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Abstract—We present a novel technique to separate subpanels
from stitched multipanel figures appearing in biomedical research
articles. Since such figures may comprise images from different
imaging modalities, separating them is a critical first step for
effective biomedical content-based image retrieval (CBIR). The
method applies local line segment detection based on the gray-
level pixel changes. It then applies a line vectorization process that
connects prominent broken lines along the subpanel boundaries
while eliminating insignificant line segments within the subpanels.
We have validated our fully automatic technique on a subset
of stitched multipanel biomedical figures extracted from articles
within the Open Access subset of PubMed Central repository,
and have achieved precision and recall of 81.22% and 85.08%,
respectively.

Index Terms—Automation; line segment detection; stitched
multipanel figures; biomedical publications; content-based image
retrieval.

I. INTRODUCTION

A. Motivation

Figures in the scientific publications provide a unique source

of information that typically complements the facts described

in the text. In biomedical image retrieval [1]–[5], figures are

often composed of multiple panels, each describing different

methodologies, modalities or results, including the possibility

of providing direct comparisons among them. In this do-

main, authors report an increasing use of medical images [6],

[7]. The average number of figures in reputable biomedical

journals ranges from 6 to 31 [8], [9]. More importantly,

according to [10]–[12], multipanel figures represent about 50%

of the figures in the biomedical open access articles used for

the imageCLEF (URL: http://www.imageclef.org) benchmark.

However, such figures pose a challenge for image retrieval [1]–

[3], [13] and modality classification systems [5], [14], [15].

We also note that these figures are not commonly available

in biomedical datasets as standalone entities that could be

readily used by automated systems since only a few databases

require authors to submit figures (and captions) in separate

files for easy access. In other words, most of the figures

are embedded in the article, thereby reducing their automatic

accessibility [16]. In this context, multipanel figure separation

is considered as a crucial step, assuming that each subpanel

contains a single modality. By doing so, it improves the

performance of CBIR [4], [16]–[18], and hence is a precursor

to biomedical CBIR.

B. Related work

Multipanel figure separation does not have rich state-of-

the-art approaches. Projection profile-based methods are com-

monly used (and fairly sufficient) to separate subpanels of

those figures, which are having homogeneous gaps between

them [17], [19]. Either of the two penetrations (using horizon-

tal and vertical profiles) helps to separate them (i.e., two dif-

ferent levels of separations are required [17], [18]). But, when

homogeneous gaps do not penetrate from left to right and top

to bottom, straightforward projection profiles fail to separate

subpanels. As a consequence, it requires integration of heuris-

tics, which may not be generalized. In Fig. 1, no homogeneous

gaps are provided between the subpanels and therefore, this

problem is beyond their scope. Other approaches integrate

subpanel labels with image-based separation via the use of

bounding boxes of connected components [16], [18]. In [16],

experimental results show that their solution is sensitive to

common errors generated by the optical character recognition

(OCR). Texts that are overlaid in complex background having

large contrast variations cause significant OCR performance

reduction. Further, layout graphs are used to detect missed

nodes (i.e., panel labels). The proposed graph may not be

accurate in case subpanel labels are not appeared in a regular

fashion (i.e., equal number of columns in all rows, like tabular

format). Figs. 1 (f) and (g) are two examples of it. Another

difficulty will be high number of content bearing texts (within

the subpanels that effectively summarize the facts) can make

confusions with panel labels [16]. These problems remain

the same for recently reported work [18]. They, however,

integrate several heuristics to solve specific problems. For

example, thresholds ranging from 50 to 200 (by calling them

as empirically designed intensity values) do not apply in

general, for binarization. Such a binarization may not work in

case figures having different colors associated with different

subpanels (see Figs. 1) (e), (f), (g) and (j)). In [18], authors

claim the usefulness of panel labels (by projecting text labels

orthogonally) in detecting sub-panels. On the other hand, they

do not argue about the possible absence as well as irregularities

of text labels on the whole (see Figs. 1 (f), (g) and (j)).

Moreover, figures having rectangular boxes (with no panel

labels) appeared in a zig-zag fashion are beyond the scope

of the state-of-the-art, in general.

