
was found to be sufficient to deal with the SR sizes encountered in the dataset. While the threshold fixed for the R, G 
and B values is a hard threshold, it was found to apply effectively to both colposcopic and cervicographic images. The 
adaptive selection of the SE size eliminates user intervention to manually fix the size of the largest SR observed in the 
image. 

 
In the second step, the SR pixels in I are first masked out using ISRMask to obtain ISRRem. Then the removed pixels in 

ISRRem are iteratively filled using non-zero pixels in and around the neighborhood of the remaining pixels. It is necessary 
to iterate the filling process because during the first, or even the first few, iterations, there may be SR pixels that are 
completely surrounded by removed SR pixels in the neighborhood used. This final interpolated image is denoted ISRInterp. 
A neighborhood size of 5x5 pixels was used for sampling the non-SR pixels around the SR removed regions. Figure 1 
shows an example to demonstrate the effectiveness of the proposed approach. Figure 1(a) shows and image of the cervix, 
I, cropped to contain only the pathologically significant regions for CIN. Figure 1(b) shows the SR-removed image, 
ISRRem. The SR interpolated image, ISRInterp, is shown in figure 1(c). The size of the SE was adaptively found to be 10x10 
pixels for this case. 
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(a) Original colposcopic image (b) SR-removed image (c) SR removed and interpolated 

Figure 1 SR removal and interpolation 
 

The morphological AW segmentation procedure is applied on ISRInterp. The SR-removed image, ISRInterp, is first 
converted to grayscale, Igray. 

               
)3,,(21.0)2,,(59.0)1,,(3.0),( SRInterpSRInterpSRInterp yxIyxIyxIyxIgray ++=

,                               (4) 
where 1,2 and 3 represent R, G and B, respectively. A global threshold T is then computed using the Otsu method to 
transform the gray image Igray to a binary image Ibin. As previously noted the Otsu method yields a threshold that 
maximizes the separation between inter and intra class variances and gives a general idea about the location of the AW 
region. 
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where T is the Otsu threshold. Regions disconnected from the central AW structure are removed by morphological 
erosion. The resulting mask is called Imask.  

                                                                 Ebinmask SEII Θ= ,                                                                                   (6) 
where Θ denotes the erosion operation and SEE denotes a typical 3x3 structuring element consisting of ones. Other sizes 
may be appropriate for optimal results for specific applications.  
 

The mask Imask is superimposed over Igray, to get Icoarse, which restricts the following operational region.  

                                                              graymaskcoarse III *.=
                                                                                   (7) 

where ‘.*’ indicates a pixel by pixel product. This is very useful, especially when there are potentially influential regions 
outside the real AW region. The image Iedge is then subjected to a sequence of morphological operations to obtain the 
AW mask. First, Iedge is dilated using 4 linear structuring elements oriented along 4 different angles, 0o, 45o, 90o and 
135o, to get Idilate.  

                                
( )U 13590450 ,,, SEISEISEISEII edgeedgeedgeedgedilate ⊕⊕⊕⊕=

                                           (8) 
where ‘U’ denotes the union operator, ⊕  denotes the dilation operation, and SE0, SE45, SE90 and SE135 represent linear 
structuring elements oriented at 0o, 45o, 90o and 135o, respectively.  

 
The holes (black pixels) in Idilate are then filled, and spurious structures along the image border are removed to get 

Ifilled.  

                                                               
)(lRegion_fil dilatefilled II =

,                                                                       (9) 
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where the ‘Region_fill’ function fills the black interior of a white boundary with white. Finally, a morphological closing 
operation is performed to get the final mask IAWmask, 

                                                                 EfilledAWmask SEII •=
,                                                                          (10) 

where •  denotes the morphological closing operation. The AW mask, IAWmask, is applied to ISRInterp, and the resultant 
image, IAW, is used as the input for the next stage. 

                                                                    III AWmaskAW *.=                                                                               (11)  
For all these equations, ],1[ and ],1[ cR NyNx ∈∈ , where NR and NC are the number of rows and columns of the 
image, respectively. 

