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Abstract 

Data integration is a crucial task in the 
biomedical domain. Data elements (DEs) 
play an important role in data integration 
and we propose to map DEs to termino-
logical resources as an approach to data 
integration. We extracted DEs from 
eleven disparate biomedical sources. We 
compared these DEs to concepts and/or 
terms in biomedical controlled vocabu-
laries and to reference DEs. We also ex-
ploited DE values to disambiguate under-
specified DEs. Results suggest that data 
integration can be achieved automatically 
with limited precision and largely facili-
tated by mapping DEs to terminological 
resources. Finally, the use of general 
lexical resources and of more powerful 
techniques to exploit DE values would 
improve our method. 

1 Introduction 

The interpretation of experimental data generally 
requires physicians and biologists to compare 
their clinical and biological data to already exist-
ing data sets and to reference knowledge bases. 
For example, starting from a gene involved in a 
pathological condition, users may want to obtain 
information about this disease (e.g., manifesta-
tions, genes involved) and about the gene (e.g., 
sequence, polymorphism, pathways). This kind 
of information is often present in electronic bio-
medical resources available through the Internet. 
However, collecting information manually is 
slow and error-prone, which is essentially in-
compatible with high-throughput analyses. 

The integration of biomedical resources has 
been proposed as a solution to facilitate access to 

multiple, heterogeneous resources (Hernandez 
and Kambhampati, 2004; Stevens et al., 2000). 
However, most biomedical systems have been 
developed independently of each other and do 
not have a common structure or even a shared 
data dictionary. In practice, the major barriers to 
data integration are the heterogeneity of database 
schemas and the disparity of data elements 
across systems. 

Data elements (DEs) can be defined as fol-
lows1; 

• A named identifier of each of the entities
and their attributes that are represented in
a database.

• A basic unit of information built on
standard structures having a unique mean-
ing and distinct units or values.

Examples of DEs in the biomedical domain in-
clude Gene Symbol and Pathology Name. 

The objective of this study is to compare the 
DEs present in biomedical electronic resources to 
concepts and/or terms of biomedical controlled 
vocabularies on the one hand and to existing DEs 
on the other. The set of DEs under investigation 
was extracted from eleven biomedical data 
sources covering genes, proteins and diseases, 
illustrating the disparity of DEs across sources. 
Our hypothesis is that we will be able to inte-
grate DEs from heterogeneous sources by linking 
them to controlled terminologies, when they are 
not already present in reference DE repositories. 

The paper is organized as follows. Section 2 
introduces DEs and how we extract them from 
Web resources. Section 3 presents the termino-
logical resources used to integrate DEs. Methods 
for linking DEs and controlled terminologies are 
presented next, followed by the presentation and 
discussion of our results. 

1 http://www.atis.org/tg2k/_data_element.html 

Proceedings of the Second International Symposium on Semantic Mining in Biomedicine (SMBM-2006):52-59.



2 Data elements 

2.1 Origin 

Our test set consists of data elements extracted 
from eleven Web-accessible biomedical sources, 
selected to be representative of the different 
kinds of resources found in the biomedical do-
main. Some of them contain information about 
genes: GeneCards2, Entrez Gene3, Geneloc4, 
Genew (the HGNC5 database) and HGMD6, oth-
ers about proteins: Swiss-Prot7, PDB8, HPRD9, 
Interpro10 or diseases: OMIM11. Our application 
is not targeted to a particular model organism so 
we also included the resource MGI12, which pro-
vides various kinds of information about mice. 

2.2 Extracting data elements 

Creating a set of query terms. We first assem-
bled a set of biomedical terms to be used as 
query terms in the data sources under investiga-
tion. These terms were extracted manually from 
a reference resource in the domain of medical 
genetics: the Genetics Home Reference13. This 
resource contains information about genetic con-
ditions and genes involved in these conditions. 
The first author, a bioinformatician, randomly 
selected terms from lists displayed on this Web 
site. Our data set includes terms such as gene 
symbols (e.g. HFE, BRCA1) and pathologies 
(e.g. hemochromatosis, breast cancer). Our set 
comprises 100 terms. 

Querying data sources. Each of the eleven 
sources is queried automatically for each term. In 
practice, the procedure used to query the sources 
can be described as follows. 

• Identifying the URL allowing to query it 
dynamically. 

