

Improving Software Sustainability: Lessons Learned from
Profiles in Science
Marie E. Gallagher; Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine; Bethesda,
Maryland, USA

Abstract
The Profiles in Science® digital library features digitized

surrogates of historical items selected from the archival
collections of the U.S. National Library of Medicine as well as
collaborating institutions. In addition, it contains a database of
descriptive, technical and administrative metadata. It also
contains various software components that allow creation of the
metadata, management of the digital items, and access to the items
and metadata through the Profiles in Science Web site [1]. The
choices made building the digital library were designed to
maximize the sustainability and long-term survival of all of the
components of the digital library [2]. For example, selecting
standard and open digital file formats rather than proprietary
formats increases the sustainability of the digital files [3].
Correspondingly, using non-proprietary software may improve the
sustainability of the software--either through in-house expertise or
through the open source community.

Limiting our digital library software exclusively to open
source software or to software developed in-house has not been
feasible. For example, we have used proprietary operating
systems, scanning software, a search engine, and office
productivity software. We did this when either lack of essential
capabilities or the cost-benefit trade-off favored using proprietary
software. We also did so knowing that in the future we would need
to replace or upgrade some of our proprietary software, analogous
to migrating from an obsolete digital file format to a new format
as the technological landscape changes. Since our digital
library's start in 1998, all of its software has been upgraded or
replaced, but the digitized items have not yet required migration to
other formats.

Technological changes that compelled us to replace
proprietary software included the cost of product licensing,
product support, incompatibility with other software, prohibited
use due to evolving security policies, and product abandonment.
Sometimes these changes happen on short notice, so we
continually monitor our library's software for signs of
endangerment. We have attempted to replace proprietary software
with suitable in-house or open source software. When the
replacement involves a standalone piece of software with a nearly
equivalent version, such as replacing a commercial HTTP server
with an open source HTTP server, the replacement is
straightforward. Recently we replaced software that functioned
not only as our search engine but also as the backbone of the
architecture of our Web site. In this paper, we describe the
lessons learned and the pros and cons of replacing this software
with open source software.

Introduction
When making choices about the file formats we would use in

our digital libraries, we chose standard and open file formats over
proprietary formats. Our goal was to increase the chances that the
contents of the files would survive because they could be sustained
over time. Keeping files in open formats that are readable by
multiple, widely available software packages owned or maintained
by different sources, rather than locked inside of a proprietary
package, seemed compatible with that goal. So far this strategy
has worked. In the twenty years since we started digitizing items
for our digital libraries, we have not yet had to migrate our master
files to other formats.

Because of the attention understandably focused on the digital
objects, the software that is essential to build, house, protect and
disseminate the contents of our digital libraries is easy to overlook.
After software is up and running properly, it is tempting to
consider that part of the library finished with the exception of
adding new features to the library. But such complacency would
be a mistake. Similar to the objects in the digital library, we have
found that the software requires ongoing monitoring. Unlike our
digital items, our software has required continual modifications,
upgrades and replacements. This has been our experience even
during periods when new features were frozen, and it held true
whether the software was proprietary, commercial, public domain,
open source, or written in-house. Various factors, often external to
our project, have driven our need for upgrades, modifications and
replacements. These factors included our inability to sustain the
rising costs of ongoing product licensing and product support,
software upgrades that lacked backward compatibility with
previous versions, discontinued support for needed functions, the
end of support for an entire product, existing software's inability to
meet new policy requirements, incompatibility with new hardware
or new operating systems, discovery of security flaws, and
discovery of software bugs.

When making choices about software improvements to
overcome these problems, we tried to choose solutions that could
be sustained for the long-term. Sometimes we did not have
multiple choices for solutions; sometimes we had no readily
available choices at all. Sometimes a well-documented, well-
supported proprietary solution that met our needs existed, so we
used it. When our data (and the custom business rules we
developed) did not become locked inside the proprietary software,
proprietary software solutions have worked for us. When open
source software solutions existed that met our needs without
requiring extensive customization, they have worked. When no
software solution to our needs was available, we wrote our own.
Each solution has had advantages and pitfalls.