Overall, in the literature, uniform-space-separated multi-

panel figures comprise a significant portion of the dataset used

to evaluate their systems, including graphical illustrations,
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Fig. 1. Examples showing stitched
multipanel figures. These are ap-
peared with and without panel la-
bels, including irregular panel boxes.

plots/curves. Other methods address panel label integration by

using OCR for fully connected multipanel figures, which we

call ‘stitched’ multipanel figures. But, none of the methods

were focused to separate fully connected multipanel figures

from an image analysis standpoint. One of the primary reasons

that has been commonly stated is, no clear boundaries and no

homogeneous gaps exist between the subpanels. In this paper,

we address the challenging task of separating such stitched

subpanels (as depicted in Fig. 1).

II. MATERIALS & METHODS

A. Outline

As shown in Fig. 2, considering the nature of the problem,

our method aims to detect subpanel boundaries. Starting from

an edge enhanced image as shown in Fig. 2 (a), we detect

line segments along the edges (see Fig. 2 (b)). These line

segments are filtered using line filters defined in two orthogo-

nal directions: 0 and π/2, which is followed line vectorization

process. Profile-based line vectorization connects broken line

segments and provides end-to-end penetrations as shown Fig. 2

(c). Subpanels are then separated/cropped from a complete

figure by using four corners at line crossings (see Fig. 2 (d -

e)), representing rectangles.

B. Line segment detector

Before detecting straight contours (i.e., line segments), we

perform edge enhancement. It identifies sharp edge bound-

aries, such as the edge between a subject and a background

of a contrasting color, and increases the image contrast in

the area immediately around the edge. For this, we use

standard deviation of the Gaussian low pass filter in addition

to the use of strength of the sharpening effect and minimum

contrast threshold (between 0 and 1) required for a pixel to

be considered as an edge pixel.

Line segment detector (LSD) aims to detect local straight

contours (i.e., line segments), from the zones where the gray-

level pixel changes from dark to light or vice-versa [20]. It

uses two concepts: the gradient and the level-lines. The image

gradient is computed at each pixel using a 2×2 mask (which is

the smallest possible mask size),
[

f(x,y) f(x+1,y)
f(x,y+1) f(x+1,y+1)

]
, where

f(x, y) is the gray-level value at pixel (x, y). The image

gradient (gx(x, y) and gy(x, y)) and the level-line direction

(θ) can be computed as follows:

gx = (f(x+ 1, y) + f(x+ 1, y + 1)− f(x, y)− f(x, y + 1)) /2,

θ = arctan (gx/gy) , (1)

where gy is computed as gx, and the gradient magnitude is,

G(x, y) = (gx(x, y) + gy(x, y))
1/2

. The gradient and level-

line angles encode the direction of the edge. For more detailed

information about implementation, we refer to [20]. In Fig. 3,

line segment detection is shown along the subpanel boundary.

C. Subpanel boundary detection via line segments

An advantage of such a generic LSD tool is that it can

extract a set of lines, L, having different lengths in all

possible orientations, L = {�i,θ}i=1,...,L and θ ∈ [0, 2π).
Such a complete set L is composed of line segments not only

from subpanel boundaries but also from the objects within

subpanels.To preserve the line segments representing subpanel

boundaries, we perform the following two consecutive pro-

cesses:
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(a) Image (edges enhanced) (b) Line segment detection

(c) Filtered line segments and profiles

s1 s2 s3 s4
(e) Output: subpanels (s1 to s4) separation

(d) Line vectorization and
corner detection (in red)

Fig. 2. A complete workflow of the proposed algorithm: (a) studied image with edges enhanced, (b) line segment detection that follows the gray-level pixel
changes between neighboring pixels, (c) projection profiles of the filtered line segments using line filters defined in two orthogonal directions: 0 and π

2
, (d)

Profile-based line vectorization and corner detection at line crossings (e) subpanel figures (s1 to s4) separation using rectangles that are composed of four
corners.

1) convolution of all line segments (� ∈ L) with the prede-

fined set K of kernels, representing the line segments of

subpanel boundaries; and

2) profile-based line vectorization to connect prominent bro-

ken lines belonging to the subpanel boundaries while

eliminating unnecessary line segments within the subpan-

els.

