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Abstract—Tuberculosis is a major health threat in many regions
of the world. Opportunistic infections in immunocompromised
HIV/AIDS patients and multi-drug-resistant bacterial strains
have exacerbated the problem, while diagnosing tuberculosis still
remains a challenge. When left undiagnosed and thus untreated,
mortality rates of patients with tuberculosis are high. Standard
diagnostics still rely on methods developed in the last century.
They are slow and often unreliable. In an effort to reduce the
burden of the disease, this paper presents our automated approach
for detecting tuberculosis in conventional posteroanterior chest
radiographs. We first extract the lung region using a graph cut
segmentation method. For this lung region, we compute a set of
texture and shape features, which enable the X-rays to be classified
as normal or abnormal using a binary classifier. We measure the
performance of our system on two datasets: a set collected by
the tuberculosis control program of our local county’s health
department in the United States, and a set collected by Shenzhen
Hospital, China. The proposed computer-aided diagnostic system
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for TB screening, which is ready for field deployment, achieves a
performance that approaches the performance of human experts.
We achieve an area under the ROC curve (AUC) of 87% (78.3%
accuracy) for the first set, and an AUC of 90% (84% accuracy)
for the second set. For the first set, we compare our system perfor-
mance with the performance of radiologists. When trying not to
miss any positive cases, radiologists achieve an accuracy of about
82% on this set, and their false positive rate is about half of our
system’s rate.

Index Terms—Computer-aided detection and diagnosis, lung,
pattern recognition and classification, segmentation, tuberculosis
(TB), X-ray imaging.

I. INTRODUCTION

T UBERCULOSIS (TB) is the second leading cause of
death from an infectious disease worldwide, after HIV,

with a mortality rate of over 1.2 million people in 2010 [1]. With
about one-third of the world’s population having latent TB,
and an estimated nine million new cases occurring every year,
TB is a major global health problem [2]. TB is an infectious
disease caused by the bacillus Mycobacterium tuberculosis,
which typically affects the lungs. It spreads through the air
when people with active TB cough, sneeze, or otherwise expel
infectious bacteria. TB is most prevalent in sub-Saharan Africa
and Southeast Asia, where widespread poverty and malnutri-
tion reduce resistance to the disease. Moreover, opportunistic
infections in immunocompromised HIV/AIDS patients have
exacerbated the problem [3]. The increasing appearance of
multi-drug resistant TB has further created an urgent need for a
cost effective screening technology to monitor progress during
treatment.

Several antibiotics exist for treating TB. While mortality
rates are high when left untreated, treatment with antibiotics
greatly improves the chances of survival. In clinical trials, cure
rates over 90% have been documented [1]. Unfortunately, diag-
nosing TB is still a major challenge. The definitive test for TB
is the identification of Mycobacterium tuberculosis in a clinical
sputum or pus sample, which is the current gold standard
[2], [3]. However, it may take several months to identify this
slow-growing organism in the laboratory. Another technique
is sputum smear microscopy, in which bacteria in sputum
samples are observed under a microscope. This technique was
developed more than 100 years ago [1]. In addition, several skin
tests based on immune response are available for determining
whether an individual has contracted TB. However, skin tests
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Fig. 1. Examples of normal CXRs in the MC dataset.

are not always reliable. The latest development for detection
are molecular diagnostic tests that are fast and accurate, and
that are highly sensitive and specific. However, further financial
support is required for these tests to become commonplace
[1]–[3].

In this paper, we present an automated approach for detecting
TB manifestations in chest X-rays (CXRs), based on our ear-
lier work in lung segmentation and lung disease classification
[4]–[6]. An automated approach to X-ray reading allows mass
screening of large populations that could not be managed manu-
ally. A posteroanterior radiograph (X-ray) of a patient’s chest is
a mandatory part of every evaluation for TB [7]. The chest radio-
graph includes all thoracic anatomy and provides a high yield,
given the low cost and single source [8]. Therefore, a reliable
screening system for TB detection using radiographs would be
a critical step towards more powerful TB diagnostics. The TB
detection system presented here is a prototype that we devel-
oped for AMPATH (The Academic Model Providing Access to
Healthcare) [9]. AMPATH is a partnership between Moi Univer-
sity School of Medicine and Moi Teaching and Referral Hos-
pital, Kenya, and a consortium of U.S. medical schools under
the leadership of Indiana University. AMPATH provides drug
treatment and health education for HIV/AIDS control in Kenya.
HIV and TB co-infections are very common due to the weak-
ened immune system. It is therefore important to detect pa-
tients with TB infections, not only to cure the TB infection itself
but also to avoid drug incompatibilities. However, the shortage
of radiological services in Kenya necessitates both an efficient
and inexpensive screening system for TB. Medical personnel
with little radiology background need to be able to operate the
screening system. The target platform for our automated system
are portable X-ray scanners, which allow screening of large
parts of the population in rural areas. At-risk individuals iden-
tified by our system are then referred to a major hospital for
treatment.

Fig. 1 shows examples of normal CXRs without signs of TB.
These examples are from our Montgomery County (MC) dataset
that we describe in more detail in Section III. Fig. 2 shows pos-
itive examples with manifestations of TB, which are from the
same dataset. Typical manifestations of TB in chest X-rays are,
for example, infiltrations, cavitations, effusions, or miliary pat-
terns. For instance, CXR A and C in Fig. 2 have infiltrates in
both lungs. CXR B is a good example of pleural TB, which is
indicated by the abnormal shape of the costophrenic angle of the

right lung. In CXR D, we see irregular infiltrates in the left lung
with a large area of cavitation. Additionally, there is scarring in
the right apical region. CXR E shows peripheral infiltrates in
the left lung. Finally, CXR F shows TB scars resulting from an
older TB infection. Readers can find more illustrative examples
of abnormal CXRs with TB in [8], [10]–[13].