Background
In the early 1990s, our experiments in digitization and

metadata involved a digital library containing scanned papers, a
library that was shared among a group within the same building.
At that time, only a few Web servers existed, no graphical Web
browsers were available, and "metadata" was not a widely known
term. We used a client-server system of integrated proprietary
commercial off-the-shelf (COTS) hardware and software that let us
perform black & white scanning, data entry and editing, search and
retrieval, black & white printing, and backup of the software,
database, and images. The client used for data entry and editing
ran on multiple operating systems. One of the strengths of the
system was that we were able to import and export metadata and
scanned images into and out of the system. However, the digital
library was accessible only through the proprietary client software,
and there was a license fee for each copy of the client. We were
also not able to make basic software changes, such as modifying
the search function to be case-insensitive.

Figure 1. Software underlying the Profiles in Science digital library support

either data submission (data creation and editing) or data dissemination

(browse and search through the Web).

Although this system of proprietary commercial hardware and
software worked well and did not require specialized expertise to
use, we needed to be able to change and add functionality, and we
wanted to make the digital library's contents freely and widely
available. As Web browsers and servers came along, we added
our own Web interface to the digital library and served the content
using the public domain National Center for Supercomputing
Applications (NCSA) HTTPd [4] software. Our system grew into
a hybrid of proprietary and open source software. We could create
data and images and import them, or use the proprietary client to
enter and edit data. The content was made available through the

proprietary client as well as to anyone with a Web browser and
Internet connection. Our file formats expanded, too. Because
TIFF was not natively supported in Web browsers, we made our
images available in GIF format and eventually PDF format. The
TIFF images, some of which are almost twenty years old, are still
our digital masters and have not been modified. We no longer
serve the GIF images, but we still make available the PDF files.

When we started building the Profiles in Science digital
library in 1998, the database and digital items remained at the
heart of the system, and the purpose of most of the software
components was to either create (submit) content or distribute
(disseminate) content. Our overall architecture, as illustrated in
Figure 1, has been stable over time. We found no commercial data
entry program (Item 1 in Figure 1) that met our needs, so we
contracted with a software developer to build one using Microsoft
(MS) Access Visual Basic for Applications (VBA) [5] in part
because MS Access was available on all our project staff PCs.
Although we remained dependent on the proprietary MS Access
software, writing the data entry program in-house allowed us to
modify and customize it in ways not possible with the proprietary
client software. However, we did not need software development
services when using the proprietary client software, while we did
need such ongoing expertise for writing and maintaining our own
custom software. Occasionally Microsoft discontinued support for
functions that our data entry program employed, so upgrading to
new versions of MS Access required ongoing modifications.

Our software developer also wrote our Diagnostic Server
(Item 2 in Figure 1) which provides a Web-based read-only
interface to the database, dozens of reports and views of the
contents of the database, and previews of how the data would look
after being made available to the public. The Diagnostic Server
software was written in-house and depends on Adobe ColdFusion
Enterprise Edition [6] software. So far, ColdFusion upgrades have
not resulted in emergency software modifications due to
discontinued vendor support for functions. Software development
services are employed for bug fixes, security fixes, and adding
new features.

We use proprietary commercial software for digitization
(Item 3 in Figure 1) including the vendor-supplied scanner drivers
and software, as well as Adobe Photoshop [7] and Adobe Capture
software. New scanner drivers and Photoshop upgrades cause
temporary disruptions while operators learn how to use the
upgraded interfaces. The Adobe Capture software is no longer
supported, so we expect it will eventually stop functioning due to
future hardware or software incompatibilities. Using the
proprietary digitization software has required ongoing
development of protocols and training, but no software
development services.

Our dissemination and ingest/indexing software (Item 4 in
Figure 1) were also written in-house. Dissemination software that
extracted the relevant fields from the database was written in MS
VBA. This software was less complicated than the data entry
program, so it did not make use of functions that were
discontinued and it required little maintenance.

