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Abstract

We propose a compositional method to assess
the factuality of biomedical events extracted
from the literature. The composition proce-
dure relies on the notion of semantic embed-
ding and a fine-grained classification of extra-
propositional phenomena, including modality
and valence shifting, and a dictionary based on
this classification. The event factuality is com-
puted as a product of the extra-propositional
operators that have scope over the event. We
evaluate our approach on the GENIA event
corpus enriched with certainty level and po-
larity annotations. The results indicate that
our approach is effective in identifying the cer-
tainty level component of factuality and is less
successful in recognizing the other element,
negative polarity.

1 Introduction

The scientific literature is rich in extra-propositional
phenomena, such as speculations, opinions, and be-
liefs, due to the fact that the scientific method in-
volves hypothesis generation, experimentation, and
reasoning to reach, often tentative, conclusions (Hy-
land, 1998). Biomedical literature is a case in point:
Light et al. (2004) estimate that 11% of sentences
in MEDLINE abstracts contain speculations and ar-
gue that speculations are more important than es-
tablished facts for researchers interested in current
trends and future directions. Such statements may
also have an effect on the reliability of the un-
derlying scientific claim. Despite the prevalence
and importance of such statements, natural language

processing systems in the biomedical domain have
largely focused on more foundational tasks, includ-
ing named entity recognition (e.g., disorders, drugs)
and relation extraction (e.g., biological events, gene-
disease associations), the former task addressing the
conceptual level of meaning and the latter address-
ing the propositional level.

The last decade has seen significant research ac-
tivity focusing on some extra-propositional aspects
of meaning. The main concern of the studies that
focused on the biomedical literature has been to
distinguish facts from speculative, tentative knowl-
edge (Light et al., 2004). The studies focusing on
the clinical domain, on the other hand, have mainly
aimed to identify whether findings, diseases, symp-
toms, or other concepts mentioned in clinical re-
ports are present, absent, or uncertain (Uzuner et al.,
2010). Various corpora have been annotated for rel-
evant phenomena, including hedges (Medlock and
Briscoe, 2007) and speculation/negation (Vincze et
al., 2008; Kim et al., 2008). Several shared task
challenges with subtasks focusing on these phenom-
ena have been organized (Kim et al., 2009; Kim
et al., 2012). Supervised machine learning and
rule-based approaches have been proposed for these
tasks. In general, these studies have been presented
as extensions to named entity recognition or rela-
tion extraction systems, and they often settle for as-
signing discrete values to propositional meaning el-
ements (e.g., assessing the certainty of an event).

Kilicoglu (2012) has proposed a unified frame-
work for extra-propositional meaning, encompass-
ing phenomena discussed above as well as dis-
course level relations, such as Contrast and Elab-



oration, generally ignored in the studies of extra-
propositional meaning (Morante and Sporleder,
2012). The framework uses semantic embedding as
the core notion, predication as the representational
means, and semantic composition as the methodol-
ogy. It relies on a fine-grained linguistic charac-
terization of extra-propositional meaning, including
modality, valence shifters, and discourse connec-
tives. In the current work, we present a case study
of applying this framework to the task of assess-
ing biomedical event factuality (whether an event is
characterized as a fact, a counter-fact, or merely a
possibility), an important step in determining current
trends and future directions in scientific research.
For evaluation, we rely on the meta-knowledge cor-
pus (Thompson et al., 2011), in which biologi-
cal events from the GENIA event corpus (Kim et
al., 2008) have been annotated with several extra-
propositional phenomena, including certainty level,
polarity, and source. We discuss in this paper how
two of these phenomena relevant to factuality (cer-
tainty and polarity) can be inferred from the seman-
tic representations extracted by the framework. Our
results demonstrate that certainty levels can be cap-
tured correctly to a large extent with our method and
indicate that more research is needed for correct po-
larity assessment.