The results of the edge-based AW segmentation are shown in figure 2. Figure 2(a) is the SR removed and 
interpolated image section shown in figure 1(c), while figure 1(b) is the image with the AW contours as detected by the 
morphological AW segmentation approach. It can be seen that the algorithm does a fairly good job of delineating the 
AW regions, albeit including a significant amount of the CE region and producing some spurious AW regions in the SE 
region. A more detailed discussion of the approach may be found in [18]. 
 

  
(a) SR removed and interpolated image (b) AW contour 

Figure 2 Segmentation using the morphological AW segmentation approach 
 

3. SEGMENTATION USING GAUSSIAN MIXTURE MODELS 
 

GMM are statistically mature methods of clustering. GMM work under the assumption that each d-dimensional 
cluster in a dataset may be modeled as a multivariate Gaussian, distribution. Hence, the complete dataset may be 
modeled as a mixture of these individual Gaussians. The problem of determining the clusters may then be posed as a 
problem of estimating the densities of the Gaussians. The basic idea with GMMs is that the probability density function 
of a d-dimensional random variable can be expressed as a weighted sum of K d-dimensional Gaussians. Let X = {x1, x2, 
…,xN} be a dataset of size N, where xi are points on a d-dimensional feature space. Then, the GMM assumption is that  
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,                           (12) 
where αj are the probabilities of occurrence of each Gaussian and µj and Σj are the mean and covariance matrix of the j-th 
Gaussian. For segmentation applications, since pixels in an image are allowed to belong to only one region, the 
maximum posteriori probability is used to assign the feature vector corresponding to each pixel to a particular cluster.  
 

The Expectation-Maximization (EM) algorithm is a general method of finding the maximum-likelihood estimate of 
the parameters of an underlying distribution from a given dataset, especially when the data is incomplete or has missing 
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values [20, 21]. For the GMM, the EM may be used to determine αj, µj and Σj of all the Gaussians in the mixture. The 
problem of segmenting the AW region in images of the cervix now becomes a problem of estimating the densities of the 
3rd order GMM, where each of the three Gaussians correspond to AW, CE and SE regions. For the clusters calculated to 
accurately segment each desired region, the features representative of each region should be appropriately and accurately 
chosen. In the past, researchers have used a combination of color and texture features to model the three regions of 
interest [12, 13, 14]. However, the assumption that the CE region was the only textured region was found to be invalid in 
most cases, especially in images containing mosaicism and other vascular structures. 
 

In this work, the choice of features was made by observing the perceptual characteristics of the cervix. Once the SR 
pixels are removed, the resulting image consists predominantly of three regions – CE, SE and AW. The CE region is the 
region immediately surrounding the os and is approximately near the center of the image. The CE region is bright red in 
color and is usually the darkest in the luminance plane. The AW region is the region immediately surrounding the CE 
region. It appears white or very pale pink depending on the intensity of acetowhiteness and is usually the brightest region 
in the luminance plane. The outermost region in the image is the SE region, which has a reddish hue usually between 
that of the CE and AW regions. Based on these observations, three features were chosen to represent the image to be 
segmented. To represent the difference in intensities, L from the CIE Lab color space [22] used. The difference in 
redness was represented by a from the Lab color space. The Euclidean distance of each point from the center of the 
image, d, was used to represent the difference in spatial orientation of each region. The distance feature was weighed by 
a factor, w, where 0<w<1, to prevent biasing the segmentation procedure from forming circular clusters. For the images 
used in testing, w = 0.2 was applied.  
 

To segment the AW, CE and SE regions, the SR-removed RGB image, ISRRem, is converted to Lab color space, the L 
and a planes smoothed to remove shot noise, and the L, a and d values are extracted from each non-SR pixel. The 
maximum likelihood estimate of the parameters of the 3rd order Gaussian mixture are found by applying the EM 
algorithm on the 3D [L, a, w*d] vectors. The EM algorithm is modified to incorporate the inter-dependence of pixels in a 
neighborhood. This is to imply that pixels that lie close to each other should belong to the same cluster unless they are 
radically different from one another in the feature space. This idea is incorporated into the EM algorithm for density 
estimation by smoothing the membership probabilities estimated at each E-step. Each pixel in ISRRem is assigned to one 
of three clusters, ck, such that ck is the index of the Gaussian corresponding to the maximum aposteriori probability. The 
cluster corresponding to the Gaussian with the largest L value is always labeled as the AW region. To split between SE 
and CE, the distances are used. The cluster corresponding to the Gaussian with the smallest mean distance from the 
center is labeled as the CE region, and the remaining cluster is labeled as the SE cluster. Figure 3 shows the 
segmentation results for the SR-removed image shown in figure 1(b). It can be seen that the GMM-based segmentation 
approach provides an excellent estimate of each of the three regions. 
 

