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Abstract

Motivation: A part-of-speech tagger is a fundamental and indispensable tool in computational lin-
guistics, typically employed at the critical early stages of processing. Although taggers are widely
available that achieve high accuracy in very general domains, these do not perform nearly as well
when applied to novel specialized domains, and this is especially true with biological text.
Results: We present a stochastic tagger that achieves over 97.44% accuracy on MEDLINE abstracts.
A primary component of the tagger is its lexicon which enumerates the permitted parts-of-speech for
the 10 000 words most frequently occurring in MEDLINE. We present evidence for the conclusion
that the lexicon is as vital to tagger accuracy as a training corpus, and more important than previously
thought.
Availability: Software, documentation, and a corpus of 5 700 manually tagged sentences is available
at ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost.

1 Introduction

A growing number of researchers in the biomedical domain are engaged in text mining
or investigating its methodology. Part-of-speech tagging is fundamental to this work, as
so many NLP techniques rely on properly tagged text, eg parsing, bracketing, etc. But
available taggers for English, trained on general text, perform poorly in this domain. In
response to this, we introduced a tagger, called MedPost, trained specifically for biological
text, namely abstracts in the MEDLINE database. A description of the tagger and tag set,
with examples and instructions for download can be found in (Smith et al. 2004).

Our approach to designing MedPost was based on the fact that good baseline accuracy
for part-of-speech tagging is achievable when words are assigned their most frequent tag
(see for example (Brill 1992) where a 7.9% error rate on the Brown corpus is quoted). That
is, the most important information for tagging is associated with the word itself and can
be stored in a lexicon. But contextual information is also important, and this relationship
can be modeled after a manually tagged training corpus. We will argue that tagging with
high accuracy can be achieved most efficiently by manually constructing a lexicon and
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independently a training corpus, rather than primarily a training corpus (Merialdo 1991;
Elworthy 1994).

The MedPost tagger uses a simple hidden Markov model (HMM) to combine contex-
tual information (tag bigrams) with lexical information (tag probabilities for known and
unknown words) to improve on baseline tagging accuracy. The model itself is not new,
being the core algorithm in the Xerox tagger (Cutting et al. 1992) and TnT (Brants 2000)
to name two.

In the following sections we describe the MedPost tag set, corpus selection and annota-
tion, the lexicon, and the algorithm for the stochastic tagger. We then discuss tagging ef-
fectiveness based on different ways of constructing the lexicon. As part of this discussion,
we describe an analysis of the distributional characteristics of the referential vocabulary
(that is, items referring to content rather than linguistic function) in three different genres
of text. Finally, we compare some of the design decisions of the tagger culminating with
an assessment of the relative benefit to accuracy of the manual effort to extend the lexicon
versus the manual effort to extend the annotated training corpus.

2 Design of the Tagger

In this section we describe the architecture of the tagger. This includes (1) a new tag set,
with some portability to other POS tag sets, (2) a generic stochastic tagger, (3) an ex-
tendible lexicon as well as (4) domain specific and ad hoc handling of unknown words.
The effectiveness of the tagger, achieving an accuracy of 97.44% on our test set, is demon-
strated by comparison with two publicly available taggers.

���������
	������������������������������� 

The MedPost tag set consists of 60 tags. Most of these are from UCREL C5 and C7 (Gar-
side et al. 1997) and the Penn treebank (Marcus et al. 1994) with minor changes to some
names. The MedPost tag set adheres to linguistic principles (Quirk et al. 2000) as much as
possible while preserving the ability to translate back to the original tag sets. The closed
class set from C7 includes tags for punctuation, subordinators, determiners, coordinating
conjunctions, the existential there, a genitive marker, prepositions, numbers, modal verbs,
and the infinitive marker. Other closed class tags are for mathematical symbols, generic
pronouns, determiner pronouns (eg that), possessive pronouns, and relative pronouns.

Open class tags cover common nouns, verbs, adjectives, and adverbs. Each verb is
tagged with one of six inflections (base form, infinitive, past tense, past participle, present
participle, and 3rd person singular). Verbs can also be tagged as present or past tense ad-
jectival participles, or as gerunds. The verbs be, do and have have special tags.