In this paper, we describe how we discriminate between
normal and abnormal CXRs with manifestations of TB, using
image processing techniques. We structure the paper as follows.
Section II discusses related work and shows the state-of-the-art.
Section III briefly describes the datasets we use for our ex-
periments. In Section IV, we present our approach with lung
segmentation, feature computation, and classification. A pre-
sentation of our practical experiments follows in Section V.
Finally, a brief summary with the main results concludes the
paper. Note that some of the features we use in this paper are
identical to the features used in one of our earlier publications
[6]. However, the lung boundary detection algorithm in this
paper differs from the one used in our earlier publication.

II. RELATED WORK

The advent of digital chest radiography and the possibility of
digital image processing has given new impetus to computer-
aided screening and diagnosis. Still, despite its omnipresence in
medical practice, the standard CXR is a very complex imaging
tool. In the last 10 years, several ground-breaking papers have
been published on computer-aided diagnosis (CAD) in CXRs.
However, there is no doubt that more research is needed to
meet the practical performance requirements for deployable di-
agnostic systems. In a recent survey, van Ginneken et al. state
that 45 years after the initial work on computer-aided diagnosis
in chest radiology, there are still no systems that can accurately
read chest radiographs [14]–[16]. Automated nodule detection
is becoming one of the more mature applications of decision
support/automation for CXR and CT. Several studies have been
published evaluating the capability of commercially available
CAD systems to detect lung nodules [17]–[19]. The result is that
CAD systems can successfully assist radiologists in diagnosing
lung cancer [20]. However, nodules represent only one of many
manifestations of TB in radiographs.

In recent years, due to the complexity of developing full-
fledged CAD systems for X-ray analysis, research has concen-
trated on developing solutions for specific subproblems [14],
[21]. The segmentation of the lung field is a typical task that any
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Fig. 2. Examples of abnormal CXRs in the MC dataset. CXR A has a cavitary infiltrate on the left and a subtle infiltrate in the right lower lung. CXR B is an
example of pleural TB. Note that the blunted right costophrenic angle indicates a moderate effusion. CXR C has infiltrates in both lungs. CXR D shows irregular
infiltrates in the left lung with cavitation and scarring of the right apex. CXR E shows peripheral infiltrates in the left lung. CXR F shows signs of TB, indicated
by the retraction of bilateral hila superiorly, which is more pronounced on the right.

CAD system needs to support for a proper evaluation of CXRs.
Other segmentations that may be helpful include the segmen-
tation of the ribs, heart, and clavicles [22]. For example, van
Ginneken et al. compared various techniques for lung segmen-
tation, including active shapes, rule-based methods, pixel classi-
fication, and various combinations thereof [22], [23]. Their con-
clusion was that pixel classification provided very good perfor-
mance on their test data. Dawoud presented an iterative seg-
mentation approach that combines intensity information with
shape priors trained on the publicly available JSRT database
(see Section III) [24].

Depending on the lung segmentation, different feature types
and ways to aggregate them have been reported in the literature.
For example, van Ginneken et al. subdivide the lung into over-
lapping regions of various sizes and extract features from each
region [25]. To detect abnormal signs of diffuse textural nature
they use the moments of responses to a multiscale filter bank. In
addition, they use the difference between corresponding regions
in the left and right lung fields as features. A separate training
set is constructed for each region and final classification is done
by voting and a weighted integration.

Many of the CAD papers dealing with abnormalities in chest
radiographs do so without focusing on any specific disease.
Only a few CAD systems specializing in TB detection have

been published, such as [25]–[28]. For example, Hogeweg et al.
combined a texture-based abnormality detection system with
a clavicle detection stage to suppress false positive responses
[26]. In [29], the same group uses a combination of pixel
classifiers and active shape models for clavicle segmentation.
Note that the clavicle region is a notoriously difficult region for
TB detection because the clavicles can obscure manifestations
of TB in the apex of the lung. Freedman et al. showed in a
recent study that an automatic suppression of ribs and clavicles
in CXRs can significantly increase a radiologist’s performance
for nodule detection [30]. A cavity in the upper lung zones
is a strong indicator that TB has developed into a highly in-
fectious state [27]. Shen et al. therefore developed a hybrid
knowledge-based Bayesian approach to detect cavities in these
regions automatically [27]. Xu et al. approached the same
problem with a model-based template matching technique,
with image enhancement based on the Hessian matrix [28].

Arzhaeva et al. use dissimilarity-based classification to cope
with CXRs for which the abnormality is known but the precise
location of the disease is unknown [31]. They report classifica-
tion rates comparable to rates achieved with region classifica-
tion on CXRs with known disease locations. More information
on existing TB screening systems can be found in our recent
survey [32].
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In addition to X-ray based CAD systems for TB detection,
several systems based on other diagnostic means have been re-
ported in the literature. For example, Pangilinan et al. presented
a stepwise binary classification approach for reduction of false
positives in tuberculosis detection from smeared slides [33].
Furthermore, automated systems based on bacteriological ex-
amination with new diagnostic tests have been reported recently,
such as GeneXpert (Cepheid, Sunnyvale, CA, USA) [34]. Cur-
rently, these tests are still expensive. Nevertheless, with costs
decreasing over time, these systems may become an option for
poorer countries. It is also possible, and indeed very promising,
to combine these new systems with X-ray based systems. For
the time being, however, these systems are out of the scope of
this paper.