• Creating a set of 100 HTML pages cor-
responding to entries of the set of bio-
medical terms. 

• Pre-processing each page by first elimi-
nating the header and footer, which are 
common to HTML pages. In fact, many of 

                                                
2 http://bioinformatics.weizmann.ac.il/cards/ 
3 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene 
4 http://genecards.weizmann.ac.il/geneloc/ 
5 http://www.gene.ucl.ac.uk/nomenclature/ 
6 http://www.hgmd.org/ 
7 http://www.expasy.org/sprot/ 
8 http://www.rcsb.org/pdb/ 
9 http://www.hprd.org/ 
10 http://www.ebi.ac.uk/interpro/ 
11http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM 
12 http://www.informatics.jax.org/ 
13 http://ghr.nlm.nih.gov/ 

the resources used in this study are Web-
interfaces to biological databases, auto-
matically generated by program. There-
fore, it is expected that most pages of a 
given resource share a common organiza-
tion and presentation. We take advantage 
of this feature for identifying recurring 
terms throughout pages, which, we hy-
pothesize, correspond to data elements. 

• Selecting all the terms (extracted from 
the different HTML pages) common to at 
least 75% of the HTML pages. This selec-
tion results in eliminating specific infor-
mation (e.g., a given gene name) while 
keeping general information (e.g., the term 
“Gene Name”). 

An example of data element extracted from 
the source Genew is given in Figure 1. For in-
stance, the terms “Approved Symbol” and “Ap-
proved Name” appear on all three pages and are 
therefore identified as candidate data elements. 
The interested reader is referred to (Mougin et 
al., 2004) for additional information about the 
extraction method used in this study. 

2.3 Integrating data elements  

The data elements (DEs) extracted from various 
resources tend to be heterogeneous. In fact, each 
source often has its own way of naming the DEs 
it uses. For instance, the DE for pathological 
conditions is named Disorders in GeneCards, but 
Disease in HPRD. Lexical approaches to inte-
grating DEs across data sources are therefore 
likely to perform suboptimally. 

Additionally, in some sources, DEs may ac-
quire part of their meaning from the context. For 
example, Name in Entrez Gene refers to gene 
names. In contrast, other sources use fully speci-
fied names for their DEs, e.g., Protein Name in 
Swiss-Prot. The issue here is that Name in gene 
context cannot not be mapped automatically to 
Gene Name (fully specified). Conversely, two 
DEs Name in gene and protein contexts respec-
tively must not be mapped. 

Integrating DEs facilitates the integration of 
biomedical resources. Our goal is to enable bi-
ologists interested in the interactions of a given 
protein, for example, to query the eleven selected 
sources seamlessly. To this end, we map the 
query term interaction to DEs in three sources: 
Interactions in HPRD, Interactant in Entrez 
Gene and Ligand Interaction in PDB. From these 
resources, biologists can gain information about 
protein interactions in HRPD, find cross-  



 
Figure 1. Example of the three Genew Web pages for the TNXB, HFE, and BRCA1 genes. 

Examples of data elements are encircled (Approved Symbol, Approved Name)

references in Entrez Gene not only to the lit-
erature, but also to other specialized resources, 
such as BIND14, and visualize chemical inter-
actions in PDB. 

To address heterogeneity and ambiguity be-
tween DEs coming from distinct sources, we 
propose to exploit existing terminological re-
sources. 

3 Terminological resources 

3.1 A biomedical controlled terminology: 
the UMLS 

We chose the Unified Medical Language Sys-
tem® (UMLS®) (Lindberg et al., 1993) as a 
biomedical terminology because it provides a 
wide coverage of the biomedical domain, in-
cluding terminologies for specialized clinical 
disciplines, biomedical literature and genome 
annotations. The UMLS also provides cross-
references to resources such as OMIM, which 
contains data about human inherited diseases 
(Bodenreider, 2004). 