The definitions for tags reflect and generalize features used by the Penn treebank (Mar-
cus et al. 1994), the SPECIALIST Lexicon (NLM 2003), and a subset of the UCREL C7
tag set (Garside et al. 1997). Some tags from these sets are distributed into multiple tags
in MedPost. For example the Penn treebank IN tag (Marcus et al. 1994) includes both
prepositions and subordinating conjunctions, with the ambiguity resolved by reference to
the bracketed corpus (and therefore, it is well defined only in that context). The MedPost
tag set has separate tags for prepositions and subordinating conjunctions, explicitly resolv-
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ing the ambiguity of IN. A side-effect is that the tagger is able to make better use of the
different contexts in which prepositions and subordinating conjunctions tend to appear.
Conversely, some tags in the MedPost tag set are distributed into multiple tags in other tag
sets. For example, the preposition tag in MedPost (II) is usually mapped to the preposition
tag (IN) in the Penn treebank tag set, except when the word is to in which case it is trans-
lated to the infinitive marker (TO). This illustrates that the translation from the MedPost
tag set to the Penn treebank tag set may depend on both the tag and the token. There are
only a few such exceptions, and these are enumerated in a translating module that auto-
matically translates from MedPost tagged text to Penn treebank or SPECIALIST Lexicon
tagged text (see (Smith et al. 2004)).

Provision has also been made in the tag set for tagging multi-word lexical items. For
example, the phrase because of should normally be tagged as a single preposition. And
the phrase in vitro is tagged as an adjective since it frequently occurs as a prenominal
modifier, as in previous in vitro studies. If these words were not tagged as a unit, then
a simple bigram model would likely tag because as a subordinating conjunction and in
as a preposition, making the syntax appear confused. In practice, only a small number of
frequently occurring phrases are recognized, and less than 0.5% of the tokens in the test
corpus belong to multi-word items.

��� � � � �����  ���� ���������� � ���
	 ����� � ���������

The corpus currently contains 5 700 sentences in 12 sets, with each set selected at random
from 12 different groups of MEDLINE abstracts. Ten of these sets, ���� through ������ ,
were selected from abstracts belonging to “themes” related to molecular biology using a
query process described in (Wilbur 2002). These themes, in turn, were selected at random
from the 10 largest branches of an ad hoc clustering of all themes related to molecular bi-
ology (based on a bag-of-words method). In addition to these 10, another set of sentences,
�� , was selected from abstracts covering molecular biology in general, and another set,
�� , was selected from random MEDLINE abstracts. A list of the sets with short descrip-
tions, numbers of sentences and numbers of tokens is given in table 1. Throughout the
development of the MedPost tagger, the �� and �� sets were not used for training, only
for testing purposes; all training sets have been extracted from �� � through �� ��� .

The text of the abstracts from each group were segmented into sentences by the tokenizer
(described in � 2.3) prior to random selection. Most of the selected sentences are the only
ones from their corresponding abstract, but a few abstracts have two or more sentences
selected. Some of the sentences that were improperly segmented (at an error rate of 1.2%)
or that were uninformative (eg section headings) were rejected and replaced with better
nearby representatives.

To manually tag the corpus, all sentences were first tagged using the evolving MedPost
tagger (the earliest version of the tagger was trained on the Brown corpus), and the tags
were then reviewed and edited by hand � . As work progressed, the reviewed portions of
the corpus were used to train and improve the tagger, thereby reducing the number of

�
The primary authorities for deciding membership in word classes are the works of (Quirk et al.
2000; Quirk et al. 2003).
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Table 1. Corpus composition

set # sent. # tok. description

��� � 1000 28 608 Extracellular signaling�����
1000 27 166 Sonic hedgehog�����
1000 26 532 Metalloproteinases�����
100 2 733 Human papillomavirus�����
100 2 700 Hepatitis C����	
100 2 705 Hepatitis B����

100 2 766 Proteoglycans�����
100 2 892 Colony-stimulating factor�����
100 2 615 Tissue plasminogen activator��� �� 100 2 911 Chronic myeloid leukemia���

1000 27 786 General molecular biology���
1000 26 566 MEDLINE

corrections required. This approach may have introduced bias when a tagger-assigned tag
is erroneous but left uncorrected. However, this bias was reduced through many iterations
of review and cross-comparison.

����� ��� �������� ��� � ����	�	 � � 	
	 � 	 � � �������
Tagging begins by obtaining a sequence of words from text. The tokenization algorithm
is an elaboration of the conventions followed by the Penn treebank (Marcus et al. 1994).
Words are delimited by white space and punctuation, but special conditions apply to hy-
phenated words (which are considered as a single word), abbreviations, numbers, and other
creative uses of the character set. Sentences are delimited, or segmented, by looking for
sentence-ending punctuation and ignoring probable abbreviations and other expressions
containing non-sentence-ending periods.

The tagger itself reads tokenized input, and models it as a hidden Markov model. The
model and algorithms are standard (Rabiner 1988), and will not be described exhaustively
here. For completeness, the formula for the probability of a sequence of words ������� ���! " " #� � � and tags $%�� �'& ���" " ! #� & � , is

(*),+ $ ��.- � ��*/*� (*)!+ $ �� �0� ��*/01 (*),+ � ��*/
� �2
354 �

(*),+ � 3 - & 3 / (*),+ & 3 - & 3�6 � /71 (8)!+ � 3 /

� �2
354 �

(*),+ & 3 - � 3 / (*),+ & 3 - & 3�6 � /71 (8)!+ & 3 /  

This derivation uses the definition of conditional probability, and appropriate independence
assumptions. Given a sequence of words, the Viterbi algorithm is used to find the sequence
of tags that maximizes this probability. The probabilities

(*)!+ & 3 - & 3�6 � / and
(8)!+ & 3 / are esti-

mated from unigram and bigram tag frequencies, in the supervised manner, from a pre-
tagged training corpus with Witten-Bell discounting (Witten and Bell 1991).