III. DATA

For our experiments, we use three CXR sets. On the first two
sets we train and test our classifiers, and on the third set we train
our lung models. The images used in this study were de-iden-
tified by the data providers and are exempted from IRB review
at their institutions. The data was exempted from IRB review
(No. 5357) by the NIH Office of Human Research Protections
Programs.

Our first set, the MC set, is a representative subset of a larger
CXR repository collected over many years within the tubercu-
losis control program of the Department of Health and Human
Services of Montgomery County (MC), Maryland [6]. The MC
set contains 138 posteroanterior CXRs, among which 80 CXRs
are normal and 58 CXRs are abnormal with manifestations of
TB. All images of the MC set are in 12-bit grayscale, cap-
tured with an Eureka stationary X-ray machine (CR). The ab-
normal CXRs cover a wide range of TB-related abnormalities,
including effusions and miliary patterns. For the MC set, we
know the ground-truth radiology reports that have been con-
firmed by clinical tests, patient history, etc.

Our second CXR set, the Shenzhen set, is from Shenzhen
No.3 Hospital in Shenzhen, Guangdong providence, China.
Shenzhen Hospital is one of the largest hospitals in China for
infectious diseases, with a focus both on their prevention and
treatment. The CXRs we received from Shenzhen Hospital are
from outpatient clinics. They were captured within a one month
period, mostly in September 2012, as part of the daily routine
at Shenzhen Hospital, using a Philips DR Digital Diagnost
system. The set contains 340 normal CXRs and 275 abnormal
CXRs with TB. For the Shenzhen set, we have the radiologist
readings, which we consider as ground-truth.

We train our lung models on a third set from the Japanese
Society of Radiological Technology (JSRT). The JSRT data is
the result of a study investigating the detection performance of
radiologists for solitary pulmonary nodules [35]. The data was
collected from 14 medical centers and comprises 247 CXRs.
All CXR images have a size of 2048 2048 pixels and a gray-
scale color depth of 12 bits. Among the 247 CXRs, 93 CXRs
are normal and 154 CXRs are abnormal. Each of the abnormal
CXRs contains one pulmonary nodule classified into one of five
degrees of subtlety, ranging from extremely subtle to obvious.
However, in the JSRT images, the nodules hardly affect the lung
shapes. The nodules are either well within the lung boundary or

Fig. 3. JSRT CXR with manual ground-truth lung segmentation. Note the
nodule overlying the left posterior fifth and sixth ribs.

they are so subtle that the effects on lung shape are minor. We
can therefore take advantage of the entire JSRT database to train
our shape model for a typical normal lung. To do so, we use the
segmentation masks provided by van Ginneken et al. [22]. Their
SCR dataset (Segmentation in Chest Radiographs) contains the
manually generated lung field masks for each CXR in the JSRT
database. For example, Fig. 3 shows an abnormal CXR from the
JSRT database together with the outline of the left and the right
lung as specified in the SCR data. Note that the left mid lung
field in Fig. 3 contains a cancer nodule.

IV. METHOD

This section presents our implemented methods for lung
segmentation, feature computation, and classification. Fig. 4
shows the architecture of our system with the different pro-
cessing steps, which the following sections will discuss in
more detail. First, our system segments the lung of the input
CXR using a graph cut optimization method in combination
with a lung model. For the segmented lung field, our system
then computes a set of features as input to a pre-trained binary
classifier. Finally, using decision rules and thresholds, the
classifier outputs its confidence in classifying the input CXR as
a TB positive case, for example.

A. Graph Cut Based Lung Segmentation

We model lung segmentation as an optimization problem that
takes properties of lung boundaries, regions, and shapes into ac-
count [4], [72]. In general, segmentation in medical images has
to cope with poor contrast, acquisition noise due to hardware
constraints, and anatomical shape variations. Lung segmenta-
tion is no exception in this regard. We therefore incorporate a
lung model that represents the average lung shape of selected
training masks. We select these masks according to their shape
similarity as follows. We first linearly align all training masks
to a given input CXR. Then, we compute the vertical and hori-
zontal intensity projections of the histogram equalized images.
To measure the similarity between projections of the input CXR
and the training CXRs, we use the Bhattacharyya coefficient.
We then use the average mask computed on a subset of the most
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Fig. 4. System overview. The system takes a CXR as input and outputs a con-
fidence value indicating the degree of abnormality for the input CXR.

Fig. 5. CXR and its calculated lung model.

similar training masks as an approximate lung model for the
input CXR. In particular, we use a subset containing the five
most similar training masks to compute the lung model. This
empirical number produced the best results in our experiments.
Increasing the subset size to more than five masks will decrease
the lung model accuracy because the shapes of the additional
masks will typically differ from the shape of the input X-ray.

As training masks, we use the publicly available JSRT set [35]
for which ground truth lung masks are available [22]. The pixel
intensities of the lung model are the probabilities of the pixels
being part of the lung field. Fig. 5 shows a typical lung model
we computed. Note that the ground-truth masks do not include
the posterior inferior lung region behind the diaphragm. Our
approach, and most segmentation approaches in the literature,
exclude this region because manifestations of TB are less likely
here.