The UMLS consists of three major compo-
nents. The UMLS Metathesaurus is assembled 
by integrating more than 100 sources vocabu-
laries. It contains about 1.2 million concepts 
(clusters of synonymous terms) and more than 

                                                
14 http://bind.ca 

22 million relationships between these con-
cepts. The UMLS Semantic Network is a lim-
ited network of 135 semantic types. These 
types are organized in a tree structure and each 
Metathesaurus concept is assigned to at least 
one semantic type. Finally, the Lexical Re-
sources comprise the SPECIALIST Lexicon 
and Lexical Tools (McCray et al., 1994). Addi-
tionally, the MetaMap Transfer (MMTx) pro-
gram allows the mapping of text to concepts in 
the Metathesaurus (Aronson, 2001). The 
UMLSKS Developer's API also provides vari-
ous methods for identifying Metathesaurus 
concepts from input terms (exact and normal-
ized match). The 2005AA version of the 
UMLS is used in this study. 

3.2 A biomedical collection of data ele-
ments: the NCI caDSR  

The National Cancer Institute (NCI) has cre-
ated a Cancer Data Standards Registry 
(caDSR)15 as part of the caCORE, a common 
infrastructure for cancer informatics (Covitz et 
al., 2003). Its main goal is to define a compre-
hensive set of standardized metadata descrip-
tors for cancer research terminology used in 
information collection and analysis. Various 

                                                
15 http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_ 
overview/cadsr 



NCI offices and partner organizations have 
developed the content of the caDSR by regis-
tration of DEs based on data standards, data 
collection forms, databases, clinical applica-
tions, data exchange formats, UML models, 
and vocabularies. Using the ISO/IEC 11179 
model for metadata registration, information 
about names, definitions, permissible values, 
and semantic concepts for common data ele-
ments (CDEs) have been recorded. In this 
study, we used the version 3.0.1.2 of the NCI 
caDSR, which comprises some 13,000 CDEs. 

4 Method 

Our method can be summarized as follows. We 
first attempt to find a direct correspondence 
between our DEs and biomedical terms in the 
UMLS on the one hand and existing CDEs in 
the NCI caDSR on the other. Alternatively, we 
map the values corresponding to our DEs to 
the UMLS and expect to determine the type of 
the DE using the semantic types of the terms 
corresponding to the DE values. 

4.1 Direct mapping of data elements to 
terminological resources 

Mapping to the UMLS Metathesaurus. Our 
approach to mapping DEs to UMLS concepts 
is as conservative as possible. We first attempt 
to find an exact match. If none is found, a 
match is attempted after normalization of both 
the input and target terms. These two steps are 
implemented by the corresponding methods of 
the UMLSKS API. Finally, an approximate 
match is attempted using MMTx (strict 
model). The mapping procedure stops as soon 
as a match is found. The output of the mapping 
consists of the list of Metathesaurus concepts 
corresponding to each DE, along with their 
semantic types. 

Mapping to the NCI caDSR. The proce-
dure used to map DEs to the caDSR is some-
what similar to the mapping to the UMLS. The 
major difference is that we used a local copy of 
the caDSR instead of using the browser pro-
vided by the NCI. This allowed us to have 
more control over the mapping process. We 
restricted the caDSR data to the “Long Name” 
and “Preferred Name” fields. We also rendered 
input terms and caDSR CDEs compatible by 
removing spaces in multi-word terms in order 
to match the naming style in the caDSR. 

We first try to map exactly each DE against 
the Preferred Names of the caDSR. In case of 
failure, we attempt an exact match to the Long 
Names of the caDSR CDEs. Additionally, we 
split each multi-word DE not yet mapped to 
the UMLS and attempt an exact match against 
the Preferred Names of the caDSR, followed 
by an approximate match. Finally, we attempt 
to map exactly the isolated words from DEs to 
the Long Names of the caDSR CDEs. 

4.2 Indirect mapping of data elements 
through their values 

The lexical approaches presented in the previ-
ous section are powerful, but limited to those 
cases where DEs are lexically similar to entries 
in the terminological resources. The alternative 
approach proposed here consists of mapping 
not the DEs, but the values associated with 
them to terminological resources. It is expected 
that the corresponding DEs will be found 
among the high-level categories characterizing 
these values. For example, values associated 
with the DE Approved Name in Genew include 
“tenascin XB”, and “breast cancer 1, early on-
set” (see Fig. 1). These values are mapped to 
UMLS concepts whose semantic types are ex-
pected to provide candidate DEs. 

Acquiring DE values. We extracted up to 
100 values corresponding to each DE. For ex-
ample, the values associated with Function in-
clude “protein binding” and “enzyme regulator 
activity”. In some cases, no value could be ex-
tracted for a given DE in a given source. 