2 Related Work

Modality and negation are the two linguistic phe-
nomena that are often considered in computational
treatments of extra-propositional meaning. Morante
and Sporleder (2012) provide a comprehensive
overview of these phenomena from both theoreti-
cal and computational linguistics perspectives. In
the FactBank corpus (Saurı́ and Pustejovsky, 2009),
events from news articles are annotated with their
factuality values, which are modeled as the inter-
action of epistemic modality and polarity and con-
sist of eight values: FACT, PROBABLE, POSSIBLE,
COUNTER-FACT, NOT PROBABLE, NOT CERTAIN,
CERTAIN BUT UNKNOWN, and UNKNOWN. Saurı́
and Pustejovsky (2012) propose a factuality pro-
filer that computes these values in a top-down man-
ner using lexical and syntactic information. They
capture the interaction between different factuality
markers scoping over the same event. de Marneffe

et al. (2012) investigate veridicality as the pragmatic
component of factuality. Based on an annotation
study that uses FactBank and MechanicalTurk sub-
jects, they argue that veridicality judgments should
be modeled as probability distributions. They show
that context and world knowledge play an important
role in assessing veridicality, in addition to lexical
and semantic properties of individual markers, and
use supervised machine learning to model veridical-
ity. Szarvas et al. (2012) draw from previous catego-
rizations and annotation studies to introduce a uni-
fied subcategorization of semantic uncertainty, with
EPISTEMIC and HYPOTHETICAL as the top level cat-
egories. Re-annotating three corpora with this sub-
categorization and analyzing type distributions, they
show that out-of-domain data can be gainfully ex-
ploited in assessing certainty using domain adap-
tation techniques, despite the domain- and genre-
dependent nature of the problem.

In the biomedical domain, several corpora have
been annotated for extra-propositional phenomena,
in particular, negation and speculation. The GENIA
event corpus (Kim et al., 2008) contains biologi-
cal events from MEDLINE abstracts annotated with
their certainty level (CERTAIN, PROBABLE, DOUBT-
FUL) and assertion status (EXIST, NON-EXIST). The
BioScope corpus (Vincze et al., 2008) consists of
abstracts and full-text articles as well as clinical
text annotated with negation and speculation mark-
ers and their scopes. While they clearly address
similar linguistic phenomena, the representations
used in these corpora are significantly different (cue-
scope representation vs. tagged events), and there
have been attempts at reconciling these represen-
tations (Kilicoglu and Bergler, 2010; Stenetorp et
al., 2012). BioNLP shared tasks on event extrac-
tion (Kim et al., 2009; Kim et al., 2012) and CoNLL
2010 shared task on hedge detection (Farkas et al.,
2010) have focused on GENIA and BioScope nega-
tion/speculation annotations, respectively. Super-
vised machine learning techniques (Morante et al.,
2010; Björne et al., 2012) as well as rule-based
methods (Kilicoglu and Bergler, 2011) have been
attempted in extracting these phenomena and their
scopes. Wilbur et al. (2006) propose a more fine-
grained annotation scheme with multi-valued quali-
tative dimensions to characterize scientific sentence
fragments: certainty (complete uncertainty to com-



plete certainty), evidence (from no evidence to ex-
plicit evidence), polarity (positive or negative), and
trend/direction (increase/decrease, high/low). In
a similar vein, Thompson et al. (2011) annotate
each event in the GENIA event corpus with five
meta-knowledge elements: Knowledge Type (In-
vestigation, Observation, Analysis, Method, Fact,
Other), Certainty Level (considerable speculation,
some speculation, and certainty), Polarity (nega-
tive and positive), Manner (high, low, neutral), and
Source (Current, Other). Their annotations are more
semantically precise as they are applied to events,
rather than somewhat arbitrary sentence fragments
used by Wilbur et al. (2006). Miwa et al. (2012) use
a machine learning-based approach to assign meta-
knowledge categories to events. They cast the task
as a classification problem and use syntactic (depen-
dency paths), semantic (event structure), and dis-
course features (location of the sentence within the
abstract). They apply their system to BioNLP shared
task data, as well, overall slightly outperforming the
state-of-the-art systems.

3 Methods

We provide a brief summary of the framework here,
mainly focusing on predication representation, em-
bedding predicate categorization, and the composi-
tional algorithm.

