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Abstract

This paper introduces new work in multiscale image
statistics, a local framework that supports adaptive
measurement of image structure where data may be
represented by multiple incommensurable values.  Data
such as those represented by the Visible Human Project
data often include multiple modalities such as color
channels, multiple pulse sequences of magnetic
resonance imaging, and X-ray CT data.  Multiscale
statistics can establish local correlations, covariances, and
entropy measurements across the image.  Such
measurements have applications in nonlinear filtering,
texture analysis, deformable registration and image
segmentation.

1. Introduction and Background

When digital images are considered as arrays of
observations made of an underlying scene, the vocabulary
and calculus of statistics may be applied to their analysis.
If an image is subject to noise in pixel measurement, it
should be presented within the context of either known or
computed properties of the pixel values.  These properties
include the sample size or raster resolution and other
statistics such as the variance of the additive noise.

1.1.  Statistical Analysis

Statistical pattern recognition is a discipline with a
long and well-established history. Typically, statistical
methods in image processing employ the distribution of
intensities computed at the maximum outer scale of the
image.  That is, the histograms, mixture models, or
probability distribution approximations are computed
across the whole image, including all pixel values
equally.  Exceptions to this generalization include the
contrast enhancement methods for adaptive histogram
equalization (AHE).  AHE and its derivatives construct
local histograms of image intensity and compute new
image values that generate an equalized local probability
distribution. [7]. Related exceptions include median
filtering,  Markov random fields [4] and sigma filters [6].
These are related areas that are separate from the
research presented in this paper.

Figure 1. Test figure with local histograms.  Histograms of
pixel intensities shown for the local regions depicted by
the gray circles.  Note the changing symmetry of the local
histograms depending on the overlap of the neighborhood,
the figure, and the background.

1.2.  Local Statistics of Image Intensity

As with most statistical pattern recognition systems,
this research is based on the assumption that the input
signal follows a Gibbs distribution.  Stated loosely, this
implies that the value for the intensity at a particular
location has compact local support.  In the context of
local statistics of image patterns, a statistical
measurement is expected to be consistent over a local
neighborhood.  Modest changes in the size and the
location of the measurement region should induce
smooth changes in the extracted statistics.

Consider the lozenge shaped object in Figure 1.  The
foreground pixel intensity has a mean brightness of 64
units, and the background has a mean of 0 units.  The
image has uncorrelated Gaussian distributed additive
“white” noise, zero-mean with a standard deviation of 16
units.  The image is 256 × 256 pixels.  If distributions of
local neighborhoods within the image are considered,
more specific conclusions can be drawn, and conjectures
can be made that accurately describe the geometry of the
image.  Figure 1 also shows five histograms of five local
regions from the image.  When the local region is taken
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from only the foreground or only from the background
intensities, a simple distribution with a single mode
arises.  When the local neighborhood is evenly balanced
between object and background, a symmetric bimodal
distribution is generated.  Finally, when the number of
foreground and background pixels is not evenly balanced,
a skewed distribution results, with the skew favoring the
pixel values that appear in greater number.

As the sample neighborhood smoothly varies its
location, certain patterns arise.  For example, a local
region with a balanced bimodal distribution of intensities
suggests a boundary between two regions.  As the
location of the local sampling region is perturbed, nearby
locations where similar conditions of balanced bimodal
intensity distributions are exposed.  Following the set of
all connected loci where this condition is met will
extrude a perimeter where boundariness can be
evaluated.  More-over, the histograms themselves suggest
a means of determining the strength of that boundary,
even relative to the noise in the image.  The separation
between the two modes can be evaluated relative to the
spread or dispersion of intensity values about the modes.

While the combined set of local histograms can be
illuminating, it is unwieldy to generate and analyze a
local histogram for each pixel in the image.  A more
compact description of the distribution of local image
intensities is desired.  One means of describing a
probability distribution is through the generation of its
central moments, a series of descriptive statistics.  In the
case of image analysis, multiscale image statistics not
only capture the local intensity distribution, they can also
be calculated directly from the image without the inter-
mediate step of first generating local histograms.

2.  Multiscale Statistics

Without a priori knowledge of the boundaries and
the object widths within an image, locally adaptive
multiscale statistical measurements are required to
analyze the probability distribution across an arbitrary
region of an image.  This section presents multiscale
image statistics, a technique developed through this
research for estimating central moments of the
probability distribution of intensities at arbitrary
locations within an image across a continuously varying
range of scales.  Related work on the first order absolute
moment has been presented previously by Demi [2].  This
paper is a separate formal presentation of the general
form of multiscale image statistics.