The term
(*)!+ & 3 - � 3 / is the probability that a tag & 3 will occur given the word � 3 . The
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lexicon stores specific words together with explicit probabilities
(*)!+ & 3 - � 3 / for the possible

tags. However, most words in the MedPost lexicon (98.7%) specify equal probabilities
divided among a set of permitted tags. Despite the absence of prior probabilities for tags
of many words, the tagger is able to achieve very high accuracy using its bigram language
model and unknown word model.

The tokenizer is also able to recognize multi-word lexical items (because of, in vitro, etc)
that appear in the lexicon, and the tagger treats these as single tokens. Thus the tokenizer
makes a commitment to a multi-word item and the tagger is forced to tag all of the words
of the phrase as a unit. The drawback of this is that the words of a phrase might appear
together accidentally, without being used as a phrase. For example, out of 44 occurrences
of the phrase due to in the corpus, all but one of them function as prepositions, as in hypoxia
due to apnea. One of them however, was more properly tagged with due as an adjective
and to as an infinitive marker as in embryos due to be pattern-deleted. Because of this
inflexibility, only the high frequency and problematic phrases (those whose constituents
would tend to be tagged in a way that would obscure the syntactic structure) were included
in the lexicon.

���������� � � ���

The lexicon file, containing a list of words with their permitted parts of speech, is divided
into three sections: a word ending section, a closed class section, and an open class section.
Each section is a list of entries, which may be a word, phrase, or word ending, followed by
a list of the tags permitted for it, and probabilities for each tag. For example,

ˆfeeding VVG VVGJ VVGN

is the entry for the whole word feeding, and indicates the possible tags are present partici-
ple verb (VVG), participial adjective (VVGJ), or gerund (VVGN), and these are assumed
to be equally probable (in this case, � 1�� probability each). The lexicon itself may be mod-
ified using a text editor, taking care to use the correct format for each entry, as illustrated.
Different inflections of words are entered separately, and the tagging algorithm makes no
connection between words having the same lexeme.

The closed class section consists of words (currently 360) that have at least one closed
class tag (determiners, conjunctions, etc) together with a list (currently 72) of multi-word
lexical items (because of, in vitro, etc). The words themselves were obtained from the high
frequency words in MEDLINE supplemented with lists found in (Quirk et al. 2000), and
the assignment of closed class tags was based on principles described in (Quirk et al. 2000).
Multi-word items were selected from various on-line and print sources, including (Quirk
et al. 2000), and from experience with the training corpus.

The open class section of the lexicon contains nouns, verbs, adjectives, and adverbs
obtained from MEDLINE. All open class words were sorted in decreasing frequency of
occurrence. The final lexicon contains entries for the first 10 000 words on this list. We
also evaluated the effect of an “extended” lexicon containing 100 000 of the most frequent
words in MEDLINE. However, since only the test sets ( �� and �� ) were evaluated us-
ing the extended lexicon, it was only required to enter the subset of the 100 000 words ac-
tually occurring in �� and �� (the words not occurring in the test set could not have any
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effect), and this amounted to an additional 1 852 words. Therefore the open class section
of the extended lexicon contained a total of 11 852 words. In � 3.4, we compare the relative
effectiveness of three different methods for developing the open class lexicon: derivation
from the training set of tagged sentences, generation by machine learning of word classes,
and construction by hand.

The word ending section of the lexicon contains high frequency word endings (currently
757 of them), from 0 to 4 letters in length used to handle unknown words. This is explained
in the next section.

������� ����� � � � 	 ����� �	�
����
����� � �� 

The machinery for tagging words that are not found in the closed class or open class sec-
tions of the lexicon relies mainly on the word endings and ad hoc constraints.

Word endings. Both the orthography of a word (eg whether it is written as all lower
case, all upper case, mixed letters and numbers, etc), as well as the suffixes are predictive
of word class. To capitalize on this, the word ending section of the lexicon contains en-
tries combining this information. Each entry specifies one of eight identified orthographic
classes together with a word ending of 0 to 4 letters in length, and the probability of each
possible tag is stored with it. In constructing this section, the training corpus was used, and
only those combinations of class and word ending with 20 or more instances were kept.
When the tagger encounters a word that is not in the lexicon, the probabilities for each
tag,

(8)!+ & 3 - � 3 / � are obtained from the lexicon entry in the word ending section that has the
same orthographic class and the most specific (ie longest) word ending. For example, in
searching for the unknown word preadipocytes, the entry for orthographic class “all lower
case” and the word ending ytes is used, but not the entries for the word endings tes, es, or
s.