3.1 Predications

The framework uses the predication construct to
represent all levels of relational meaning. A pred-
ication consists of a predicate P and n logical ar-
guments (logical subject, logical object, adjuncts).
They can be nested; in other words, they can take
other predications as arguments. We call such con-
structs embedding predications to distinguish them
from atomic predications that can only take atomic
terms as arguments. While some embedding pred-
ications operate at the basic propositional level,
extra-propositional meaning is exclusively captured
by embedding predications. We use the notion of
semantic scope to characterize the structural rela-
tionships between predications. A predication Pr1
is said to embed a predication Pr2 if Pr2 is an argu-
ment of Pr1. Similarly, a predication Pr2 is is said to
be within the semantic scope of a predication Pr1,

if a) Pr1 embeds Pr2, or b) there is a predication
Pr3, such that Pr1 embeds Pr3 and Pr2 is within the
semantic scope of or shares an argument with Pr3.
Scope relations play an important role in the com-
position procedure. A predication also encodes the
source (S) and scalar modality value of the predi-
cation (MVSc). A formal definition of predication,
then, is:

Pr := [P, S,MVSc, Arg1..n], n >= 1

By default, the source of a predication is the writer
of the text (WR). The source may also indicate a term
or predication that refers to the source (i.e., who said
what is described by the predication? what is the
evidence for the predication?). The scalar modality
value of the predication is a value in the [0,1] range
on a relevant modality scale (Sc), which is assigned
according to lexical properties of the predicate P and
modified by its discourse context. By default, an un-
marked, declarative statement has the scalar modal-
ity value of 1 on the EPISTEMIC scale (denoted as
1epistemic), corresponding to a fact.

3.2 Categorization

With the embedding categorization, we aim to pro-
vide a fine-grained characterization of the kinds of
extra-propositional meanings contributed by predi-
cates that indicate embedding. A synthesis of vari-
ous linguistic typologies and classifications, the cat-
egorization is similar to the certainty subcatego-
rization proposed by Szarvas et al. (2012); how-
ever, it not only targets certainty-related phenomena,
but is rather a more general categorization of em-
bedding predicates that indicate extra-propositional
meaning. We distinguish four main classes of em-
bedding predicates: MODAL, RELATIONAL, VA-
LENCE SHIFTER and PROPOSITIONAL; each class
is further divided into subcategories. For the pur-
poses of this paper, MODAL and VALENCE SHIFTER

categories are most relevant (illustrated in Figure 1).
A MODAL predicate associates its embedded

predication with a modality value on a scale deter-
mined by the semantic category of the modal pred-
icate (e.g., EPISTEMIC scale, DEONTIC scale). The
scalar modality value (MVSc) indicates how strongly
the embedded predication is associated with the
scale Sc, 1 indicating strongest positive associa-
tion and 0 negative association. VALENCE SHIFTER



predicates do not introduce new scales but trigger a
scalar shift of the embedded predication on the as-
sociated scale.

Figure 1. Embedding predicate types.

The MODAL subcategories relevant for factuality
computation and examples of predicates belonging
to these categories are as follows:

• EPISTEMIC predicates indicate a judgement
about the factual status of the embedded predi-
cation (e.g., may, possible).

• EVIDENTIAL predicates indicate the type of ev-
idence (observation, inference, etc.) for the
embedded predication (e.g., demonstrate, sug-
gest).

• DYNAMIC predicates indicate ability or will-
ingness towards an event (e.g., able, want).

• INTENTIONAL predicates indicate effort of an
agent to perform an event (e.g., aim).

• INTERROGATIVE predicates indicate question-
ing or inquiry towards the embedded event
(e.g., investigate).

• SUCCESS predicates indicate degree of success
associated with the embedded predication (e.g.,
manage, fail).

