Automated Detection of Vascular Leakage on Fluorescein Angiography

LeAnne Young^{1,2}, Jongwoo Kim PhD³, Mehmet Yakin MD¹, Henry Lin MD PhD^{1,4}, David Dao MD^{1,5}, Shilpa Kodati MD¹, Sumit Sharma MD⁶, Aaron Lee MD MSc⁷, Cecilia Lee MD MS⁷, H. Nida Sen MD MHSc¹

¹National Eye Institute, Bethesda MD • ² Cleveland Clinic Lerner College of Medicine, Bethesda MD • ⁴Northwest Permanente, OR • ⁵Department of Visual Sciences, University of Chicago, Chicago IL • ⁶Cole Eye Institute, Cleveland OH • ⁷University of Washington, Seattle WA

Background

Uveitis is a heterogeneous group of inflammatory eye diseases responsible for causing an estimated 10-15% of blindness in the United States¹. Fluorescein angiography (FA) is the current gold standard for imaging retinal vasculature in uveitis. However, clinician interpretation of FAs can be subjective. We aimed to quantify variability of clinician FA segmentation. We also hypothesized that a deep learning algorithm can:

1. Segment FAs for vascular leakage, and

2. Detect clinically significant change in vascular leakage between FAs

Methods

Ground Truth

200 uveitis patient FA images were obtained from a uveitis biobank with prospectively enrolled patients. A 2clinician team annotated (segmented) images for vascular leakage. Before beginning, all graders met and discussed the definition of leakage, and agreed on a segmentation protocol defined by the senior clinician.

<u>Algorithm</u>

Deep Learning Algorithm with a modified U-net architecture was trained to segment leakage. 5-fold cross validation was used, each fold with 80% training and 20% testing

Statistics

The Dice Similarity Coefficient (DSC) was used to compare the algorithm's segmentation results to the ground truth segmentation (the DSC ranges from 0 to 1, 0 denotes no overlap between 2 segmentations and 1 denotes perfect overlap)

Interrater Variability

For interrater variability, 2 clinicians independently segmented 20 images and the average Dice Similarity Coefficient (DSC) was calculated.

Clinically Significant Change in Vascular Leakage

20 pairs of FA images were used to detect clinically significant changes in leakage (the gold standard being an expert uveitis specialist's assessment). For each pair, the difference in percentage of the image occupied by the algorithm's leakage segmentation was calculated and used to create a ROC curve and to determine a threshold for clinically significant change.

Example of poor clinician concordance

Average Dice Similarity Coefficient

Patient characteristics of the photos (by anatomic location of uveitis)

Anatomic location	Patients, n
Anterior Uveitis	2
Intermediate Uveitis	24
Posterior/Panuveitis	31
Other	4

Image	Epochs	Avg DSC
ancement		
No	20	0.482
No	100	0.493
No	20	0.494
No	50	0.528
Yes	200	0.572
Yes	50	0.505
No	50	0.459
No	50	0.465
No	100	0.471
No	100	0.455

Figure Color Coding Legend - Teal: denotes areas where algorithm and ground truth segmentation overlap - Yellow: "false positive". Denotes areas where the ground truth segmentation did not detect vascular leakage, but the algorithm did - Pink: "false negative". Denotes areas where the ground truth segmentation detected vascular leakage, but the algorithm did

changes in vascular leakage

Timepoint 1

Sensitivity
%
100
100
90
90
90
60
20

FA leakage segmentation is a difficult computer vision problem to solve. In this project, we quantified variability between clinician segmentation of vascular leakage. We also developed a preliminary deep learning algorithm that was able to segment vascular leakage in the fluorescein angiograms of uveitis patients with modest results. However, the algorithm was able to determine clinically significant change in vascular leakage with high accuracy.

Efforts to develop an improved deep learning algorithm, training and testing on fluorescein angiograms from other institutions and testing the algorithm on non-uveitis causes of vascular leakage are underway.

1. Read R. General Approach to the Uveitis Patient and Treatment Strategies. In: Yanoff M, Duker J, eds. Ophthalmology. 5th ed. Elsevier; 2019.

Results (continued)

Algorithm-assisted automated detection of clinically significant

Conclusions

Future Directions

References