Mapping DE values to the UMLS. We 
used the methods described in section 4.1 for 
mapping DE values to UMLS concepts, with 
the difference that only exact and normalized 
matches were used here. For example, protein 
binding was mapped to the concept “Protein 
Binding” (C0033618), categorized by the se-
mantic type Molecular Function. 

Extracting DE candidates. We used the 
semantic type(s) of the UMLS concepts result-
ing from the mapping of the values of a given 
DE to determine the type of this DE. More 
precisely, we selected the semantic type cate-
gorizing the majority of the concepts for a 
given set of values. For instance, in the exam-
ple presented above, we are able to determine 
that the DE Approved Name relates to gene 
names since the majority of its values were 
categorized by the semantic type Gene or Ge-
nome (see Fig. 2.a). 



 

 
Figure 2. Examples of the exploitation of the values of two data elements: 

(a) using the UMLS as a terminological resource, (b) using heuristics

4.3 Default mapping through data ele-
ment values and heuristics 

When the previous process could not deter-
mine the type of a DE, we assigned coarser 
predefined types. We first isolated DEs con-
taining specific terms. For instance, when the 
terms “ID(s)” or “identifier” were found, the 
corresponding DE was typed as Identifier. 
Then, we analyzed the values characterwise 
and assigned the type Sequence to the DE 
when each of its non-empty values was a series 
of “A”, “G”, “C”, and “T”. Finally, the remain-
ing DEs were typed as Integer or String ac-
cording to their values. 

An example of the exploitation of DE values 
through heuristics is shown in Figure 2.b. 

5 Results 

5.1 Disparity of DEs 

474 distinct DEs (548 tokens) were extracted 
from the eleven selected sources, including 47 
DEs appearing in more than one source (com-
parisons ignore case). The most frequent DEs 
are Name and Symbol, which appear each in 
six different sources. Of note, these two DEs 
are completely ambiguous outside their origi-
nal context. 

5.2 Direct mapping of data elements to 
terminological resources 

For both UMLS and caDSR, we obtained dif-
ferent kinds of mappings. Indeed, as a DE con-
sists of a word or a set of words, we found 
mappings of the forms 1-1 (one DE to one 
UMLS concept/caDSR CDE) and 1-n (one DE 
to many UMLS concepts/caDSR CDEs). 

Mapping to the UMLS Metathesaurus. 
391 DEs (82.5% of all distinct DEs in our set) 
were mapped to 479 distinct concepts of the 
UMLS Metathesaurus. Table 1 shows the 
number of DEs mapped during each step, 
along with the numbers of the concepts 
mapped to these DEs. In addition, we show 
two examples of DEs for the different cases. 

Each mapping was reviewed manually by 
the first author. The validity of the mappings to 
the UMLS is nearly 66%. Incorrect mappings 
occur when general terms are given a biomedi-
cal interpretation. For instance, the DE exter-
nal links is mapped to the UMLS concept 
“Link” (C0208973), which is a Pharmacologic 
Substance. In fact, the DE refers to “link” in a 
computer-science meaning, i.e. a cross-
reference. Other errors are due to the ambigu-
ity of abbreviations, a classical issue in map-
ping. For example, the DE previous GC identi-
fiers is mapped to the concept 

 



 
Step 

Number of mapped 
DEs / of correspond-
ing UMLS concepts 

Data element UMLS concept(s) 

Exact match 139 / 204 
Molecular Weight 

Northern Blot 

Molecular Weight (C0026385) 

Northern Blot (C1148548) 

Normalized 
match 

20 / 23 
cellular component 

molecular function 

cellular_component (C1166607) 

molecular_function (C1148560) 

Approximate 
match 
(MMTx) 

232 / 333 

Gene Symbol  

 

mrna sequence 

Genes (C0017337) 

Symbol (C0679214) 

RNA, Messenger (C00035696) 

Table 1: Mapping steps of data elements in the UMLS Metathesaurus 

“GC Gene” (C1367452), while GC stands, in 
fact, for GeneCards. 

We also considered the repartition in terms 
of semantic types of the results obtained by our 
method (Table 2). This gives us an idea of 
what kind of information DEs represent. Not 
surprisingly, the semantic type under which 

many concepts are categorized is Intellectual 
Product, corresponding to generic concepts 
such as Synonyms, Nomenclature, and data-
base. The semantic categorization of the DEs 
also helps assess the quality of the mapping 
(e.g., mapping of DEs to medical devices 
would be suspicious). 