Other dissemination software extracted and copied other
types of data such as contributed files and digitized files from the
data repository (Figure 1), transformed the database into HTML
pages, and created a search index. This software was written in
the open source Perl programming language [8]. It was

complicated and required software development expertise to
modify and maintain. We used the proprietary commercial Verity
Search '97 Information Server as the search engine on our Web
servers (Items 5 and 6 in Figure 1). While Verity's search results
were highly configurable, we could not modify it to add or change
functionality such as changing the way it handled synonyms. We
did not encounter software or hardware compatibility problems
with the Verity search software in spite of several hardware and
operating system upgrades. However, support for the product
ended, and Verity was acquired by Autonomy.

We used the open source Apache HTTP Server [9] on our
Web servers. Upgrades to the Apache HTTP server sometimes
required changes to the accompanying configuration files as new
configuration directives were added.

Replacing the Search Engine
Four factors drove the effort to replace the proprietary Verity

Search '97 Information Server with the in-house search software
Essie [10] originally developed for ClinicalTrials.gov [11]. The
first factor was the desire to find a replacement for the unsupported
Verity Search '97 Information Server software. The second was
the desire to experiment with the Essie search software and its
synonymy capabilities while expanding Essie's capabilities to
accommodate Profiles in Science needs such as highlighting
search terms within PDF files. The third was to improve response
time of search requests. The fourth factor was our desire to move
away from the Solaris hardware platform due to rising hardware
support costs.

Verity Search '97 Information Server was a standalone search
engine that could be replaced by another search engine without
requiring modification to the other data dissemination software.
Adopting Essie resulted in adopting the full architecture in which
it was used by ClinicalTrials.gov: Essie was used not only during
searches, but also when generating all Web pages sent to the user's
browser. This replacement affected all of the Profiles in Science
data dissemination software.

A software developer wrote a new program in the freely
available Java programming language [12] to extract the relevant
fields from the database as well as to extract and copy the
contributed files and digitized files from the data repository. The
Java program created master XML files, suitable for input to Essie.
Essie used the master XML files in addition to its synonymy and
stop word lists to create its own search indexes used during
searches. The developer also wrote Java programs to convert user
queries into requests to Essie to either return appropriate data
needed to generate each Web page at run time, or to return data
needed to generate a list of search results. The open source
SAXON XSLT processor [13] used the in-house XSL style sheets
and output from Essie packaged as XML to create HTML that is
returned to the user's Web browser. The left column in Figure 2
illustrates the path taken by a user request to see a browsable page
as well as to initiate a search and obtain a list of results. In order
to improve performance, the software developer built a cache of
the generated HTML pages, eliminating the need to make repeated
calls to Essie. The right column in Figure 2 illustrates the request
process for viewing a digitized file or a cached file. The switch
from the Verity Search '97 Information Server to Essie resulted in
speedier replies, an ability to search for synonyms of terms, and

the end of our dependence on software that could not be
maintained.

While the effort to implement the Essie search engine on
Profiles in Science was underway, the open source search platform
Apache Solr [14] was under development. As Apache Solr gained
popularity, we focused on replacing the in-house developed Essie
software with the open source Apache Solr. Apache Solr is
flexible and highly configurable, and it required effort for us to
understand it well enough to use it. In order to make the
replacement as quickly as possible, the software developer's plan
for the Solr implementation was to reuse as much of the existing
data dissemination code as possible. This resulted in minimal
changes to the Java code that extracted the relevant fields from the
database, and to the code that extracted and copied the contributed
files and digitized files from the data repository. The software
developer configured Solr to reuse the same XML files produced
for ingest into Essie. New code had to be written to appropriately
format the output from Solr into the previously established XML
format. New code was also needed to handle Solr's different
search syntax. Minimal changes to the XSL style sheets were
needed. The most complicated code that had to be rewritten
converted the many possible user requests for Web pages into the
appropriate format for Solr instead of for Essie.

Figure 2. Path of a user request to view search results or a browsable page.