In a second step, we employ a graph cut approach [36] and
model the lung boundary detection with an objective function.
To formulate the objective function, we define three require-
ments a lung region has to satisfy: 1) the lung region should
be consistent with typical CXR intensities expected in a lung

region, 2) neighboring pixels should have consistent labels, and
3) the lung region needs to be similar to the lung model we com-
puted. Mathematically, we can describe the resulting optimiza-
tion problem as follows [72]: Let
be a binary vector whose components correspond to fore-
ground (lung region) and background label assignments to pixel

, where is the set of pixels in the CXR, and is the
number of pixels. According to our method, the optimal con-
figuration of is given by the minimization of the following
objective function:

(1)

where , , and represent the region, boundary, and lung
model properties of the CXR, respectively. The region term

considers image intensities as follows:

(2)

where is the intensity of pixel and is the set of edges rep-
resenting the cut. and are the intensities of foreground and
background regions. We learn these intensities on the training
masks and represent them using a source and terminal node

. is the maximum intensity value of the input image.
(2) ensures that labels for each pixel are assigned based on the
pixel’s similarity to the foreground and background intensities.

The boundary constraints between lung border pixels and
are formulated as follows:

(3)

This term uses the sum of the exponential intensity differences
of pixels defining the cut. The sum is minimum when the inten-
sity differences are maximum.

Our average lung model is a 2-D array which contains the
probabilities of a pixel being part of the lung field. Based on
this model, we define the lung region requirement as follows:

(4)

where is the probability of pixel being part of the lung
model. This term describes the probability of pixels labeled as
lung belonging to the background, and the probability of pixels
labeled as background belonging to the lung, according to the
lung model. We want to minimize both probabilities.

Using the three energy terms given above, we mini-
mize the objective function with a fast implementation of
min-cut/max-flow algorithm [37]. The minimum-cut is then the
optimal foreground/background configuration of for the input
CXR [4]. Note that (4) extends our earlier work in [5], in which
we did not use a lung model. Compared to our work in [4], we
simplified (2), (3), and (4) so that they describe properties of
the cut.

B. Features

To describe normal and abnormal patterns in the segmented
lung field, we experimented with two different feature sets. Our
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motivation is to use features that can pick up subtle structures
in an CXR.

1) Object Detection Inspired Features—Set A: As our first
set, we use features that we have successfully applied to mi-
croscopy images of cells for which we classified the cell cycle
phase based on appearance patterns [38], [39]. It is the same set
that we have used in our earlier TB classification work [6]. This
set is versatile and can also be applied to object detection appli-
cations, for example in [40]–[42].

The first set is a combination of shape, edge, and texture de-
scriptors [6]. For each descriptor, we compute a histogram that
shows the distribution of the different descriptor values across
the lung field. Each histogram bin is a feature, and all features of
all descriptors put together form a feature vector that we input
to our classifier. Through empirical experiments, we found that
using 32 bins for each histogram gives us good practical results
[40], [41]. In particular, we use the following shape and texture
descriptors [38], [39].

• Intensity histograms (IH).
• Gradient magnitude histograms (GM).
• Shape descriptor histograms (SD)

(5)

where and are the eigenvalues of the Hessian matrix,
with .

• Curvature descriptor histograms (CD)

(6)

with , where denotes the pixel
intensity for pixel . The normalization with respect
to intensity makes this descriptor independent of image
brightness.

• Histogram of oriented gradients (HOG) is a descriptor for
gradient orientations weighted according to gradient mag-
nitude [43]. The image is divided into small connected re-
gions, and for each region a histogram of gradient direc-
tions or edge orientations for the pixels within the region
is computed. The combination of these histograms repre-
sents the descriptor. HOG has been successfully used in
many detection systems [40], [43]–[46].

• Local binary patterns (LBP) is a texture descriptor that
codes the intensity differences between neighboring pixels
by a histogram of binary patterns [47], [48]. LBP is thus a
histogram method in itself. The binary patterns are gener-
ated by thresholding the relative intensity between the cen-
tral pixel and its neighboring pixels. Because of its compu-
tational simplicity and efficiency, LBP is successfully used
in various computer vision applications [49], often in com-
bination with HOG [38]–[40], [42], [50], [51].

With each descriptor quantized into 32 histogram bins, our
overall number of features is thus .

The eigenvalues of the Hessian matrix needed for the shape
and curvature descriptors in (5) and (6) are computed using a
modification of the multiscale approach by Frangi et al. [52],
[53]. The Hessian describes the second-order surface curvature

properties of the local image intensity surface. This can be seen
from the local behavior in the vicinity of a pixel in an image

by means of the second-order Taylor series expansion

(7)

where stands for the gradient vector and is
the Hessian matrix, both computed at pixel and scale . For
each scale, we apply Gaussian filters as follows [52]:

(8)

where is the n-dimensional Gaussian for pixel and
scale , and is a weight parameter. With , all scales are
weighted equally. The Gaussian is given by

(9)

Our approach uses the maximum filter response across all
scales. The main application in [52] (Frangi et al.) was to en-
hance blood vessels, which have mostly thin elongated shapes,
through filtering. On the other hand, our goal is to detect nodular
patterns by capturing the spherical or elliptical shapes in the
local intensity curvature surface. We therefore use the following
structure response filter based on the eigenvalues and :

(10)

A large filter response value of indicates the presence of
large circular or elongated blobs, and is designed to detect
nodular features in CXR images. In the case of very thin
linear features, the structural response tends toward zero, with

. For very large eigenvalues the filter response
approaches one. The final eigenvalues that we use to compute
the shape descriptor SD and the curvature descriptor CD are
the eigenvalues that provide the largest filter response over 10
different Gaussian filter scales, namely .