Ad hoc constraints. After consulting the lexicon, a short list of constraints is applied
to
(*),+ & 3 - � 3 / , also based on the orthography of the word. These constraints were coded by

hand to address common tagging errors, and are applied only to words that are not found
in the lexicon. For example, expressions referring to numbers like -1, 10,000, and 402-405
and spelled numbers like forty two are recognized and always assigned the number tag
with probability 1. Other practical constraints were also implemented. For example, novel
hyphenated words are almost never verbs, so the probabilities for all of the verb tags are set
to 0 for such words (frequent hyphenated verbs, like up-regulated, appear in the lexicon as
verbs). Also, there is a recognizer for generic acronyms, like ERK, and MMPs, which are
very often correctly tagged as noun and plural noun, respectively.

��������� ������ �  ���  

The resulting tagger achieves 97.44% accuracy on the 1 000 sentences of the �� set. We
quote this number as our final figure of performance with a 95% confidence interval of
�

.19. We compare this figure with the performance results obtained from other taggers
trained on their original corpora. The Brill tagger (Brill 1992), trained on the Brown corpus
using the Penn treebank tag set (Marcus et al. 1994), achieves an accuracy of 86.8% on the
ML set. And the Xerox tagger (Cutting et al. 1992), also trained on the Brown corpus but
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modified to use the tag set of the SPECIALIST Lexicon (Rindflesh et al. 2000), achieves
an accuracy of 93.1%. By translating the MedPost tagger output to those respective tag
sets, it achieves an accuracy of 97.7% and 98.9% respectively. This comparison is not
intended to be a fair comparison of tagger algorithms, yet the differences can be explained
by the training of the MedPost tagger on a corpus extracted from MEDLINE, the reduced
ambiguity of its tag categories, and the specificity of its lexicon for MEDLINE.

3 Analysis of Tagger Effectiveness

We found that an effective tagger requires (1) that the tag set is carefully defined, (2) that
the lexicon contains domain specific words, and (3) that the lexicon is of high quality
and manually reviewed. We also found that an efficient development effort would place
about as many token types in the lexicon as tokens in the training set. In this section we
analyze and present evidence for each of these findings in the context of our experience
with tagging biological text.

� ��� ��� � � � � �  ��� ��� ����	 ����� 

As described above, the MedPost tag set was derived from part-of-speech class definitions
from the Penn treebank, UCREL, and the SPECIALIST Lexicon. But we departed from
those tag sets in order to reduce contextual ambiguity, and to make the task of tagging
easier. At the same time, the tags were chosen to facilitate automatic conversion to other
tag sets.

To evaluate this, we applied the MedPost algorithm on the �� set using alternative
tag sets. With the MedPost tag set, the tagger achieved 97.44%

�
.19 accuracy. When the

output of the tagger and the test set tags were both translated to the Penn treebank tag set
before comparing them, the accuracy was 97.68%

�
.18 (this increase is not statistically

significant). Finally, when the MedPost tagger was converted to a Penn treebank based
tagger (by translating the training set, lexicon, and ad hoc constraints to Penn treebank
tags) the tagging accuracy was 96.29%

�
.22. This decrease (significant with ���  ��� )

supports the hypothesis that the MedPost tag set more accurately models the language. The
same trend was found when the evaluation was done on the �� set (97.31%, 97.52%, and
96.09% respectively).

� � � ��� � � � � �  � � ������� � �	� � � � ��


Evidence of language specialization can be seen in a comparison of words occurring in
MEDLINE with the words occurring in the Brown corpus (Marcus et al. 1994) and the AP
corpus (1988/1989 version), as shown by the Venn diagram of figure 1. To construct this
figure, we first took the token types from each corpus separately, sorted them by decreasing
order of frequency, and selected the highest ranked token types on the list that accounted
for 92.3% of the tokens in the corpus. This percentage was chosen so that the list of types
for the MEDLINE corpus comprised the top 10 000 types. With these lists of token types,
the token types in each intersection were counted; the whole numbers in the figure give
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76.3% 73.0%

73.6%

3 048

5 778

13.4%

2 957

11
.0

%

13.6%

2 853 2 653

875 299

3.8%
5.2%

1.
3%

0.6%

4.1% 1.2%

MEDLINE corpus
10 000 token types

1 297 846 146 tokens

Brown corpus
9 733 token types
1 170 813 tokens

AP corpus
8 957 token types
83 962 551 tokens

Fig. 1. A comparison of the terminology of Brown, AP, and MEDLINE corpora. The number in each
intersection is the number of token types in the intersection, and the percentages are the percentage
of tokens represented in the corpus on the corresponding area.