The first step was getting Solr to index the XML to create its
search indexes. Essie handles XML natively, while Solr required
configuration changes to handle the XML files as input. Problems
were sometimes difficult to debug, usually because of unexpected
behavior or a lack of warning messages. Although there are books
about Solr as well as an active user community, documentation
was sometimes lacking or confusing. When reference books,
consulting the user community, and consulting co-workers did not
explain unexpected behavior, trial and error was employed. The
software developer used Solr's admin interface to confirm that Solr

successfully indexed the XML and could return expected search
results.

The next part of the replacement process required rewriting,
in Java, all of code that transformed user requests for browsable
pages into Solr queries so Solr could return the appropriate data to
form the correct browsable page. As shown in Figure 2, when a
user requests a page on Profiles in Science, the Apache HTTP
server passes the request to the open source Apache Tomcat [15]
server. Java servlet code, running inside Tomcat, passes the
request to a client API, which transforms and sends a request to
Solr. Solr responds to the client API, which passes the response to
the Java servlet code, which produces the XML content needed to
form the page. The XML and appropriate XSL style sheet are then
processed to generate the HTML page that is returned to the user
(and stored in the cache for quick retrieval by the next user).

More Java code had to be written to highlight search terms
within PDF files. Essie had already been enhanced to return the
character offsets and word lengths of search terms within PDF
files. Page numbers, character offsets and word lengths were
needed to produce the Adobe Highlight File Format XML to
generate the highlights within a PDF inside of a Web browser.
Solr returned marked up text with tags identifying the terms to be
highlighted. This required new code to parse for the Solr tags and
then to calculate page numbers, character offsets, and word lengths
of search terms.

One of Essie's strengths is its ability to search for synonyms.
Initially, Solr could not load Essie's large (545 MB) file of multi-
word synonyms. During the course of our Solr implementation,
Solr developers improved the Solr synonym handling to require
less memory. Simultaneously, our software developer omitted
redundant and obscure synonyms to reduce the size of the
synonyms file until Solr would load it. This will be an ongoing
effort because synonyms are added over time, so experiments with
Solr synonymy will continue.

Testing was a significant part of the replacement effort.
Because Essie and Solr played a part in generating every Web
page on Profiles in Science, over 100,000 pages needed to be
compared. We employed an in-house developed tool, htmldiff,
written in open source Perl, to compare and report differences
between pages. Differences pinpointed the areas to debug. At the
end of the replacement, the pages generated through Essie and Solr
were verified to be 100% identical. Testing Essie and Solr search
results was less straightforward. We expected that Essie and Solr
would rank results differently. This was at least in part due to
Essie and Solr's different handling of synonymy and the likelihood
that searching unclean optical character recognized (OCR) text
was causing confusion. More experimentation with Solr's
weighting and ranking may improve results in the future.

The replacement required hundreds of hours of software
developer time over the course of a year. During the replacement
period, at least five releases of Solr became available, fixing some
problems and introducing others. Implementing a new installation
rather than a replacement might have been less complicated.

Table 1 contains a brief summary of our experiences and
observations comparing the in-house developed software Essie
with the open source software Solr.

Table 1. Essie and Solr comparison

Cost We obtained both Essie and Solr at no
cost. However, both require ongoing
software developer expertise to install,
configure, customize, document,
enhance, maintain, and upgrade.

Customization Anyone can report bugs, request
changes, and contribute code to the open
source Solr. If we want changes to the
in-house developed Essie, we ask the
software developer.

Documentation Reference books, commercial training
classes, online documentation, tutorials,
and user communities provide help for
Solr. The in-house software developer
answers questions about Essie.

Features Solr possesses more features than our
application currently uses. As needs
arise, we will use Solr's additional
capabilities such as facets. The user
community influences the types of
features added to Solr. Our software
developer wrote workarounds for features
we need that Solr did not have. Essie
possesses the features we need, and
more are added as needs arise.

Maintenance For both Essie and Solr, some upgrades
are optional, such as those adding new
features that we do not use. Other
upgrades are required to fix bugs,
compatibility problems, or security issues.
Maintenance requires software developer
expertise. If backward compatibility is
lacking, development of new code or
workarounds is required.