 
Number of 

mapped 
concepts 

Semantic type 
Example of data 

element 
Example of proposed 

concepts 

37 Intellectual Product Gene Name Names (C0027365) 

34 
Body Part, Organ, or Or-
gan Component 

biological process Biological process (C1184743) 

26 Functional Concept skeletal muscle 
Entire skeletal muscle (organ) 
(C1280260) 

25 Qualitative Concept gross insertions &  
duplications 

Duplication (C0332597) 

19 Spatial Concept site of expression Site (C0205145) 

17 Neoplastic Process malignant neoplasms malignant neoplasms (C0006826) 

17 Quantitative Concept sensitivity Statistical sensitivity (C0036667) 

16 
Pharmacologic 
Substance 

average numbers of over-
lapping amino acids 

Amino Acids (C0002520) 

14 Body System immune system immune system (C0020962) 

14 Disease or Syndrome disorders & mutations Disease (C0012634) 

Table 2: Repartition of the data elements under UMLS semantic types

Mapping to the NCI caDSR. 354 DEs 
(74.7% of all distinct DEs in our set) were 
mapped to 2,735 distinct DEs of the caDSR. 
By exact match to the Preferred Names, we 
obtained 10 correct mappings, such as gene 
function. Exact match to the Long Names re-
sulted in mapping 22 DEs to 285 caDSR 
CDEs. Some mappings were correct, e.g. Loca-
tion which mapped uniquely to MapLocation, 
but others were not very useful, such as De-
scription which mapped to 23 distinct CDEs. 
After splitting multi-word DEs, ten mappings 

were identified by exact match to the Preferred 
Names, but resulted in partial matches. For 
instance, the DE other accession ids was 
mapped to the caDSR CDE “other”, which is 
not relevant. Approximate match to the Pre-
ferred Names and exact match to the Long 
Names yielded 273 and 39 to 2,467 and 218 
distinct caDSR CDEs, respectively. We did not 
evaluate these results since these steps yielded 
too many caDSR CDEs for a given DE. For 
example, the DE Name was mapped to 374 
distinct caDSR CDEs. 



5.3 Indirect mapping of data elements 
through their values and default map-
ping through heuristics  

We analyzed the whole set of DEs. Interest-
ingly, this method enables us to identify as dis-
tinct those lexically identical DEs whose asso-
ciated value sets are different. 

Overall, only 62 DEs (11.3% of all DEs in 
our set) could be characterized with datatypes 
other than String. 36 DEs were categorized by 
UMLS semantic types and three categories of 
proposed mappings were identified: 

• Correct (11). An example is the DE 
Previous symbols, extracted from the 
source Genew. 90% of its values were 
categorized by the semantic type Gene 
or Genome. We were thus able to de-
termine that the Previous symbols DE in 
the context of the Genew source corre-
spond to previous gene symbols. Other 
examples include Function and Compo-
nent, extracted from MGI, whose values 
are categorized by the semantic types 
Molecular Function and Cell Compo-
nent, respectively. 

• Ambiguous (21). For instance, the DE 
Name, extracted from the source Entrez 
Gene, is mapped to the semantic types 
Gene or Genome and Amino Acid, Pep-
tide, or Protein. This is due to ambiguity 
existing in the UMLS. For example, 
“BRCA1” maps (by exact match 
through synonyms) to both a protein 
name (BRCA1 Protein - C0259275) and 
a gene name (BRCA1 Gene - 
C0376571). 

• Erroneous (4). Some terms were 
wrongly extracted from the sources. For 
example, Not applicable is extracted 
from the source GeneCards because it is 
present in many pages, but does not cor-
respond to a DE. 

The remaining DEs (26) were accurately as-
signed to the coarser types Number, Identifier 
and Sequence. 

Table 3 shows the number of the DEs asso-
ciated with the various datatypes. 

