
Automated Document Labeling
for Web-based Online Medical Journals

Daniel X. Le and George R. Thoma
Lister Hill National Center for Biomedical Communications

National Library of Medicine
Bethesda, MD 20894

ABSTRACT

An increasing number of publishers are using the
Internet and the World Wide Web to provide their
subscribers with access to online journals. New
techniques are needed to capture, classify,
analyze, extract, modify, and reformat Web-based
document information for computer storage,
access, and processing. An R&D division of the
National Library of Medicine (NLM) is
developing an automated system, temporarily
code-named WebMARS for Web-based Medical
Article Records System, to download, analyze
and extract bibliographic information from Web-
based journal articles to produce citation records
for its MEDLINE® database. This paper
describes one component of this system:
assigning meaningful labels to text zones
containing article title, author names, affiliation,
and abstract. This labeling technique is based on
features derived from the World Wide Web
Consortium Document Object Model (W3C
DOM) and an analysis of the page layout for each
journal, a DOM-based document node location
and content analysis, string pattern matching, and
a depth-first node traversal algorithm.
Experiments carried out on a variety of Web-
based medical journals have proved the feasibility
of this automated document labeling approach.
Preliminary evaluation results on a small set of
Web-based medical journal articles show that the
system is capable of labeling text zones at an
accuracy of over 95%.

Keywords: W3C Document Object Model,
Automated document labeling, MEDLINE®
database, National Library of Medicine.

1. INTRODUCTION AND BACKGROUND

Today, with the rapid advance and popularity of
the Internet and the World Wide Web

technologies, an increasing number of journal
publishers provide their subscribers with access to
online journals. However, Web-based online
journals pose new challenges in the areas of
automated document analysis and content
extraction, database citation records creation, and
other document-related applications. The Lister
Hill National Center for Biomedical
Communications, a research and development
division of the National Library of Medicine
(NLM), is conducting research in the area of
Web-based document analysis including Web
page downloading and classification, and Web-
based document content extraction, modification,
labeling and reformatting. To take advantage of
journal information available over the Internet, we
are developing an automated system code-named
WebMARS to create citation records for the
NLM’s MEDLINE® database from online
journals. This system (1) downloads and
classifies Web document articles as abstract, full
text, PDF or image files, (2) converts PDF files
to HTML files, if necessary, (3) parses HTML
files to create text zones, and labels these text
zones, (4) extracts, modifies and reformats the
citation information in labeled text zones to be
reconciled (validated) by an operator, and finally
(5) uploads the citation records to another NLM
database for indexing by experts. This paper
describes the automated labeling of text zones in
Web-based document articles as titles, authors,
affiliations, and abstracts

Most document labeling techniques proposed so
far in the literature deal with scanned document
images, while Web-based document labeling
algorithms classify the entire Web page. In this
paper, we propose an automated technique to
label Web-based text zones using the W3C DOM
and an analysis of the page layout for each
journal, a DOM-based document node location
and content analysis, string pattern matching, and
a depth-first node traversal algorithm. Preliminary

evaluation results show that the system is capable
of labeling online medical journals with very high
accuracy. In addition, we conduct research to
automate labeling of bibliographic data extracted
from medical online journals using statistics and a
fuzzy rule-based algorithm [1].
The rest of this paper is divided into six sections.
Section 2 provides a system overview. Section 3
presents the DOM features and algorithms.
Section 4 describes the Web-based document
labeling process. Experimental results and
summary are in Sections 5 and 6.

2. SYSTEM OVERVIEW

The automated labeling technique described here is
one component of our WebMARS prototype
system under development [2]. The labeling
process takes a downloaded Web-based document
article as its input, creates its DOM tree structure,
normalizes the tree structure by eliminating
unnecessary tags, builds the document string
patterns and performs the string pattern matching
algorithm to label each text zone as title, author,
affiliation, abstract, or unidentified.
The calculated features include both position-
based and content-based ones [3]. The position-
based features refer to the locations of nodes in a
DOM document structure such as parent and
child nodes. In addition to the parent and child
relationship feature, the node levels in the DOM
tree structure are also considered in our work and
they help to further improve the confidence level
of the labeling results. The content-based features
deal with the tag and/or text contents and their
attributes such as font attributes or tag names.

3. DOCUMENT OBJECT MODEL
FEATURES AND ALGORITHMS

“The Document Object Model (DOM) is an
application programming interface (API) for
HTML and XML documents. It defines the
logical structure of documents and the way a
document is accessed and manipulated.”[4].
Figure 1 shows HTML code for a typical medical
article, and Figure 3 presents a corresponding
DOM-based document tree diagram.