    
(a) SR-removed image (b) Segmented CE region (c) Segmented AW region (d) Segmented SE region 

Figure 3 Segmentation using the GMM-based approach 
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4. SEGMENTATION USING DETERMINISTIC ANNEALING  
 

Deterministic annealing is an optimization algorithm based on principles of information theory and probability 
theory [23]. Specifically, it minimizes the expected distortion of the given system while maximizing its randomness, 
given by Shannon’s entropy. The optimization is equivalent to minimizing the Lagrangian  

                                                                                     F=D-TH,                                                                                       (13) 

where T is the Lagrange multiplier, D is the distortion of the system, H is the Shannon entropy. F is minimized with 
respect to p(y|x), the association probability of input vector x and centroid y. The centroid values of y can be computed 
by an iteration that starts at large value of T, tracking the minimum while decreasing T. This statistical optimization 
process is analogous to the statistical mechanics annealing process when D is taken as the energy of a physical system, H 
its entropy and T the temperature of the system that governs the level of randomness. Minimizing the Lagrangian F is in 
fact tracking the minimum of the free energy while gradually lowering the temperature, which is similar to that of an 
annealing process. There are a couple of parameters that govern the annealing process, each exerts its influence on the 
outcome, particularly the temperature rate (how fast the system is cooling down).  

Based on the observation that the AW region is different from other regions of the image in luminance, using DA 
for AW region segmentation is straight forward: The input image intensity (three color planes, i.e. red, green, and blue) 
is used as the only feature. Each pixel is fed into the DA clustering algorithm as a three dimensional vector. Depending 
on the intensity and color variation subtlety of the image, various numbers of clusters are generated with DA. The 
clusters fallen in the AW region is used to form the mask for segmentation. When the transition between different 
components is smooth, more clusters have to be generated to differentiate them. Figure 4 shows the segmented AW 
region of the same image (640 x 448) used in the other two methods. 
 

  
(a) Original colposcopic image (b) AW contours 

Figure 4 AW segmentation using DA 
 

5. COMPARISON OF METHODS 
 

Three different methods for segmenting the AW region were presented in the previous sections. Segmentations on 
four images, using the three methods are shown in figure 7. All three methods identify most of the AW regions. 
However, each method comes with its set of advantages and shortcomings. The MM-based approach is the fastest of the 
three methods, with an average operation time under 10 seconds for an image of size 640x448. However, the method 
sometimes tends to produce several spurious edges, evident in the first image in row 1 of figure 7. While the SE region 
may be estimated as the region outside the AW contour, the method does not provide an estimate of the CE regions. The 
GMM-based segmentation method overcomes some of these shortcomings. The GMM-based method provides estimates 
for the CE and SE regions in addition to estimating the AW region. The algorithm also has the ability to detect small 
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isolated AW regions. However, the GMM-based model restricts itself to finding regions in the image that are similar in 
terms of the features used, which may be inadequate if the regions are too complex to be modeled by the three simple 
features. The GMM-based model also operates slower than the MM-based segmentation approach, averaging about 70 
seconds for a 640x448 image.  

 
From the segmentation results it is clear that DA produces the most accurate results. However, DA may not be best 

suited for automated segmentation in its current form as the DA parameters have to be manually chosen based on each 
image. Also, DA runs very slowly; the length of time depending on the number of centroids needed to satisfactorily 
segment the AW region from other regions. For example, the segmentation of AW region in Figure 4 uses 8 clusters 
which takes 12 minutes to obtain. However, the results using DA are promising to warrant the exploration of 
automatically selecting the parameters for automated segmentation. Thus, of the three methods discussed, the GMM-
based method offers a good compromise in terms of segmentation accuracy, model complexity and execution time. All 
times tests were performed on a system running AMD Athlon XP 2GHz processor with 1.5 GB RAM.  
 