2) CBIR-Based Image Features—Set B: For our second fea-
ture set, Set B, we use a group of low-level features motivated
by content-based image retrieval (CBIR) [54], [55]. This feature
collection includes intensity, edge, texture and shape moment
features, which are typically used by CBIR systems. The en-
tire feature vector has 594 dimensions, which is more than three
times larger than the feature vector of Set A, and which allows
us to evaluate the effect of high-dimensional feature spaces on
classification accuracy. We extract most of the features, except
for Hu moments and shape features, based on the Lucene image
retrieval library, LIRE [56]–[58]. In particular, Feature Set B
contains the following features.

• Tamura texture descriptor: The Tamura descriptor is moti-
vated by the human visual perception [59]. The descriptor
comprises a set of six features. We only use three of these
features, which have the strongest correlation with human
perception: contrast, directionality, and coarseness.

• CEDD and FCTH: CEDD (color and edge direction
descriptor) [60] and FCTH (fuzzy color and texture his-
togram) [61] incorporate color and texture information in
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one histogram. They differ in the way they capture texture
information.

• Hu moments: These moments are widely used in image
analysis. They are invariant under image scaling, transla-
tion, and rotation [62]. We use the DISCOVIR system (dis-
tributed content-based visual information retrieval) to ex-
tract Hu moments [63].

• CLD and EHD edge direction features: CLD (color layout
descriptor) and EHD (edge histogram descriptor) are
MPEG-7 features [64]. CLD captures the spatial layout
of the dominant colors on an image grid consisting of
8 8 blocks and is represented using DCT (discrete cosine
transform) coefficients. EHD represents the local edge
distribution in the image, i.e., the relative frequency of
occurrence of five types of edges (vertical, horizontal,
45 diagonal, 135 diagonal, and nondirectional) in the
sub-images.

• Primitive length, edge frequency, and autocorrelation:
These are well-known texture analysis methods, which
use statistical rules to describe the spatial distribution and
relation of gray values [65].

• Shape features: We use a collection of shape features pro-
vided by the standard MATLAB implementation (region-
props) [66], such as the area or elliptical shape features of
local patterns.

C. Classification

To detect abnormal CXRs with TB, we use a support vector
machine (SVM), which classifies the computed feature vectors
into either normal or abnormal. An SVM in its original form
is a supervised nonprobabilistic classifier that generates hyper-
planes to separate samples from two different classes in a space
with possibly infinite dimension [67], [68]. The unique char-
acteristic of an SVM is that it does so by computing the hy-
perplane with the largest margin; i.e., the hyperplane with the
largest distance to the nearest training data point of any class.
Ideally, the feature vectors of abnormal CXRs will have a posi-
tive distance to the separating hyperplane, and feature vectors of
normal CXRs will have a negative distance. The larger the dis-
tance the more confident we are in the class label. We therefore
use these distances as confidence values to compute the ROC
curves in Section V.

D. System Implementation

While implementation in the field is under the direction of
AMPATH, and out of the control of the authors, the current
system architecture and status of the project is as follows: AM-
PATH has finished mounting a portable X-ray machine on a light
truck that has been modified to allow radiographic imaging. For
example, the truck has been shielded against radiation and has
been equipped with an on-board power generation unit and a
desk for patient evaluation. The X-ray machine is connected to a
portable workstation provided by the manufacturer that acts as a
DICOM node, pushing images in a PACS framework. In the ini-
tial testing phase, our software runs on a second portable com-
puter that is connected to the workstation of the X-ray machine.
The communication module of our software, which we imple-
mented in Java, listens to the DICOM workstation. This module

can automatically receive DICOM files and store them locally.
It can also invoke the screening methods described in this paper
and output the classification results (normal/abnormal) and their
confidence values. Because we coded many of our algorithms,
such as segmentation, feature extraction, and classification in
MATLAB, we created Java wrappers for these functions and
integrated them into our Java code. We also added a straight-
forward user interface that indicates whether a given X-ray is
abnormal.

The truck will start its round trip from Moi University, and
all X-rays will be processed on-board by our software. De-
pending on the availability of long-range wireless connections,
the screening results will be transmitted on the fly to the truck’s
basis at Moi University or saved until the return of the truck.

V. RESULTS

This section presents a practical evaluation of our work. We
show lung segmentation examples and we evaluate our features
both in combination and individually. We also compare the per-
formance of our proposed TB detection system with the perfor-
mance of systems reported in the literature, including the per-
formance of human experts.

A. Lung Segmentation Using Graph Cut

Fig. 6 shows three examples of our lung segmentation applied
to CXRs from the MC dataset. The leftmost CXR has calcifica-
tions in the right upper lung and extensive irregular infiltrates
in the left lung with a large area of cavitation. The CXR in the
middle of Fig. 6 shows scars in the right upper lung, and the
rightmost CXR has scars in the left upper lung and some infil-
trates as well. Fig. 6 also shows the outlines of our segmenta-
tion masks for all three lungs. We can see that the segmentation
masks capture the general shape of the lungs. Due to the use
of a lung model, the infiltrates have not impaired the quality of
the segmentations, especially in the leftmost CXR. We can see
a slight leakage of the segmentation in the apical regions for the
second and third CXR. The lower outlines toward the diaphragm
could also be tighter in these images.