Each subcategory is associated with its own modal-
ity scale, except the EVIDENTIAL category, which is
associated with the EPISTEMIC scale. The categories
listed above also have secondary epistemic readings,
in addition to their primary scale; for example, IN-
TERROGATIVE predicates can indicate uncertainty.
The EPISTEMIC scale is the most relevant scale to
investigate factuality. Our model of this scale and
how modal auxiliaries correspond to it is illustrated
in Figure 2. It is similar to the characterization of
factuality values by Saurı́ and Pustejovsky (2012),
although numerical epistemic values are assigned to
predications (MVepistemic), rather than discrete val-
ues like Probable or Fact. In this, the characteriza-
tion follows that of Nirenburg and Raskin (2004),
which lends itself more readily to the type of opera-
tions proposed for scalar modality values.

Figure 2. The epistemic scale with characteristic
values and corresponding modal auxiliaries.

The SCALE SHIFTER subcategory of valence
shifters also plays a role in factuality assessment.
Predicates belonging to this category change the
scalar modality value of the predications in their
scope. The subtypes of this category are NEGATOR,
INTENSIFIER, DIMINISHER, and HEDGE. A DIMIN-
ISHER predicate (e.g., hardly) lowers the modal-
ity value, while an INTENSIFIER increases it (e.g.,
strongly). On the other hand, a negation marker be-
longing to the NEGATOR category (e.g., no in no in-
dication) inverts the modality value of the embed-
ded predication. The HEDGE category contains at-
tribute hedges (e.g., mostly, in general) (Hyland,



1998), whose effect is to make the embedded pred-
ication more vague. We model this by decreasing,
increasing or leaving unchanged the modality value
depending on the position of the embedded predica-
tion on the scale.

Lexical and semantic knowledge about predicates
belonging to embedding categories are encoded in
a dictionary, which currently consists of 987 pred-
icates, 544 of them belonging to MODAL and 95
to SCALE SHIFTER categories. A very preliminary
version of this dictionary was introduced in Kil-
icoglu and Bergler (2008). It was later extended and
refined using several corpora and linguistic classifi-
cations (including Saurı́ (2008) and Nirenburg and
Raskin (2004)). Since predicates collected from ex-
ternal resources do not neatly fit into embedding cat-
egories and we target deeper levels of meaning dis-
tinctions, the dictionary construction involved a fair
amount of manual refinement. The dictionary en-
codes the lemma and part-of-speech of the predicate
as well as its extra-propositional meaning senses.
Each sense consists of five elements:

1. Embedding category, such as ASSUMPTIVE.

2. Prior scalar modality value (if any).

3. Embedding relation classes indicate the seman-
tic dependencies used to identify the logical ob-
ject argument of the predicate.

4. Scope type indicates whether the predicate al-
lows a wide or narrow scope reading (for ex-
ample, in I don’t think that P, because think
allows narrow scope reading, the negation is
transferred to its complement (I think that not
P)).

5. Argument inversion (true/false) determines
whether the object and subject arguments
should be switched in semantic interpretation.

The entry in Table 1 indicates that the modal aux-
iliary may is associated with two modal senses (i.e.,
it is ambiguous) with differing scalar modality val-
ues. It also indicates that a predication embedded by
SPECULATIVE may will be assigned the epistemic
value of 0.5 initially. Scope type and argument in-
version attributes are not explicitly given, indicating
default values for each.

Lemma may
POS MD (modal)
Sense.01 Category SPECULATIVE

Scalar modality value 0.5
Embedding rel. classes AUX

Sense.02 Category PERMISSIVE
Scalar modality value 0.6
Embedding rel. classes AUX

Table 1. Dictionary entry for may.

3.3 Composition

Semantic composition is the procedure of bottom-
up predication construction using the knowledge en-
coded in the dictionary and syntactic information in
the form of dependency relations. Dependency re-
lations are extracted using the Stanford CoreNLP
toolkit (Manning et al., 2014). We use the Stan-
ford collapsed dependency format (de Marneffe et
al., 2006) for dependency relations. We illustrate the
salient steps of this procedure on a sentence from
the GENIA event corpus (sentence 9 from PMID
10089566 shown in row (1) in Table 2). For brevity,
the simplified version of the sentence is given in row
(2), in which textual spans are substituted with the
corresponding event annotations.