the number of token types in each intersection, while the percentages reflect the total num-
ber of tokens represented by these types in the corresponding corpus (percentages sum to
92.3%). A set of 3 048 types is common to all three corpora, accounting for around 75% of
the tokens of each. Outside of this common set of words, the next most significant overlap
is 2 957 token types uniquely shared by the Brown and AP corpora, accounting for 11.0%
and 13.6% of their tokens, respectively. Yet there are only 875 types uniquely shared by
MEDLINE and Brown and 299 types uniquely shared by MEDLINE and AP, and a sig-
nificant 5 778 types unique to MEDLINE alone. The types unique to MEDLINE account
for 13.4% of that corpus, while the types unique to Brown account for 3.8% and those of
AP account for 5.2%. This difference in terminology may explain why taggers trained on
other corpora perform poorly when applied to MEDLINE, and the emphasis of the lexicon
in our approach addresses this phenomenon.

� ������� � � � � �  ��� � � ���
	
	  � ��� � � ��������� 
The relative impact of different components of the tagger was measured by tagging after
effectively removing each component in turn, with results shown in the upper half of table
2. The components that were removed were the ad hoc constraints and word ending section
of the lexicon (separately and together), the open class section of the lexicon, the closed
class section of the lexicon, and the bigram frequencies. To effectively remove the bigram
frequencies and word ending frequencies, all probabilities were assigned the same value.
The ad hoc constraints were removed simply by commenting out the code implementing
them. The open and closed class sections of the lexicon were removed by deleting all of
their entries from the lexicon. Obviously the most important component of the tagger is



The Importance of the Lexicon in Tagging Biological Text 9

Table 2. Accuracy of tagging with varying components. The top half of the table lists ac-
curacies obtained by removing: ad hoc constraints, word endings in the lexicon, ad hoc
constraints and word endings in the lexicon, open class words in the lexicon, closed class
words in the lexicon, and bigram data. The bottom half lists accuracies obtained using
lexicons obtained by different methods: the trained lexicons (trained on 10 and 3 700 sen-
tences from �� � through �� ��� ), the automated lexicon, and the manual lexicon. 95%
Confidence intervals are approximately given by

�
.25.

lexicon
��� � ��� �

w/o ad hoc constraints 97 � 36% -0 � 08 97 � 12% -0 � 32
w/o word endings 95 � 26% -2 � 18 95 � 12% -2 � 32
w/o endings or ad hoc 94 � 88% -2 � 56 94 � 40% -3 � 04
w/o open class 94 � 86% -2 � 58 95 � 58% -1 � 86
w/o closed class 59 � 66% -37 � 78 60 � 86% -36 � 58
w/o bigrams 92 � 12% -5 � 32 92 � 51% -4 � 93

trained (10) 94 � 53% -2 � 91 95 � 06% -2 � 38
trained (3 700) 95 � 76% -1 � 68 96 � 25% -1 � 19
automated 96 � 37% -1 � 07 96 � 34% -1 � 10
manual 97 � 44% - 97 � 31% -

the closed class section of the lexicon. This represents a large portion of words appearing
in English text, which are “function” words. Without the closed class section, the tagger
is unable to tag any of these words with their correct tag, because only open class tags
are permitted for unknown words. Next in importance, for this evaluation, is the bigram
frequency data. The ad hoc constraints play a minor role in determining accuracy.

When one considers that the word ending section and bigram data are both derived from
the training corpus, this argues that the training set controls a greater share of accuracy
than the open class section. But this does not tell us how the accuracy changes if these
components are varied, only how the accuracy changes if the components are removed
altogether. The incremental effect will be examined more closely in � 3.5 after considering
the effect of employing different methods of constructing the open class lexicon.

� ��� ��� � � � � �  ��� ��� ������ � ���� 

We experimented with three different methods for constructing the open class section of
the lexicon. The trained lexicon was derived by a method similar to that used in (Brill
1992) and (Cutting et al. 1992), using a training set to build a lexicon of words and the
frequency of their tags. The automated lexicon was constructed using a machine learning
algorithm and multiple lexical sources to predict lexicon entries. Finally, the manual lexi-
con was created by hand. Here we describe each of these in detail and the resulting tagging
accuracy. The lexicons are presented in the order of their performance, with the trained
lexicon performing worst and the manual lexicon best.