We compare our segmentation algorithm with the lung
boundary detection algorithms in the literature. For the compar-
ison, we use the graph cut implementation of our segmentation
described in [5]. As performance measure, we used the overlap
measure

(11)

where is the correctly identified lung area (true positive),
is the incorrectly identified lung area (false positive), and is
the missed lung area (false negative). Table I shows the com-
parison results. We can see that our segmentation method (GC,
[4], [5], with best parameter settings) performs reasonably well,
though there are better segmentation methods reported in the lit-
erature. Our segmentation performance is 4.5% lower than the
human performance reported for the JSRT set, which is 94.6%.

We have since significantly improved performance to achieve
state-of-the-art results and these will be reported in a companion
paper [72].
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Fig. 6. Example lung segmentations for MC CXRs. Note the over-segmentation in the apices. The CXR on the left-hand side has irregular infiltrates in the left
lung. The CXR in the middle has small noncalcified nodules in the upper lobes. Grouped noncalcified nodules are visible in the CXR on the right-hand side. Note
also that we do not include the posterior inferior lung region behind the diaphragm, similar to other lung segmentation methods in the literature.

TABLE I
OVERLAP SCORES ON JSRT DATASET COMPARED TO GOLD STANDARD

SEGMENTATION. GC: GRAPH CUT, PC: PIXEL CLASSIFICATION, MISCP:
MINIMAL INTENSITY AND SHAPE COST PATH, ASMOF: ACTIVE SHAPE

MODEL WITH OPTIMAL FEATURES, ASM: ACTIVE SHAPE MODEL,
AAM: ACTIVE APPEARANCE MODEL

B. Descriptor Evaluation for Feature Set A

We evaluate the performance of Feature Set A on the MC
dataset. For each CXR in the MC dataset, we compute the
descriptors in Feature Set A (see Section IV-B) and concatenate
them into a single feature vector. We then apply a leave-one-out
evaluation scheme, using the SVM-classifier described in
Section IV-C. According to the leave-one-out scheme, we
classify each feature vector (CXR) in the MC dataset with
a classifier trained on the remaining feature vectors (CXRs)
of the MC dataset. We thus train as many classifiers as there
are CXRs in the MC dataset (138 altogether). To get a better
understanding of the performance of individual descriptors and
descriptor groups, we perform leave-one-out evaluations for
all possible descriptor subsets. Fig. 7 shows the recognition
rates we obtain. The x-axis of Fig. 7 represents the different
descriptor combinations, where each possible descriptor subset
is coded as a 6-digit binary index. Each bit indicates the mem-
bership of one of the descriptors mentioned above. The y-axis
of Fig. 7 shows the area under the ROC curve (AUC) and the

Fig. 7. Exhaustive evaluation of all possible feature subsets. Red curve plots
ROC performance (AUC) and the black curve is the classifier accuracy.

accuracies for each descriptor combination (ACC); see the
red and black curve, respectively. To compute the accuracy in
Fig. 7, we use the natural decision boundaries of the linear SVM
classifier. We thus consider any pattern classified with positive
confidence value as abnormal and any pattern with negative
confidence as normal. Whenever we report classification results
in the following, we will use this standard classification scheme.
Accuracy and AUC are highly correlated, with the AUC being
higher than the accuracy for most descriptor combinations. The
jagged shape of both curves indicates that some descriptors
are less likely to increase the performance when added to the
descriptor mix. Nevertheless, we see that both the AUC and the
accuracy tend to increase with larger descriptor sets. In fact,
we achieve the highest AUC value of 86.9%, with an accuracy
of 78.3%, when we add all descriptors to the descriptor set.
Note that we have removed one feature from the set originally
proposed in our earlier publication [6]. The set presented here
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Fig. 8. ROC curve for MC data and Feature Set A.

is now optimal in the sense that removing one feature reduces
the performance.

C. Machine Performance

We present machine classification results for our two datasets,
namely the Montgomery County (MC) dataset from our local
TB clinic, USA, and the set from Shenzhen Hospital, China.

1) Montgomery County: Fig. 8 shows the ROC curve that we
obtain when using all descriptors of Feature Set A. The ROC
curve shows different possible operating points depending on
the confidence threshold for the SVM classifier. The y-coor-
dinate indicates the sensitivity (or recall) of our system, while
the x-coordinate indicates the corresponding false positive rate,
which is one minus the specificity. The area under the ROC
curve (AUC) in Fig. 8 is 86.9%, with an overall classification
accuracy of 78.3%. According to the ROC curve in Fig. 8, we
achieve a sensitivity of about 95% when we accept a false pos-
itive rate that is slightly higher than 40%. This means that our
specificity is a bit lower than 60% in this case.

2) Shenzhen Hospital: We repeated the same experiments
on the set from Shenzhen Hospital. Fig. 9 shows the ROC curve
that we computed for this set, again using the full Feature Set A.
We see that the ROC curve is slightly better than the ROC curve
for the data from our local TB clinic in Fig. 8. In fact, the AUC is
approximately 88%. The classification accuracy is also slightly
better. We computed an accuracy of about 82.5% for this set,
which shows that we can provide consistent performance across
different datasets, and for practically relevant data.

We also computed the performance results for our second fea-
ture set, Set B. Interestingly, with this feature set, we achieve a
similar performance. Using a linear support vector machine, we
obtain an accuracy of about 82% and an AUC of 88.5%. Thus,
increasing the feature dimensionality does not lead to any im-
provement in performance.

For comparison purposes, we list the AUC values for our
two X-ray sets and our two feature sets again in Table II, using
our linear SVM. Table II also contains the result for the second
feature set computed on the Montgomery X-ray set, which is
lower.

Fig. 9. ROC curve for Shenzhen data and Feature Set A.