As the first step in the procedure, the syntactic
dependency graphs of sentences of a document are
combined and transformed into a semantically en-
riched, directed, acyclic semantic document graph
through a series of dependency transformations. The
nodes of the semantic graph correspond to textual
units of the document and the direction of the arcs
reflects the direction of the semantic dependency be-
tween its endpoints. The transformation is guided by
a set of rules, illustrated on row (3). For example, the
first three transformations are due to the Verb Com-
plex Transformation rule, which reorders the depen-
dencies that a verb is involved in such that semantic
scope relations with the auxiliaries and other verbal
modifiers are made explicit. The resulting seman-
tic dependencies on the right indicate that involve is
within the scope of not, which in turn is in the scope
of may, and the entire verb complex may not involve
is within the scope of thus, which indicates a dis-
course relation.

The next steps of the compositional algorithm,
argument identification and scalar modality value



(1) Thus HIV-1 gp41-induced IL-10 up-regulation in monocytes may not involve NF-kappaB, MAPK,
or PI3-kinase activation, but rather may operate through activation of adenylate cyclase
and pertussis-toxin-sensitive Gi/Go protein to effect p70(S6)-kinase activation.

(2) Thus E27 may not E32, E33, or E34, but rather may E39 and E40.
(3) advmod(involve,thus) ADVMOD(thus,may)

aux(involve,may) AUX(may,not)
neg(involve,not) NEG(not,involve)
prep of(activation,cyclase) PREP OF(activation,adenylate cyclase)

(4) involve:CORRELATION(E32,WR,0.5epistemic,E27, E28)
not:NEGATOR(EM53,WR,0.5epistemic,E32)
may:SPECULATIVE(EM57,WR,1.0epistemic,EM53)
operate:REGULATION(E39,WR,0.5epistemic,E38,E27)
may:SPECULATIVE(EM58,WR,1.0epistemic,E39)

Table 2. Composition example for 10089566:S9.

composition, play a role in factuality assessment1.
Argument identification is the process of determin-
ing the logical arguments of a predication, based on
the bottom-up traversal of the semantic graph. It
is guided by argument identification rules, each of
which defines a mapping from a lexical category and
an embedding class to a logical argument type. Such
a rule applies to a predicate specified in the dictio-
nary that belongs to the lexical category and serves
as the head of a semantic dependency labeled with
the embedding relation class. With argument iden-
tification rules, we determine, for example, that the
second instance of may in the example, has as its
logical object, the predication indicated by operate,
since there is an AUX embedding relation between
may and operate, which satisfies the constraint de-
fined in the embedding dictionary (Table 1).

Scalar modality value composition is the proce-
dure of determining the relevant scale for a predica-
tion and its modality value on this scale. The follow-
ing principles are applied:

1. Initially, every predication is assigned to EPIS-
TEMIC scale with the value of 1 (i.e., a fact).

2. A MODAL predicate places its logical object on
the relevant MODAL scale and assigns to it its
prior scalar modality value, specified in the dic-
tionary.

1The compositional steps that we do not discuss here are
source propagation and argument propagation.

3. A SCALE SHIFTER predicate does not intro-
duce a new scale but changes the existing scalar
modality value of its logical object.

4. The scalar influence of an embedding predicate
(P) extends beyond the predications it embeds
to another predication in its scope (Pre), if one
of the following constraints is met:

• P is associated with the epistemic scale
and the intermediate predications (Pri) are
either of SCALE SHIFTER type or are as-
sociated with epistemic scale
• P is of SCALE SHIFTER type and at most

one intermediate predication is of MODAL

type
• P is of a non-epistemic MODAL type and

Pri all belong to SCALE SHIFTER type

Assuming that we have a predicate P which in-
dicates an embedding predication Pr and a pred-
ication (Pre) under its scalar influence, the scalar
modality value of Pre is updated differently, based
on whether the predicate P is a MODAL or a
SCALE SHIFTER predicate. All update operations
used for MODAL predicates are given in Table 3 and
those for SCALE SHIFTER predicates in Table 4. For
MODAL predicates, the composition is modeled as
the interaction of the prior scalar modality value of
the embedding predicate (MVSc(Pmodal)) in the first
column and the current scalar modality value associ-
ated with the embedded predication (MVSc(Pre)) in
the second column, resulting in the value shown in



the third column (MVSc(Pre)
′
). When P is a scale-

shifting predicate, the update procedure is guided by
its type, as illustrated in Table 4. X and Y represent
arbitrary values in the range of [0,1].