The DOM structure consists of nodes organized
as a tree; there are two kinds of nodes: tag

element, and non-tag element. The difference
between these two kinds of nodes is that the tag
element node has a tagName property that is the
name of the tag it represents. For example, in
Figure 3, the <H2> element has a tagName of H2
while the node (“Title”) located under <H2> node
is a non-tag element node. Since documents in the
DOM have a logical tree-like structure, there are
two node traversal algorithms available: depth-
first and breadth-first. In this paper, we use the
depth-first node traversal algorithm to visit each
node of the DOM tree structure.

Each node is assigned a level number based on its
position in the DOM tree structure. Starting from
the root node which is the <HTML> tag element
node; its node level is assigned as 1. In this paper,
both tag-element and non-tag element nodes as
well as their node levels are used to generate
string pattern features for the labeling process.
Furthermore, the labeling algorithm deals with
text zones only; therefore in order to reduce the
number of string patterns generated, several
unnecessary non-text tag elements such as
<FORM>, <FRAME>, , <TD>, and
<TR> are eliminated in the normalization
process. These nodes are marked as “not-used”,
while other nodes are marked as “available”.

Features calculated for this labeling technique are
based on an analysis of the page layout for each
journal and the layout’s associated DOM
structure. Two types of DOM-based string
patterns are considered in this paper: level-pattern
and tag-pattern. Each level and tag is separated by
dots (“.”).

Using this normalized DOM structure and starting
from the root node, the system uses the depth-first
node traversal algorithm to visit “available” nodes
and builds the level-pattern and tag-pattern strings
for each document article. Figure 2 presents an
example of both level-pattern and tag-pattern
strings for the HTML-based article shown in
Figure 1. These strings are then compared against
predefined Web article string patterns to label text
zones with labels such as titles, authors,
affiliations, and abstracts.

4. WEB-BASED DOCUMENT LABELING

PROCESS

The labeling process consists of four steps: (1)
download a document article from a publisher

Web site and create its DOM structure, (2)
normalize the DOM structure, (3) build document
article string patterns, and (4) perform string
pattern template matching against Web document
articles that follow a predefined layout structure
to associate a label with each zone of interest. In
the following subsection, each step is discussed.

4.1 Download a document article and create its
DOM structure

In this step, the system connects to a publisher
Web site, selects a particular journal issue, and
downloads its document articles. Note that in a
production system this step must be permitted by
copyright and subscription agreements. The
successfully downloaded articles are stored as
HTML files in a directory in the file server. The
downloading process is repeated until all
document articles of the selected journal issue are
downloaded. Following the downloading step, a
DOM structure is created for each document
article.

4.2 Normalize the DOM structure

In this step, unnecessary non-text tag elements
such as <FORM>, <FRAME>, , <TD>,
and <TR> are eliminated to shorten the length of
generated string patterns and to improve the
speed performance of the labeling algorithm.
Normal nodes are labeled as “available” while
eliminated nodes are labeled as “not-used”.

The following algorithm summarizes the
normalization process to reorganize the DOM
structure of a document article being labeled.
1. Initialize all tag and non-tag elements as “in-

process”.
2. Mark all heading tag elements <H1> to <H6>

and all of their non-tag element children as
“available”

3. Eliminate all “in-process” children elements
under <TABLE> tag.

4. Mark all non-tag elements as “available”
5. Eliminate all “in-process” elements having tag

names as follows: <!>, <A>, <ACRONYM>,
<ADDRESS>, <APPLET>, <AREA>, <BASE>,
<BASEFONT>, <BDO>, <BGSOUND>,
<BLOCKQUOTE>, <BUTTON>, <CAPTION>,
<CODE>, <COL>, <COLGROUP>,
<COMMENT>, <CUSTOM>, <DD>, ,
<DFN>, <DIR>, <DIV>, <DL>, <DT>,
<EMBED>, <FIELDSET>, <FORM>, <FRAME>,
<FRAMESET>, <IFRAME>, , <INPUT>,

<INS>, <ISINDEX>, <LABEL>, <LEGEND>,
, <LINK>, <MAP>, <MARQUEE>,
<MENU>, <META>, <NOFRAMES>,
<NOSCRIPT>, <OBJECT>, ,
<OPTGROUP>, <OPTION>, <PARAM>,
<PLAINTEXT>, <Q>, <RT>, <RUBY>,
<SAMP>, <SCRIPT>, <SELECT>, ,
<STYLE>, <TBODY>, <TD>, <TEXTAREA>,
<TFOOT>, <TH>, <THEAD>, <TR>, ,
<VAR>, <XML>, <XMP>.

6. Filter out any non-tag elements having empty
node value.

7. With the exception of <HTML>, <HEAD>,
<TITLE>, and <BODY> tag elements, eliminate
any “in-process” elements that do not have
non-tag element children.