Trained lexicon. The training set consists of 3 700 tagged sentences that were hand
corrected. Its main purpose is for training the Markov transition probabilities between tags,
and to construct the word ending section of the lexicon. The training set may also be used
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as a source of tagged words for creating a lexicon, which we call the trained lexicon.
All open class words appearing in the training set were entered into the trained lexicon,
together with the frequency observed in the training set for each tag. As described in � 2.3,
to compute

(8)!+ & 3 - � 3 / for a word � 3 using this lexicon, the tag frequencies are smoothed
with default tag frequencies using Witten-Bell discounting. As shown in the lower half of
table 2, a training set of 3 700 sentences of �� � to ���� � was used with an accuracy of
95.76%, and another with 10 sentences for comparison, with an accuracy of 94.53%. Other
methods of extracting a lexicon from the training set were explored, but these did not result
in clear improvements in accuracy and are not reported here.

Automated lexicon. To construct the automated lexicon, a machine learning algorithm
was used to combine several sources of information to produce lexicon entries, ie a list of
permitted tags for each word. The features used in machine learning were obtained from the
letters of the word, the words of MEDLINE, WordNet, and the SPECIALIST Lexicon. For
example, the word feeding is alphabetic (consisting of letters alone) and ends in the letters
ng, and these facts are coded as features FORM=alpha, END1=g and END2=ng. It also
occurs in both WordNet and the SPECIALIST Lexicon as a noun, as does the word feed,
which are coded as features WNLEX=noun, SPLEX=noun, WNLEX-ing=noun (which
means that the word feed occurs in WordNet as a noun and is obtained from feeding by
removing the ending ing) and SPLEX-ing=noun. The words feed, feedings, feeder, and
feeds all occur in MEDLINE, and these facts are coded as the features MEDLINE-ing,
MEDLINE-ing+s (which means that the word feeds occurs in MEDLINE and is obtained
from feeding by removing the ending ing and adding the ending s) and MEDLINE-ing+er.
In addition to these, we also reasoned that an unknown word should occur frequently in
unambiguous contexts where the tagger is likely to obtain the correct tag. We therefore
tagged all of MEDLINE with MedPost using a version of the lexicon whose open class
section contained a few hundred of the most frequently occurring words in MEDLINE.
For each word, the majority tag and tags occurring more than 10% were used to form
features. To continue the example, the word feeding received the tag of a gerund (VVGN)
most often but also frequently received the tag of an adjectival participle (VVGJ) and these
facts are encoded as features TAGMJ=VVGN, TAGHI=VVGN and TAGHI=VVGJ.

For each open class tag, the CMLS algorithm (Zhang and Oles 2001) was applied to a
training set of known words to learn to recognize words that can occur with that tag. The
lexicon entry in the automated lexicon for each word was constructed by listing all of the
tags for which the corresponding recognizer accepted the word.

To evaluate the tagger using the automated lexicon, the machine learning algorithm was
trained on a training set of 1 548 open class words. This was then used to obtain lexicon
entries for all 11 852 words in the lexicon (this list includes the original 1 548 words of
the training set). The accuracy that resulted from training with this automated lexicon on
the �� set was 96.37%. Interestingly, a comparable accuracy was obtained when the
automated lexicon was trained without using features from WordNet or the SPECIALIST
Lexicon. For this study, we did not explore the effects of varying the size of the training
set or employing alternative learning algorithms in constructing an automated lexicon.

Manual lexicon. The lexicon entries from the automated lexicon for all 11 852 words
were manually edited to obtain a version of the lexicon we refer to as the manual lexicon.
Wherever possible, the permitted tags for each word excluded those tags that in our judg-
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set as a function of the size of the lexicon. The dotted
lines are 95% confidence intervals.

ment were inappropriate to scientific text, though such tags would necessarily appear in
a lexicon appropriate for some genres of text. The manual entries did not contain proba-
bility information for 9 913 open class words out of 10 000, or 99.13%. Those few words
that were given explicit prior probabilities were examples where a tag was added with low
probability to allow for rare usages (as determined from experience with the training cor-
pus). For example, the word inverse occurs most often as an adjective, but occasionally it
can be used as a noun, so its lexicon entry was entered as

ˆinverse JJ:1000 NN:1

Using the manually corrected lexicon resulted in an accuracy of 97.44% on the �� set.
Summary of comparison of lexicons. The accuracy of tagging is shown in the lower

half of table 2 for �� and �� for all 3 lexicons, with the trained lexicon shown for
training sets of 10 and 3 700 sentences. The accuracy of the tagger using the trained lexicon
is less than both the manual and the automated lexicons. All numbers in the table are
significantly different (� � �  � ), except for the �� set where the accuracy resulting from
using the trained (3 700) lexicon accuracy is not significantly different from that using
the automated lexicon. The small difference between training with 10 sentences and 3 700
sentences is a result of the tagger’s ability to tag unknown words. The tagging of unknown
words depends on the word ending section of the lexicon which was constructed using
3 700 sentences, and this factor was not varied in comparing lexicons.