Performance At index time, Solr indexes faster than
Essie ingests. At search time, we detect
no difference in performance between
Essie and Solr.

Platform Both Essie and Solr are written in freely
available Java.

Synonymy Being able to search for synonyms is
useful for our digital library. Sometimes
familiar terms such as "heart attack" are
used, and other times medical terms
such as "myocardial infarction" are used.
We want to be able to find both
regardless of which term the user
specifies. We are still experimenting with
Solr synonymy and expect its
development to continue. Essie,
developed specifically with synonym
handling in mind, meets our application's
synonymy needs.

Lessons Learned
We strive to select, write, build or configure our software to

minimize the need for maintenance and maximize its
sustainability. Continual threats to the stability of our software
(see Figure 3) have made ongoing monitoring, fixing, upgrading
and replacement necessary, independent of adding new
functionality. Over the life of our project, these threats to stability
have increased rather than decreased. Using proprietary software,
open source software or in-house developed software each has
advantages and risks.

The proprietary software we have used was well tested, well
documented, and stable. Although it performed as advertised, it
was sometimes not possible to extend it to suit our needs or to
meet new security or policy requirements. We avoided using
proprietary software that did not have import and export
capabilities. The absence of this characteristic could be an
impediment to the sustainability of both our software and data.
Without export capabilities, it could be labor intensive or
impossible to migrate to alternative software in the future. We
remained aware of the possibility of discontinued development of
proprietary software we chose, and tried to have alternative plans
in case support ended. Some proprietary software had minimal
support or upgrade costs, but some had significant costs. Future
license, support and upgrade costs became an important
consideration.

Widely used, mature open source software, such as the
seventeen year-old Apache HTTP server, has allowed us to
leverage the expertise of software developers external to our
organization. Also, every user of that software potentially served
as a collaborator who could report bugs, contribute code, and lead
to improvements. Open source software that was standalone, well
documented, straightforward to understand, and easy to configure
required less intensive maintenance efforts. Using open source
software in a way that called for extensive configuration,
modification and customization required a considerable investment
of resources. Attempts to highly customize or extend open source
software can require significant software development expertise
and many hours of ongoing effort, all of which could impede
sustainability. Our implementation of Solr required a thorough
understanding of our application and of Solr's capabilities. Open
source software that is young and actively under development
sometimes produces frequent releases, and we occasionally
experienced unexpected changes in behavior between releases.
The quality of open source software documentation has varied and
is dependent on the developer community donating its
uncompensated time.

In-house developed software has been customized to meet our
project's specific needs. When we could not fill a need with
existing software, either proprietary or open source, we have had
software developers at the National Library of Medicine, either
with our project or another project, create new software. When we
wanted in-house software changed, our developers have had the
in-depth understanding to change it. When a bug or security flaw
was detected, they could fix it. We could specify new features to
add, and we could give priority to the addition of each feature.
When we had a question, we could ask in-house developers
directly. When we wanted to perform an experiment using the
software, we could ask in-house developers to do it. However,
hiring and keeping in-house software development expertise

requires significant ongoing resources. All of our in-house
software depends upon proprietary software, public domain
software and open source software. Our in-house developed
software has been subject to the same threats posed by rapidly
changing technology as proprietary and open source software. So
experienced software developers, intimately familiar with their
software, have been needed to successfully monitor and maintain
in-house developed software. Documentation varies depending on
the application and the individual software developer. Sometimes
only the creator of the in-house developed software possesses an
in-depth understanding of it, which may put its sustainability at
risk.

Figure 3. Some of the forces that threaten the stability of our software.