4.3 Build document article string patterns

Using the normalized DOM structure from the
previous step and the depth-first node traversal
algorithm, the system builds two string patterns for
each document article: the level-pattern string and
the tag-pattern string. For each text zone, the
system records node level values as well as tag
names till a non-tag element is encountered. The
numbers in each level-pattern string are separated
by a dot (".") and the tags in each tag-pattern
string are also separated by a dot ("."). Figure 2
presents an example of both the level-pattern and
tag-pattern strings of the HTML-based article
shown in Figure 1.

4.4 Perform string pattern template matching

Finally, the string pattern matching algorithm
compares the two kinds of string patterns
generated in the above step against a predefined
string pattern of Web articles of similar journal
issues. Using both types of string patterns allows
the labeling algorithm to assign a level of
confidence in each labeled text zone. The
confidence information eventually will be
analyzed to further improve the matching
algorithm as well as to provide some insights into
the features selected for each document article.

5. EXPERIMENTAL RESULTS

The labeling technique described above has been
implemented, and experiments have been
conducted with Web-based document articles
selected from several different medical journals.
All documents used in these experiments have

HTML-based file format. Samples consisting of
855 document articles covering a wide variety of
layouts were downloaded from 6 different journal
publisher websites to create training and testing
data sets. The training data set consisting of 229
document articles was used to create six sets of
string patterns for the predefined document layout
structures of six journal issues. The test data set,
consisting of the remaining 626 document
articles, is used to estimate the labeling accuracy.
Preliminary results show that the average labeling
accuracy on the test data set was over 95.0 %.
Most errors were due to the incomplete collection
of predefined document layout string patterns of
journal issues.

6. SUMMARY

We have presented a technique for the automated
document labeling of Web-based online medical
journals using the W3C Document Object Model
and string pattern template matching. The
technique yielded very good performance on a set
of 855 document articles drawn from 6 different
medical journals, and showed the feasibility to
label HTML-based document articles effectively,
and the possibility of extension to other medical
journals. Moreover, in this work, the font sizes
and font attributes (normal, bold, underlined,
italics, and fixed pitch) were not used in the
labeling process. Since text zones in a document
article usually employ different font sizes and/or
font attributes for differentiation, we plan to
expand the current labeling features to include the
font information in order to further refine the
automated document labeling for Web-based
online medical journals.

7. REFERENCES

[1] J. Kim, D. X. Le, and G. R. Thoma, "Automated
Labeling of Bibliographic Data Extracted From
Biomedical Online Journals," Proc. SPIE,
Document Recognition and Retrieval X, Santa
Clara, CA, Vol. 5010, pp. 47-56, 2003.

[2] D. X. Le, L. Q. Tran, J. Chow, J. Kim, S. E.
Hauser, C. W. Moon, and G. Thoma, “Automated
Medical Citation Records Creation for Web-Based
Online Journals,” The Fourteenth IEEE
Symposium on Computer-Based Medical Systems,
Bethesda, MD, pp. 315-320, 2001.

[3] J. Marini, The Document Object Model: Processing
Structured Documents, McGraw-Hill/Osborne,
California (2002).

[4] http://www.w3c/DOM

<HTML>

<HEAD>

<TITLE>This is a document</TITLE>

</HEAD>

<BODY>

<H2>Title</H2>

<P><NOBR>Author</NOBR></P>

<P>Affiliation</P>

<P>Abstract.</P>

<P>< STRONG >Key Words</ STRONG ></P>

</BODY>

</HTML>

Figure 1: An example of the HTML code for an online
medical article.

Level-patterns Tag-patterns Node contents

1 HTML

2 HEAD

3 TITLE This is a document

2 BODY

3 H2

4 Title

3.4.5 P.STRONG.NOBR

6 Author

3.4 P.FONT[,,-1]

5 Affiliation

3 P

4 Abstract

3.4 P.STRONG

5 Key Words

Figure 2: An example of DOM-based string patterns

 Level 1 <HTML>

 Level 2

<TITLE>

<BODY>

<H2> <P>

Title Abstract

Level 3

Level 4

Level 5

Level 6

<HEAD>

<P>

This is a

document
<NOBR> Affiliation Keywords

Author

Figure 3: A DOM-based document tree diagram
<P>
<P>

	Lister Hill National Center for Biomedical Communications
	National Library of Medicine
	Bethesda, MD 20894
	ABSTRACT
	3. DOCUMENT OBJECT MODEL FEATURES AND ALGORITHMS
	
	
	
	
	
	
	Level-patterns Tag-patterns Node contents
	Figure 2: An example of DOM-based string patterns