TABLE II
CLASSIFICATION PERFORMANCE (AUC) ON MONTGOMERY COUNTY

AND SHENZHEN CXRS FOR FEATURE SET A AND FEATURE SET B

TABLE III
CLASSIFICATION PERFORMANCE FOR DIFFERENT CLASSIFIER ARCHITECTURES

ON SHENZHEN CXR SET USING FEATURE SET B

For the Shenzhen data and Feature Set B, we experimented
with different classification methods to see how the perfor-
mance varies across different architectures. Table III shows
the performance results, accuracy (ACC) and area under the
ROC curve (AUC), for the following architectures: support
vector machine (SVM) with linear (L), polynomial (PK), and
radial basis function kernels (RBF), backpropagation neural
network (NN), alternating decision tree (ADT), and linear
logistic regression (LLR). The first column of Table III shows
the performance for the linear support vector machine that
we reported above. It is slightly higher than the rate for the
polynomial and radial kernels; in particular the accuracy is
higher for the linear machine. We experimented with different
C-values for the support vector machines, and found that the
standard value provides the best performance in our
case, with only slight differences in general. Table III shows
that the AUC is relatively stable across different architectures,
with the linear logistic regression providing a slightly better
overall performance.

3) Comparison With Other Systems in the Literature: In
the literature, only a few papers have reported performance
numbers for full-fledged TB screening systems, for example
[25], [26], [31]. Many papers evaluate only part of the de-
tection problem and concentrate on sub-problems, such as
cavity detection [27], [28]. Judging by the ROC curves, the
performance of our system is comparable to the performance of
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some existing systems that address the problem in its entirety.
For instance, the AUC value of our system is higher than the
AUC values reported for the systems in [25] and [31]. Our
AUC value is also slightly higher than the AUC value reported
by Hogeweg et al., who use a combination of texture and shape
abnormality detectors [26]. However, for a fair comparison of
these systems, we would have to evaluate each system on the
same dataset. Currently, the training sets in [25], [26], [31] are
not publicly available. As yet, there is no publicly available
CXR set of sufficient size that would allow training of a TB
screening system. For the time being, we have to content
ourselves with the fact that some existing systems provide
reasonable performances across different datasets. We plan to
make both our sets, the MC set as well as the Shenzhen set,
available to the research community, so that other researchers
can compare their performance. For a more detailed overview
of existing TB screening systems, we refer readers to our recent
survey in [32].

D. Comparison With Human Performance

In the following, we compare our system performance with
human reading performance of two earlier studies reported in
the literature. We also conducted our own independent observer
study, asking two radiologists to read the MC CXR set (L. Folio,
J. Siegelman).

1) Earlier Studies: Van’t Hoog et al. investigated the perfor-
mance of clinical officers in a tuberculosis prevalence survey
[73]. Their study shows that clinical officers with sufficient
training, rather than medical officers, can achieve an acceptable
performance when screening CXRs for any abnormality. Van’t
Hoog et al. therefore recommend training of clinical officers
for TB screening programs in regions where medical personnel
with radiological expertise is rare. In their study, two experts
achieve sensitivities of 81% and 83%, respectively, when
screening CXRs of patients with bacteriologically confirmed
TB for any abnormality. The corresponding specificities are
80% and 74%, respectively. On the other hand, three clinical
officers achieve a sensitivity of 95% and a specificity of 73%
for the same task. Note that each of the experts has a lower
sensitivity than the group of clinical officers. We can compare
these numbers with the ROC curve in Fig. 8, which shows
the performance of our automatic system. We see that humans
still perform better than our automatic system, and also better
than other systems reported in the literature. Nevertheless, our
system performs reasonably well and its performance, while
inferior, is within reach of the clinical officers’ performance in
the study of Van’t Hoog et al. For the same sensitivity provided
by the clinical officers (95%), our system achieves a specificity
that is about 15% lower than the specificity of the clinical
officers.

In another recent study, Maduskar et al. showed that auto-
matic chest radiograph reading for detection of TB has similar
performance as clinical officers and certified readers [74]. They
collected a dataset of 166 digital CXRs in Zambia, containing
99 positive and 67 negative cases confirmed by sputum cultures.
In their observer study, four clinical officers and two certified
readers scored all X-rays between zero and hundred. Maduskar
et al. compared the human performance with the performance

TABLE IV
RADIOLOGIST AGREEMENT ON MONTGOMERY CXRS

TABLE V
COMPARISON OF HUMAN CONSENSUS PERFORMANCE WITH

GROUND TRUTH OF MONTGOMERY CXRS

of their software, which uses the same score range. They com-
puted the areas under the ROC curves and obtained values be-
tween 70% (clinical officers) and 72% (software), showing that
there is no significant difference between human and machine
performance. This result is in accordance with our own study, in
which we compared the performance of our system with human
performance (see below).

2) Our Study: In our study, we asked two radiologists to pro-
vide a second and third reading for our MC CXR set. Both radi-
ologists work at a United States clinical center and hospital, re-
spectively. We made them aware of the purpose of our screening
project, that is, to detect tuberculosis in a population from an en-
demic region which is otherwise to be considered healthy. As a
result the recommendations for evaluation of TB screening from
the WHO Lime book were considered in the decision making
process, in particular the use of intentional overreading [1]. To
present the CXR data to the radiologists, we adapted our Firefly
labeling tool, allowing the radiologists to see the CXRs online
and store their readings in a database [75]. Table IV shows the
agreement of both radiologists on the MC data. A plus sign in-
dicates CXRs classified as TB positive (abnormal) by one of the
radiologists, and the minus sign represents CXRs classified as
normal. According to Table IV, both radiologists agree in 84.8%
of the cases (95% CI:[77.7,90.3], using exact one-sample test of
proportion). The corresponding kappa value is ( , 95%
CI:[0.52,0.86]). This signifies moderate agreement.