MVSc(Pmodal) MVSc(Pre) MVSc(Pre)
′

(1) = X = 1.0 X
(2) = X = 0.0 1-X
(3) > Y > 0.5 ∧ = Y min(0.9,

Y+0.2)
(4) < Y ∧ >= 0.5 > 0.5 ∧ = Y min(0.5,Y-0.2)
(5) < 0.5 > 0.5 ∧ = Y 1-Y
(6) >= 0.5 < 0.5 ∧ = Y Y
(7) < 0.5 < 0.5 ∧ = Y 1- Y

Table 3. The composition of scalar modality values
in MODAL contexts.

For the example shown in Table 2, the com-
putation in row (1) of Table 3 applies when we
encounter the SPECULATIVE may node dominat-
ing the operate node in the semantic graph: since
MVepistemic(may)=0.5 and operate at the time of
composition has epistemic value of 1, its scalar
modality value gets updated to 0.5.

Type MVSc(Pre) MVSc(Pre)
′

(1) NEGATOR = 0.0 0.5
(2) NEGATOR > 0.0 ∧ = Y 1-Y
(3) INTENSIFIER (= 0.0 ∨ = 1.0)

∧ = Y
Y

(4) INTENSIFIER >= 0.5 ∧ = Y min(0.9,Y+0.2)
(5) INTENSIFIER < 0.5 ∧ = Y max(0.1,Y-0.2)
(6) DIMINISHER (= 0.0 ∨ = 1.0)

∧ = Y
Y

(7) DIMINISHER >= 0.5 ∧ = Y max(0.5,Y-0.2)
(8) DIMINISHER < 0.5 ∧ = Y max(0.4,Y+0.2)
(9) HEDGE = 0.0 0.2
(10) HEDGE = 1.0 0.8
(11) HEDGE = Y Y

Table 4. The composition of scalar modality values
in SCALE SHIFTER contexts.

When not, a NEGATOR, is encountered in com-
position, the scalar modality value of its embedded
predication (involve) is updated to 0, due to row (2)
in Table 4 (1-1=0). In the next step of composi-
tion, when the first instance of SPECULATIVE may
is encountered, the nodes in its scope, not and in-
volve, have epistemic values of 1 and 0, respectively.

The scalar modality value of not gets updated to
min(0.5,1-0.2)=0.5 (row (4) in Table 3). Row (2)
in Table 3 applies to involve, resulting in 0.5 as its
new epistemic value (1-0.5).

Row (4) in Table 2 shows the annotations gen-
erated by the system. The system takes as in-
put GENIA event annotations (e.g., CORRELATION

and REGULATION), which we expand with scalar
modality values and sources. For example, E32..E34,
three events triggered by involve and annotated as
CORRELATION events in GENIA, have epistemic
value of 0.5 and WR as the source (only one of
the events, E32, is shown for brevity). The system
also generates other embedding predications (indi-
cated with EM) corresponding to fine-grained extra-
propositional meaning. To clarify, the content of
first three predications (first an event and the lat-
ter two extra-propositional) are expressed in natural
language below:

• E32: Correlation between gp41-induced IL-10
upregulation and NF-kappaB activation is POS-
SIBLE according to the author.

• EM53: That there is no correlation between
gp41-induced IL-10 upregulation and NF-
kappaB activation is POSSIBLE according to the
author.

• EM57: That it is possible there no correlation
between gp41-induced IL-10 upregulation and
NF-kappaB activation is a FACT according to
the author.