 

 

 

 

Type 
Number of 
DEs having 

this type 

Examples of typed 
DEs 

Semantic 
type 

36    (6.6%) Previous symbols 
(Gene or  
Genome) 

Integer 18    (3.3%) molecular weight 

Identifier 6      (1.1%) accession numbers 

Sequence 2      (0.3%) Primer 1 

String 412  (86.9%) Animal model 

Table 3: Results of the indirect mapping through 
data element values and heuristics 

6 Discussion 

6.1 Findings 

Direct mapping. Intuitively, mapping to a ref-
erence DE repository represents the best possi-
ble data integration approach. This intuition 
was confirmed in part by this study and is il-
lustrated by the following example. The DE 
Gene Name exists in the caDSR, where it is 
related to the more generic CDE “Gene”. In 
our experience, however, beside a limited 
number of such mappings (only 10 are deemed 
correct), this approach was rather ineffective 
because most of our DEs could not be found in 
the caDSR. Moreover, the approximate match-
ing often yielded too many candidates to be 
useful in an automated environment. 

In contrast, the mapping of DEs to the 
UMLS turned out to yield the majority of the 
mappings. The broad coverage provided by the 
UMLS Metathesaurus explains the large num-
ber of exact matches. Approximate matches, 
while useful for guiding the mapping, are of 
limited interest in an automated environment. 
For example, there is no exact or normalized 
match in the UMLS for the DE Gene Name 
and this DE is mapped to the two concepts 
“Gene” and “Name”. The mapping to “Name” 
is too generic and would result in ambiguity 
with other DEs such as Protein Name. Analo-
gously, Gene Name and Gene Symbol cannot 
be easily differentiated if the mapping to 
“Gene” is selected. 

Indirect mapping. Because our method se-
lects the semantic type common to most values 
for a given DE, it achieves a semantic typing 
of the DEs rather than a real mapping. In fact, 
the direct and indirect mappings of DEs are 
complementary. Direct mappings enable us to 
map DEs to existing terminal resources, 
whereas indirect mapping allows to disam-
biguate mappings. For example, most values 
for the DE Name are mapped to concepts cate-



gorized as Gene or Genome, which indicates 
that Name is to be understood in the context of 
genes (i.e., gene name). Another interesting 
result is the categorization of the DE From (in 
Swiss-Prot) by the semantic type Mammal, 
because most of its values represent the organ-
isms in which the protein is expressed. How-
ever, overall, only 6.6% of our DEs could be 
semantically typed by this method. 

6.2 Semantic mining perspective 

The purpose of semantic mining is to identify 
and characterize the relations among entities of 
interest in a given domain. Because biomedical 
knowledge is scattered across many heteroge-
neous databases, data integration is often used 
in semantic mining applications. Moreover, 
semantic mining techniques are usually applied 
in high-throughput environments, where man-
ual data integration is impractical. Our results 
suggest that data integration can be achieved 
automatically with limited precision and 
largely facilitated by mapping DEs to termino-
logical resources. 

6.3 Limitations and future directions 

Evaluation. In this exploratory study, the va-
lidity of the mappings was evaluated by one 
person only (the first author). An independent 
evaluation would be required to confirm our 
results. 

General lexical resources. Among the DEs 
that failed to be mapped to the UMLS and 
caDSR are general terms such as Pathways, 
Ontologies, keywords, domain, and features. 
Mapping to general rather than specialized re-
sources is expected to compensate for this 
limitation. We plan to add WordNet (Miller 
1995), the electronic lexical database of gen-
eral English, to our list of target terminological 
resources and expect to increase the coverage 
of non-domain-specific DEs. 

Patterns and rules. The heuristics currently 
used for analyzing the DE values only identify 
a limited number of datatypes. Pattern detec-
tion could be used to enrich some datatypes 
with semantic information. For example, a pat-
tern for identifying bibliographic references 
would allow us to relate the DEs Primary Cita-
tion in PDB and Publications in InterPro. 
Analogously, rules could be used to combine 
multiple direct mappings. For example, a com-
posite concept “Gene name” could be created 
from the mapping of the DE Gene name to the 
two UMLS concepts “Gene” and “Name”. 

7 Conclusion 

The aim of our study was to consider the inte-
gration of biomedical sources through the use 
of DEs. We extracted a set of DEs from dispa-
rate biomedical sources available on the Inter-
net. We then demonstrated the benefit of using 
terminological resources to reconcile heteroge-
neous DEs. Terminological resources were 
useful from a lexical perspective, enabling to 
map DEs to a common vocabulary. In addition, 
from a semantic perspective, terminological 
resources supported the categorization of DE 
values, allowing us to disambiguate under-
specified DEs. 
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