6. SEGMENTATION OF MOSAICISM AND PUNCTATIONS 
 

Mosaicism and punctations are vascular abnormalities that are representative of a severity of CIN higher than simple 
AW. It is often important to segment mosaicism and punctations from sections containing the respective abnormalities to 
assess the inter-capillary distance, which usually increases as CIN progresses. Punctations appear as roughly circular 
objects with a heavy reddish hue on the RGB image or as dark objects on the corresponding grayscale image. Because 
the shape and size of the objects are fairly uniform and known apriori, matched filtering using a template matching the 
shape of the object to be detected can be used to accentuate these objects. Punctations also have a tendency to occur in 
groups with no clear line of demarcation between two or more punctations. Matched filtering using a Gaussian template 
helps to increase the degree of separation between two close punctations because the detected objects are forced to be 
circular. Matched filtering is implemented as a convolution given by 

                                                                          ),(),(),( yxfyxGyxm ∗= ,                                                                    (14) 
where G(x,y) is a separable 2-D Gaussian kernel with σ = 10, which was found to adequately describe the variations in 
intensity around punctations in the samples used, f(x,y) is the input image, and m(x,y) is the matched filtered image. 
Matched filtering essentially serves two purposes: it increases the contrast around individual punctations, and it 
smoothes uniform regions. The resulting image, m(x,y), consists of dark punctations on a bright background.  
 

The intensities of m(x,y) can be modeled as a mixture of two Gaussians, one that predominantly models the 
variations in intensity of the punctations, and one that predominantly models the variations in intensity in the 
background. The maximum likelihood estimate for the parameters of the two Gaussians can be found using the EM 
algorithm. An important advantage of modeling m(x,y) as a GMM is that it helps to make the detection algorithm 
independent of the image acquisition process. Because the EM algorithm is applied to each individual image, the 
punctations will be detected irrespective of variations in illumination and image acquisition modalities as long as the 
punctations appear darker than the background. Figure 5 shows an example section containing punctations and the 
segmented punctations. The grayscale image is pre-processed using anisotropic diffusion [24] to smooth the background 
while preserving the edges. 

 
The mosaic structures can be segmented using approaches demonstrated in [25, 26]. The segmentation is based on 

the assumption that the mosaic structures may be modeled as a union of rotated line segments. The grayscale section 
containing mosaicism is enhanced by applying a morphological top-hat transform, complemented, and subject to 
morphological opening using a sequence of 8 rotating linear structuring elements, called ROSE for ROtating Structuring 
Elements. The maximum of the 8 resulting images is retained at each pixel. The resulting image is converted to a binary 
image using an adaptive threshold. The bright structures in the image represent the mosaic structures in the section. 
Figure 6 shows an example segmentation. 
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(a) Image section 
with punctations 

(b) Pre-processed 
grayscale image 

(c) Image After match 
filtering 

(d) After GMM based 
clustering 

(e) RGB with contours 
around punctations 

Figure 5 Segmentation of punctations 
 

      
(a) Image section 
with mosaicism 

(b) Grayscale + 
complement 

(c) Top-hat 
transformed 

(d) ROSE filtered (e) After adaptive 
thresholding 

(f) Skeletonized 
structures 

Figure 6 Segmentation of mosaicism 
 

7. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we have compared and contrasted three methods for segmentation of the AW region from images of 
the cervix. The morphological AW segmentation method provides advantages in its speed, but has a tendency to produce 
spurious edges. The DA-based segmentation may be tuned for most accurate results, but is very slow in its operation and 
unsuitable for automatic segmentation in its current form. The GMM-based method provides a good compromise 
between the two methods with the additional advantage of also providing estimates of the CE and SE regions. A novel 
adaptive method for the removal of SR was also presented. The mosaic and punctation segmentation algorithms provide 
two additional pieces to solve the problem of complete automated diagnosis of CIN. Future research in this direction will 
include methods for automatically locating image sections containing vascular abnormalities, comparison of automated 
segmentations with ground truth segmentations marked by experts and automated disease severity assessment.  
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(a) MM-based segmentation (b) GMM-based segmentation (c) DA-based segmentation 

Figure 7 Comparison of AW segmentations using the three different methods 
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