3.4 Data and Evaluation

We assessed our methodology on the meta-
knowledge corpus (Thompson et al., 2011), in which
GENIA events are annotated with certainty levels
(CL) and polarity. This corpus consists of 1000
MEDLINE abstracts and contains 34,368 event an-
notations. Uncertainty is only annotated in this
dataset for events with Analysis knowledge type.
Such events correspond to 17.6% of the entire cor-
pus. Of all Analysis events, 33.6% are annotated
with L2 (high confidence), 11.4% with L1 (low con-
fidence), and 55% with L3 (certain) CL values. Po-
larity, on the other hand, is annotated for all events
(6.1% negative).



Factuality values are often modeled as discrete
categories (e.g., PROBABLE, FACT). Thus, to eval-
uate our approach, we converted the scalar modality
values associated with predications (MVSc) to dis-
crete CL and polarity values using mapping rules,
shown in Table 5. The rules were based on the anal-
ysis of 100 abstracts that we used for training.

Condition Annotation
MVepistemic = 0 ∨MVepistemic = 1 L3
MVepistemic > 0.6 ∧MVepistemic < 1 L2
MVepistemic > 0 ∧MVepistemic <= 0.6 L1
MVpotential > 0 L2
MVinterrogative = 1 ∨MVintentional = 1 L1
MVepistemic = 0 ∨ MVpotential = 0 ∨
MVsuccess = 0

Negative

Table 5. Mapping scalar modality values to event
certainty and polarity.

We evaluated CL mappings in two ways: a) we re-
stricted it only to Analysis type events, the only ones
annotated with L1 and L2 values, and b) we evalu-
ated them on the entire corpus. For polarity, we only
considered the entire corpus. As evaluation metrics,
we calculated precision, recall, and F1 score as well
as accuracy on the discrete values we obtained by
the mapping.

Another evaluation focused more directly on fac-
tuality. We represented the gold CL-polarity pairs
as numerical values and calculated the average dis-
tance between these values and those generated by
the system. The lower the distance, the better the
system can be considered. In this evaluation scheme,
annotating a considerably speculative (L1) event as
somewhat speculative (L2) is penalized less than an-
notating it as certain (L3). We mapped the gold an-
notations to the numerical values as follows: L3-
Positive → 1, L2-Positive → 0.8, L1-Positive →
0.6, L1-Negative → 0.4, L2-Negative → 0.2, L3-
Negative→ 0.

4 Results and Discussion

The results of mapping the system annotations to
discrete values annotated in the meta-knowledge
corpus are provided in Table 6.

When the CL evaluation is limited to Analy-
sis events, we obtain an accuracy of approximately
82%. The baseline considered by Miwa et al. (2012)

Type Precision Recall F1 Accuracy
CL evaluation limited to Analysis events
CL 81.75
L3 78.43 95.57 86.15
L2 90.65 61.46 73.25
L1 83.22 76.28 79.60
Evaluation on the entire test set
CL 95.13
L3 97.27 97.74 97.51
L2 73.08 61.55 66.61
L1 61.42 76.28 68.05
Polarity 95.32
Positive 95.99 99.15 97.54
Negative 74.17 37.04 49.41

Table 6. Evaluation results.

is the majority class, which would yield an accuracy
of 55% for these events. Their CL evaluation is not
limited to Analysis events, and they report F1 scores
of 97.6%, 66.5%, and 74.9% for L3, L2, and L1 lev-
els, respectively, on the test set. Restricting the sys-
tem to Analysis events, we obtain the results shown
at the top of the table (86.2%, 73.3%, and 79.6%).
Lifting the Analysis restriction, we obtain the results
shown at the bottom (97.5%, 66.6%, and 68.1% for
L3, L2, and L1, respectively). The results are very
similar for L3 and L2 levels, while our system some-
what underperformed on L1. With respect to nega-
tive polarity, our system performed poorly (49.4%
vs. Miwa et al.’s 63.4%), while the difference was
minor for positive polarity (97.5% vs. 97.7%).