Convolution. For this, we construct a set K of kernels,

K = {kj}j=1,...,K, and k = f(′line′, len, θ) (2)

where any jth k represents a linear structuring element. In
general, we define a binary kernel representing a line of any
particular length len and angle θ, k = f(′line′, len, θ). In a
discrete case, a structuring element can be represented as a set
of pixels on a grid, assuming the value 1 if the pixel belongs to
the structuring element or 0, otherwise [21]. As an example,
kernel k of len = 5 at different angles θ = 0 and π/6 can
respectively, be represented by

[
1 1 1 1 1

]
and

⎡
⎣
0 0 0 1 1
0 0 1 0 0
1 1 0 0 0

⎤
⎦ .

Orientation of biomedical figures is assumed to up upright

(i.e., they are not rotated). We are required to filter line seg-

ments in two orthogonal directions: 0 and π/2, and therefore,

we have K = {k1, k2}. Using these two kernels (of length 10

pixels, empirically designed), we perform convolution with all

(zoomed: ×1.4)

Fig. 3. An example showing line
segment detection along the subpanel
boundary. Line segments along the
subpanel boundaries do not pass end
to end. For this illustration, a small
portion of the image is cropped from
Fig. 2.

possible line segments, L′ = L ⊗ K, where L′ ∈ L. The set

L′ represents all line segments in two orthogonal directions

(i.e., 0 and π/2). Fig. 2 (c) shows an example, where most of

the line segments that are appeared within the subpanels are

eliminated.

Profile-based line vectorization. Keeping spatial information

of the line segments �′i ∈ L′, we compute orthogonal pro-

jection profiles in both directions: 0 and π/2. These profiles

are used to separate multipanel figures from where the most

prominent peaks are detected. Assuming that the prominent

peaks are mostly seen along the subpanel boundaries, they

are useful to process line vectorization. This process connects
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broken line segments (see Fig. 3, as an example) along the

subpanel boundaries.

Projection profiles from a 2D image f(x, y) of size m× n
can be computed as

pθ=π/2 =
∑

1≤x≤m

f(x, y) and pθ=0 =
∑

1≤y≤n

f(x, y). (3)

To eliminate dominant line segments that typically result from

objects within the subpanels, we compute their corresponding

profile transforms (i.e., p2θ), which is then normalized by using

their mean and standard deviation. As a consequence, the

magnitude of the line segments along subpanel boundaries are

more pronounced and detected accordingly. Fig. 2 (c) shows

an example. Peak(s) is(are) detected based on the empirically

designed threshold that uses the studied image size (i.e., height

h and width w): ℘h, ℘v ≥ 0.4×h,w, where ℘ is the detected

peak from a profile p. From the location where peak(s) are

detected, line(s) is(are) extended from end to end (in both

directions).

In this process, we assume normalized peak heights are

closer ℘̂h � ℘̂v (like in Fig. 2 (c)). In case ℘̂h � ℘̂v , row-wise

line vectorization (i.e., horizontal subpanel separation) is done

first, which is followed by column-wise line vectorization or

vice versa.

D. Subpanel separation via corners at line crossings

To detect line crossings, we use Harris corner detector [22],

since it considers the differential of the corner score with

respect to line (edge) direction. The algorithm depends on

the eigenvalues of the summation of the squared difference

matrix (SSD). The eigenvalues of an SSD matrix represent

the differences between the surroundings of a pixel and

the surroundings of its neighbors. The larger the difference

between the surroundings of a pixel and those of its neighbors,

the larger the eigenvalues. The larger the eigenvalues, the more

likely that a pixel appears at a corner. Fig. 2 (d) shows an

example, where corners (in red) are highlighted.

Subpanels are separated based on the set C of detected

corners, C = {ci}i=1,...,C, where c = (x, y). Starting from the

leftmost corner, any subpanel can be separated by selecting

four coordinate points so that it can be transformed into a

rectangle, ri = [ci, rwidth , rheight ], where ci is the coordinate

point from which any ith rectangle r is drawn. This allows

subpanel cropping easier.

To eliminate empty rectangles (see Fig. 4), the algorithm

checks image information about pixel information within the

subpanel (i.e., by computing an image histogram). In Fig. 4,

empty rectangles are pruned since such cropped images (con-

sidered as subpanels) with no information will not be useful

for image retrieval or classification problem.