After their individual readings, both radiologists convened to
come to a consensus decision, reconciling readings for which
they have disagreed. For the remaining discrepant cases, they
agreed the findings were consistent with TB. Table V shows a
comparison of their consensus decision with the labels from our
local TB clinic. We consider the latter to be ground-truth la-
bels because they are based on clinical data as well as patient
data to which both radiologists had no access. In Table V, the
number of false negatives is zero, which means the radiologists
succeeded in detecting all TB positive cases. Therefore, the sen-
sitivity (recall) is 100% (95% CI:[93.8,100]). The specificity is
68.8% (95% CI:[57.4,78.7]), so there is a considerable number
of false positives, namely 25. Both radiologists agree in 81.9%
of the cases with the ground-truth data (95% CI:[74.4,87.9]),
which is a relatively low recognition rate due to overreading
and trying not to miss any potential positive TB case.
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TABLE VI
COMPARISON OF MACHINE PERFORMANCE WITH GROUND

TRUTH OF MONTGOMERY CXRS

TABLE VII
PERFORMANCE COMPARISON BETWEEN MACHINE AND RADIOLOGIST

CONSENSUS FOR MONTGOMERY CXRS

In Table VI, we compare our machine output with the
ground-truth data, using again the standard classification
scheme that considers patterns classified with positive confi-
dence as abnormal. Here, the agreement with the ground-truth
data is slightly lower than in the previous expert consensus
table. The machine agrees with the ground-truth data in 78.3%
of the cases (95% CI:[70.4,84.8]). This is the same recognition
rate we reported in Section V-C for the MC set. Note that the
false positives and the false negatives are evenly distributed,
with a sensitivity of 74.1% (95% CI:[61.0,84.7]) and a speci-
ficity of 81.3% (95% CI:[71.0,89.1]). This is because we have
not optimized the true positive rate for our classifier. If we do
so, we can see from the ROC curve in Fig. 8, that in order for
the sensitivity to be close to 100%, our false positive rate would
be slighter higher than 60%. This is about twice as high as the
false positive rate for the radiologist’s consensus decision in
Table V, which is about 31%.

Finally, in Table VII, we compare the correct and incorrect
classification results of the two radiologists and the machine. In
terms of classification performance, the radiologists are not sig-
nificantly better than the machine (McNemar test, ).
Note that the number of CXRs for which both the machine
and the consensus are wrong is remarkably low. The combined
human-machine performance with a significantly lower error
rate of 4.3%, compared to the machine-only error rate of 21.7%
and the human consensus error of 18.1%, suggests using our
system for computer-aided diagnosis and offering a verifying
second opinion of radiologist readings. This can help improve
human performance because it is unlikely that both the radiolo-
gist and the machine classify the same CXR incorrectly.

VI. CONCLUSION

We have developed an automated system that screens CXRs
for manifestations of TB. The system is currently set up for
practical use in Kenya, where it will be part of a mobile system
for TB screening in remote areas. When given a CXR as input,
our system first segments the lung region using an optimization
method based on graph cut. This method combines intensity
information with personalized lung atlas models derived from
the training set. We compute a set of shape, edge, and texture
features as input to a binary classifier, which then classifies the
given input image into either normal or abnormal.

In this paper, we compare two different established feature
sets: one set typically used for object recognition and the other
used in image retrieval applications. We also experiment with
different classifier architectures. Both feature sets and most of
the classifier architectures we tested, provide a similar perfor-
mance. To improve the performance further, we could try to
improve the lung segmentation, which provides average per-
formance compared to other systems in the literature. One ap-
proach would be to find optimal weights for the terms in the
graph cut energy function. Another possibility would be to use
more atlas-based lung models for computing the average lung
model (see our companion paper [72]). We could also try to par-
tition the lung into different regions, as some of the existing
CAD systems do. It is surprising that we achieve a relatively
high performance compared to other approaches by using only
global features. This may indicate that the combination of local
features in the literature is still suboptimal. A final verdict on
this issue can only be made once public benchmark data be-
comes available. Due to the lack of this data for TB detection
in CXRs, it is currently difficult to do a fair comparison of the
few existing systems that have been reported in the literature.
We therefore plan to make both our datasets publicly available.
One of these sets, the Shenzhen set, is from a high-incidence
area. For both sets, we achieve an AUC of 87% and 90%, re-
spectively. Furthermore, our performance, while still lower than
human performance, is reasonably close to the performance of
radiologists. In an independent observer study with two radiol-
ogists, who were trying not to miss any positive case, our false
positive rate is twice as high according to the ROC curve. The
likelihood that both the radiologists and the machine reach a
wrong conclusion is very low. This shows that it should be pos-
sible to reach human performance in the future, or at least have
a system that can assist radiologists and public health providers
in the screening and decision process. These comparison results
have encouraged us to test our system in the field under realistic
conditions. In future experiments, we will evaluate our system
on larger datasets that we will collect using our portable scan-
ners in Kenya.

APPENDIX

The Montgomery County X-ray set as well as the Shenzhen
Hospital X-ray set are available for research purposes upon re-
view of request for data. To submit the request, please visit
the following webpage:http://archive.nlm.nih.gov/. Under the
“Repositories” tab, a link points to a page with more informa-
tion on our chest images, including contact information.
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