� ������� � � � � �  ��� ��� ������ � ��� ����� � � ��� ��� � 	 ����

This project began with the goal of developing a tagger for MEDLINE text. And from the
beginning, we were focused on obtaining an accurately tagged training corpus (Merialdo
1991). But our initial experience with manual tagging suggested that the lexicon is very
valuable. In this section we present experimental evidence that quantifies the relative im-
portance of the lexicon. We compare the incremental effects of two variables, the size of the
lexicon and size of the training corpus, where the latter quantity varies the amount of data
used to construct both the word ending section of the lexicon and the bigram probabilities.
By controlling these variables separately, we will be able to observe their relative impacts
without biasing the conclusion. In all experiments, the ad hoc constraints and closed class
section of the lexicon are the same.
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Figure 2 shows the accuracy on the �� set, with 95% confidence intervals, as the num-
ber of open class words in the lexicon varies up to 100 000 (confidence intervals are pro-
vided here and elsewhere to indicate how the computed accuracy depends on the size of the
test set). Note that the data has a sigmoid-curve shape, and a logistic curve has been fitted
to the data. The lowest accuracy (94.82%) is determined by the ability of the tagger to tag
open class words when they are all unknown. The highest accuracy (97.69%) approaches
the limit that is achievable by this tagger when all the words occur in the lexicon. The
difference between the higher figure 97.69% and the reported figure 97.44% is similarly
due to the difference between tagging with a lexicon of 100 000 words and with a lexicon
of 10 000 words.

A similar sigmoid-curve shape can be seen (graph not shown) as the number of words
in the training set varies, thereby varying the data used to derive the word ending section
of the lexicon and bigram probabilities. The shapes of these curves suggest the possibility
of modeling tagger accuracy as a double sigmoid-curve in these two variables, the size of
the lexicon and the size of the training set, which would be valid at least over the range
of the available data. Such a closed formula makes it possible to predict the incremental
improvement in accuracy as the lexicon and training set are varied in size. In other words,
for any given size of the lexicon and training set, it is possible to predict whether to put
effort into one or the other in order to get the maximal improvement in accuracy. Of course,
these predictions cannot be expected to extrapolate beyond the bounds of the data, or to
hold for other tagging projects.

To carry out this plan, the 1 000 sentences of the �� set were tagged by the tagger
using differing sizes of training set and lexicon. A total of 336 tagging experiments were
performed using one of 12 different training sets and one of 28 different lexicons. The 12
training sets were extracted from �� � through ������ and consist of 10 to 3 700 sentences,
or 297 to 101 216 words respectively. The 28 lexicons effectively vary from 0 to the 100 000
most frequently occurring words in MEDLINE.

These 336 accuracy values were then smoothed by fitting to a parameterized logistic
curve using the nonlinear least squares method. The root-mean-square error of the fit is
0.243 (units of percent), with 95% of the fitted values within 0.481 (units of percent) of
their actual value. As an example of the goodness-of-fit, the accuracy of tagging the ��
set with bigrams and word endings trained on the 3 700 sentences of ���� through �� � �
using the 10 000 word manual lexicon is 97.44% while the value obtained from the empir-
ical formula is 97.40%, a difference of .04.

The smoothed data is represented by the solid lines in the contour plot of figure 3. Each
point in this graph corresponds to a size for the lexicon, given on the � -axis, and a size for
the training set, given on the � -axis. Both axes are represented logarithmically by powers of
10. Therefore, to read the graph to estimate the accuracy of tagging with a given size for the
lexicon and training set, locate this point on the graph and interpolate from the accuracies
of the nearest (solid line) contours. Though not shown, when the actual accuracy data is
plotted on this graph (using linear interpolation to obtain the contours, for example) the
contours conform to the fitted curves, with small deviations and jagged edges.

The empirical formula for accuracy can be used to predict the improvement in accuracy
from adding a word to the lexicon, call this ��� , and the improvement to accuracy from
adding a word to the training set, call this ��� (these values both depend on the current size
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Fig. 3. Contour plot of smoothed accuracy (solid lines) as a function of the size of the lexicon and
training set. The dashed lines are the ratio of the change in accuracy from adding an (open class)
word to the lexicon to the change in accuracy from adding a word to the training set. The training set
is used to train both the language model (tag bigrams) and the word ending section of the lexicon.
The large dot at
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is the current status of the MedPost tagger.

of the lexicon and training set). If � �
	 � � , then more improvement is to be gained by
adding a word to the lexicon, than by adding a word to the training set. The ratio � � 1 � �
is plotted in the contour plot in figure 3 as the dashed lines. The bold dashed line, the
“equilibrium curve,” is where the ratio is 1, that is, � � � � � . Above this line is a region
where � � 	 � � , and below it a region where � � � � � .