Acknowledgments
The author thanks Mr. Karl Wolf, the software developer who

writes and maintains the data dissemination software underlying
the Profiles in Science Web site. Mr. Wolf replaced the in-house
developed Essie software with the open source Solr/Lucene
software and provided helpful consultations during the preparation
of this paper. Mr. Ajay Kanduru and Ms. Xiaohui Ma shared their
experiences with implementing the Solr/Lucene software on the
NLM Gateway [16]. Dr. Alexa McCray lead our digital library
research and development efforts from 1992 through 2004. Mr.
Michael Flannick wrote the original data entry program and
Diagnostic Server software. Mr. Loi Hang and Ms. Xiaohui Ma
maintain the data entry program and Diagnostic Server, and are
actively migrating the data entry program. Mr. Michael Gruen
wrote the first Essie-based version of the data dissemination
software. Dr. Russell Loane wrote the Essie search software and
enhanced it for use by Profiles in Science. Mr. Erik Dorfman
wrote the htmldiff tool. Essential encouragement and guidance
has been provided by project leaders Drs. Olivier Bodenreider,
Clem McDonald, and Aaron Navarro, who spearheaded the

experiment to replace Essie with Solr/Lucene on Profiles in
Science.

This work is supported by the Intramural Research Program
of the NIH, National Library of Medicine. The Library, the
world's largest library of the health sciences, is a component of the
National Institutes of Health, U.S. Department of Health and
Human Services.

References
[1] Profiles in Science (U.S. National Library of Medicine, Bethesda,

MD) http://profiles.nlm.nih.gov/. Accessed Feb 4, 2013.
[2] A.T. McCray and M.E. Gallagher, "Principles for Digital Library

Development." Communications of the ACM 44, 5 (May 2001).
[3] Sustainability of Digital Formats: Planning for Library of Congress

Collections (Library of Congress, Washington, DC)
http://www.digitalpreservation.gov/formats/. Accessed Feb 4, 2013.

[4] NCSA software and technologies. (Board of Trustees of the
University of Illinois) http://illinois.edu/lb/imageList/2943.
Accessed Feb 4, 2013.

[5] Visual Basic for Applications Language Reference for Office 2010
(Microsoft Corporation) http://msdn.microsoft.com/en-
us/library/gg278919%28v=office.14%29.aspx. Accessed Feb 4,
2013.

[6] Adobe ColdFusion 10 family (Adobe Corporation)
http://www.adobe.com/products/coldfusion-family.html. Accessed
Feb 4, 2013.

[7] Adobe Photoshop family (Adobe Corporation)
http://www.adobe.com/products/photoshop.html. Accessed Feb 4,
2013.

[8] The Perl Programming Language (Perl.org) http://www.perl.org/.
Accessed Feb 4, 2013.

[9] Apache HTTP Server Project (The Apache Software Foundation)
http://httpd.apache.org/. Accessed Feb 4, 2013.

[10] N.C. Ide, R.F. Loane and D. Demner-Fushman. "Essie: A concept-
based search engine for structured biomedical text," J Am Med
Inform Assoc. 14, 3 (2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2244877/. Accessed
Feb 4, 2013.

[11] ClinicalTrials.gov (U.S. National Library of Medicine, Bethesda,
MD) http://clinicaltrials.gov/. Accessed Feb 4, 2013.

[12] Java (Oracle Corporation) http://www.java.com/. Accessed Feb 4,
2013.

[13] SAXON: The XSLT and XQuery Processor (Michael H. Kay,
Saxonica Limited) http://saxon.sourceforge.net/. Accessed Feb 4,
2013.

[14] Apache Solr (The Apache Software Foundation)
http://lucene.apache.org/solr/. Accessed Feb 4, 2013.

[15] Apache Tomcat (The Apache Software Foundation)
http://tomcat.apache.org/. Accessed Feb 4, 2013.

[16] NLM Gateway (U.S. National Library of Medicine, Bethesda, MD)
http://gateway.nlm.nih.gov/. Accessed Feb 4, 2013 .

Author Biography
Marie E. Gallagher, a computer scientist in the U.S. National Library

of Medicine's Lister Hill National Center for Biomedical Communications
since 1990, is the project leader of the Digital Library Research and
Development team. The team investigates systems and develops the
software underlying Profiles in Science. Ms. Gallagher earned her B.S.
degree in Computer Science and Mathematics from the College of William
and Mary in Virginia.