In comparing to Miwa et al.’s results, several
points need to be kept in mind. First, in contrast
to their study, we have not performed any training
on the corpus data, except determining the mapping
rules shown in Table 5. Secondly, knowing whether
an event is an Analysis event or not is a significant
factor in determining the CL value and their ma-
chine learning features are likely to have exploited
this fact, whereas we did not attempt to identify the
knowledge type of the event. Thirdly, L1 and L2
values appear only for Analysis events, therefore
the evaluation scenario that only considers Analy-
sis events is likely to overestimate the performance
of our system on L1 and L2 and underestimate it on
L3.



While our system performed similarly to Miwa et
al.’s with regards to positive polarity, our mappings
for negative polarity were less successful, which
suggests that modeling negative polarity as the lower
end of several modal scales (the last row of Table 5)
may not be sufficient for correctly capturing the po-
larity values. Our preliminary analysis of the results
indicate that scope relationships between predica-
tions could play a more significant role. In other
words, whether an event is in the scope of a predica-
tion trigger by a NEGATOR predicate may be a better
predictor of negative polarity.

With the evaluation scheme that is based on aver-
age distance, we obtained a distance score of 0.12.
For the majority class baseline, this score would be
0.21. Our score shows clear improvement over the
baseline; however, it is not directly comparable to
Miwa et al.’s results. This evaluation scheme, to our
knowledge, has not previously been used to evalu-
ate factuality and we believe it is better suited to the
gradable nature of factuality.

Analyzing the results, we note that many errors
are due to problems in dependency relations and
transformations that rely on them. Errors in depen-
dency relations are common due to complexity of
the language under consideration, and these errors
are further compounded by hand-crafted transforma-
tion rules that can at times be inadequate in captur-
ing semantic dependencies correctly. In the follow-
ing example, the prepositional phrase attachment er-
ror caused by syntactic parsing (to suppress. . . is
attached to the main verb result, instead of to abil-
ity) prevents the system from identifying the seman-
tic dependendency between ability and suppress,
causing a L2 recall error. While the system uses
a transformation rule to correct some prepositional
phrase attachment problems, this particular case was
missed.

• The reduction in gene expression resulted from
the ability of IL-10 to suppress IFN-induced as-
sembly of signal transducer . . .

• prep to(result,suppress) vs.
prep to(ability,suppress)

Prior scalar modality values in the dictionary have
been manually determined and are fixed. They are
able to capture the meaning subtleties to a large ex-

tent and the composition procedure attempts to cap-
ture the meaning changes due to markers in context.
However, some uncertainty markers are clearly more
ambiguous than others, leading to different certainty
level annotations in similar contexts and our method
may miss these differences due to the fixed value in
the dictionary. For example, the adjective potential
has been almost equally annotated as an L1 and L2
cue in the meta-knowledge corpus. This also seems
to confirm the finding of de Marneffe et al. (2012)
that world knowledge and context have an effect on
the interpretation of factuality.

We also noted what seem like annotation errors
in the corpus. For example, in the sentence L-1beta
stimulation of epithelial cells did not generate any
ROIs, the event expressed with generation of ROIs
seems to have negative polarity, even though it is not
annotated as such in the corpus.

5 Conclusion

We presented a rule-based compositional method
for assessing factuality of biological events. The
method is linguistically motivated and emphasizes
generality over corpus-specific optimizations, and
without making much use of the corpus for training,
we were able to obtain results that are comparable to
the performance of the state-of-the-art systems for
certainty level assignments. The method was less
successful with respect to polarity assessment, sug-
gesting that the hypothesis that negative polarity can
be modeled as corresponding to the lower end of the
modal scales may be inadequate. In future work, we
plan to develop a more nuanced approach to negative
polarity.
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György Móra, and János Csirik. 2008. The Bio-
Scope corpus: biomedical texts annotated for uncer-
tainty, negation and their scopes. BMC Bioinformat-
ics, 9 Suppl 11:S9.

W. John Wilbur, Andrey Rzhetsky, and Hagit Shatkay.
2006. New directions in biomedical text annotations:
definitions, guidelines and corpus construction. BMC
Bioinformatics, 7:356.