Consider a set of observed values, I(x) ⊂ R1, where
for purposes of discussion the location x ∈ R1, but can
easily be generalized to R

n
.  The values of I(x) may be

sampled over a local neighborhood about a location x
with a weighting, ω(x), and the convolution operation ⊗,

where
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To avoid a preference in orientation or location, the
sampling function should be invariant with respect to
spatial translation and spatial rotation.  Babaud [1],
Eberly [3], Koenderink [5], ter Haar Romeny [8], and
others suggest that the optimal sampling function is the
Gaussian G(σ,x), where the parameter σ is the sampling
aperture.
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Throughout this section, multiscale statistics will be
graphically illustrated using a step edge with additive
noise as an input function (see Figure 2).

Figure 2.  Example input signal I(x) - a noisy 1D step.

2.1.  Multiscale Mean and Variance

Let the scale-space measurement comprised of a sum
of the original image intensities weighted by a Gaussian
sampling kernel be the average or expected value of I(x)
over the neighborhood with an aperture of size σ.  Thus:
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where 〈I(x);σ〉 is read as mean or the expected value of
I(x) measured with aperture σ.  Figures 3a, 3e, and 3i,
show the multiscale mean operator, applied to the test
signal of Figure 2, at three different scales.

The multiscale variance is easily generalized from
the definition of central moments. Equation (4) describes
the local variance of intensity about a point x at scale σ.
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Figures 3b, 3f, and 3j, show the multiscale variance
operator applied at three different scales.  Note that the
maximum of the variance function localizes about the
discontinuity and remains in the same location as scale
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Figure 3.  Multiscale statistics of the signal from Fig. 2, measured with apertures of different scales.  The rows show σ = 1, σ = 16,
and σ = 32, from top to bottom.  The columns show the order k of the central moment with k = 1, k = 2, k = 3, k = 4, fro
right.  Thus, the multiscale mean values are shown in Fig. 3a = µI (x | 1), Fig. 3e = µI (x | 16), and Fig.3i = µI (x | 32).  Multiscale
variances are shown in Fig. 3b = µ(2)

I (x | 1), Fig. 3f = µ(2)
I (x | 16), and Fig.3j = µ(2)

I (x | 32).  The remaining figures show 
multiscale 3rd and 4th order central moments from left to right respectively.
anges.  This behavior is similar to the gradient
gnitude operator. Both are invariant with respect to

tation and translation, and both have similar responses
a given input stimulus.

2.  Other Multiscale Central Moments

The general form for the multiscale central moment
order k of I(x) is given by
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ures 3c, 3g, and 3k show the multiscale responses of
 3rd order central moments of the function from
ure 2, and Figures 3d, 3h, and 3l, show the multiscale

sponses of the 3rd order central moments.  The 3rd
der central moment (reflecting skew) has a zero
ssing at the locus of the discontinuity that persists
ough changes in scale.  Similarly, the 4th order
ment has a local minimum at the discontinuity.  This
al minimum also persists through increasing scale.

3.  Multiscale Statistics of 2D Images

Extending the construction of multiscale statistics to
images of two and three dimensions is straightforward.
The central moments are constrained to be invariant with
respect to rotation as well as translation.  These
constraints specify an isotropic Gaussian as the sampling
kernel.  The general form for the k-th multiscale central
moment for 2D images is
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4.  Multimodal Multiscale Image Statistics

The images of Fig. 4cde are three local statistical
measurements made of the multimodal source images
show in Fig. 4ab using an aperture whose spatial aperture
is 2 pixels wide.  Fig. 4c is the variance measure of Fig.
4a.  Fig. 4e is the variance measure of Fig. 4b.  Fig. 4d is
the covariance of these two intensity values.
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Figure 4 demonstrates aspects of multimodal
statistical representations that are significant with respect
to image processing tasks.  The variance image reflects
edge strength and is analogous to the squared multiscale
gradient magnitude of intensity.  The covariance is some
measure supporting mutual information, reflecting the
fitness of the registration of the two image modalities.

5. Discussion and Future Work

Multiscale image statistics are a new means of
capturing image geometry. Moreover, these
measurements are invariant with respect to rotation,
translation, and zoom, and they can be normalized to be
invariant with respect to linear functions of intensity.
They need to be extended to include entropy and other
measures that may better support registration and
segmnetation tasks.  Scaled statistics may support the
analysis of images where vector valued methods are
inappropriate (i.e., in the comparison of multimodal
datasets) and in modalities such as MR where there are
non-stationary properties to image noise.  Multiscale
image statistics are easily generalized to cover volume
data.  They are new and important tools in image
processing of multimodal volume data.
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Figure 4.  Multiscale statistics of a multimodal image from the Visible Human Project data.  Figs. 4a and 4b are a PD weighted
MRI image and the red channel of the corresponding cryosection data, respectively.  Figs. 4c and 4e are variance measures of the
respective source images.  Fig. 4d is the local covariance measure of the two data slices.  In all cases, σ =2 pixel-widths.
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