At any stage of development of the lexicon and training set (occurring in figure 3), the
effort required to transition from one region to the other is surprisingly small. For example,
with 100 words in the lexicon and no training set, the training set should be increased to
about 400 words. With 1 000 words in the training set, the lexicon should be extended to
about 1 000 words. The current training set of �� � through ������ contains a little over
100 000 words, and the formula predicts that all effort should be put into the lexicon until
it contains 40 000 words. Our tagger is clearly in a region of diminishing returns (figure 2).

4 Discussion

We do not believe that tagging accuracy depends critically on the underlying algorithm, but
rather on the number of words in the lexicon and training set (always, a complete closed
class lexicon is necessary). For example, by translating our manual lexicon (of open and
closed class words) into a form usable by the Brill tagger (Brill 1992) or the Xerox tagger
(Cutting et al. 1992), and dividing our corpus into a training and testing set, we would
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expect either of these taggers could achieve an accuracy comparable to 97.44%. But a tag-
ging system that derives its lexicon from the training corpus, and does not use a manually
generated lexicon, should require a much larger training set to achieve comparable accu-
racy. This would apply, for example, to the Maximum Entropy Model tagger (Ratnaparkhi
1996).

Using MedPost, we have shown that the requirement for manually tagged training sen-
tences is substantially reduced if an adequate lexicon is used. It remains to argue that the
most efficient way to obtain a lexicon is by direct manual creation of the lexicon entries.
To make this argument, we will derive an estimate of the manual effort required to produce
the MedPost lexicon and training corpus and compare it with an estimate of the manual
effort required to produce a training corpus alone, assuming that a comparable lexicon is
extracted from it.

To account for the fact that some annotation tools are easier to use than others, we as-
sume, as in our work, that a person is presented with precomputed annotations and lexicon
entries and is asked merely to independently verify their correctness; and that when correc-
tions are required, the computer interaction is minimal. With this understanding, we found
that it was feasible for one person to create lexicon entries for 1 000 new words per day,
while about 200 sentences per day could be annotated. Therefore, our estimate of the time
to produce the MedPost lexicon of 10 000 words and a training corpus of 3 700 sentences
is 28.5 days.

Many taggers derive a lexicon by tabulating token types and their parts of speech ob-
served in a training corpus. Suppose, for instance, that a usable lexicon entry can be derived
for words observed at least twice. Assuming that words occur independently with their
observed frequencies in MEDLINE, a Monte Carlo simulation shows that approximately
18 000 sentences would be needed in order for the resulting lexicon to contain all of the
10 000 most frequent words. (We point out that the resulting lexicon would still underrep-
resent many of the 10 000 words, and their tag probabilities would need to be estimated
by using a smoothing approximation.) Again using our work estimate of 200 sentences per
day, this training corpus of 18 000 sentences would require 90 days, which is more than
three times the effort estimated to produce the MedPost lexicon and training corpus.

The reason many more sentences are required to derive the lexicon from a training cor-
pus is simply a matter of efficiency. As more (random) sentences are considered, each
sentence contributes less and less new information to the lexicon. For example, in the first
batch of 200 sentences there would be approximately 2.7 new words encountered per sen-
tence, with most of them being high frequency words. But in succeeding batches, this
number would quickly drop to 0.8 new words per sentence, corresponding to lower fre-
quency words in MEDLINE. Moreover, many of these words would be very low frequency
and not in the 10 000 word lexicon.

Finally, we speculate that in some sense our results are not a consequence of our im-
plementation or even of our definition of the tagging problem. Rather, we think that the
results originate from the characteristic behavior of English word classes, and may gener-
alize to any tagging problem involving a human language similar to English, ie word order
dependent and not highly inflected, where a relatively small tag set is appropriate. Natural
languages obey the Zipf distribution (Zipf 1949), and this explains the diminishing utility
of effort spent tagging sentences to create a lexicon. One may hypothesize a simple para-
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metric “law” of tagging that describes the equilibrium between lexicon size and training
set size (the bold dashed line in figure 3), whose parameters would depend only slightly on
the tagging problem and the implementation.

5 Conclusions

In our effort to develop a tagger trained for biological text, we have achieved a high level
of accuracy, an efficient tag set and a corpus that can be used for training, testing, or any
other purpose. All of this material is available online

�

, where additions, revisions and notes
may also appear in the future.

We have also found that lexicon development is an important requisite for accurate tag-
ging in this, and probably any, specialized domain. Our results suggest a strategy for build-
ing a highly accurate tagger:

� manually tag a modest amount of text for training and testing, about 100 000 words
as in our project, (important for learning the language model or how parts of speech
relate to and follow one another in a sentence),

� construct a lexicon, either manually or with careful manual review, with permitted
parts of speech for all closed class words and punctuation, and a number of the most
frequently occurring open class words comparable to the number of tokens in the
training set, and

� tag text with a stochastic model based on smoothed relative frequency data.
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