III. EXPERIMENTS

A. Dataset and ground-truth formation

Even though the goal remains the same, evaluations of the

state-of-the-art methods vary with the dataset collection. But,

(a) (b)

Fig. 4. Examples showing empty rectangle elimination. Subpanels that are
checked with cross mark (in red) are eliminated.

most of the reported methods used imageCLEF. However,

none of them evaluated stitched multipanel figures.

Besides the imageCLEF, we used NLM’s Open-i (URL:

http://openi.nlm.nih.gov) search engine to collect more sam-

ples, where subpanels are completely connected. Altogether,

our collection is composed of 150 images, and are available

upon request. A few samples are shown in Fig. 1. For valida-

tion purpose, we developed an annotator that can automatically

annotate the subpanels in the presence of the user.

B. Evaluation protocol

For any image I , we have a set R of the detected rectangles:

I �→ R and R = {ri}i=1,...,R, representing an output.

Similarly, the annotator produces a set R◦ of ground-truths,

R◦ = {r◦i◦}i◦=1,...,R◦ . Each rectangle refers to a subpanel.

For validation, for any given image in the dataset, our

performance evaluation criteria are precision, recall and F1-

score. In general, these metrics can be expressed as follows:

precision =
c

R
,

recall =
c

R◦ and

F1-score = 2

(
(c/R)× (c/R◦)
(c/R) + c/R◦)

)
, (4)

where c is the number of correct matches from the detected

set R and R◦ is the total number of rectangles (in the ground-

truth) that are expected to be detected. The score computed

from every metric is normalized by total number of images in

the database.

To compute the aforementioned metrics, overlapping ratio

(OR) is used to identify the number of correct matches c.
Consider two rectangles: r◦ and r, their OR can be computed

as [23]

OR(r◦, r) =
2× |r◦ ∩ r|
|r◦|+ |r| and OR(, ) ∈ [0, 1], (5)

where |r◦ ∩ r| is the intersected or common area, and |r◦|
and |r| are the individual areas. When separating subpanels,

we may not achieve 100% OR since a few border pixels

can possibly be chopped. Therefore, we follow the following

condition:

c =

{
1 : if OR(, ) ≥ 0.8 and

0 : otherwise.
(6)
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Fig. 5. Stitched multipanel figure sep-
aration, where bold lines (in red) sepa-
rate subpanels. These multipanel figures
corresponds to those shown in Fig 1

This means that subpanel separation is correct as least 80%

OR exists. Such an OR score does not let images semantic

different.

C. Results and analysis

Using the dataset of size 150 images (cf. Section III-A)

and the evaluation protocol described in Section III-B), ex-

perimental results are reported in Table I. We have achieved

precision and recall, respectively of 81.22% and 85.08% in

less than 3 seconds per image, on average. All tests were

made using MATLAB 2013b on Linux platform. In Fig. 5,

we have shown some output examples to provide how robust

the proposed system is. We remind the readers that no state-

of-the-art methods reported the test on separating subpanels

from these stitched multipanel figures. Consequently, no com-

parative study is possible.

In the reported results (see Table I), the error rate is ap-

proximately 15% (considering recall). Difficulties/challenges

that cause errors can be categorized into under and over

segmentation. Under segmentation occurs when no clear pixel

differences exist along the subpanel boundaries (since identical

backgrounds are used for all subpanels). While, over segmen-

tation exists when clear (end to end) separation is appeared

within the subpanels. In Fig. 6, both under and over segmen-

tation problems are shown. The under segmentation problem

(i.e., mainly due to identical background) can possibly be

solved by intelligently integrating text panels (as implemented

in refs. [16], [18]). But, this works only when OCR performs

well.

TABLE I
PERFORMANCE EVALUATION (IN%).

Precision 81.22

Recall 85.08

F1-score 83.10

IV. CONCLUSION

In this paper, we have presented a novel technique based

on line segment detection and line vectorization to separate

subpanels from the stitched multipanel figures. Line segments

are detected locally based on the information about gray-

level pixel change between the neighboring pixels, which

is followed by line vectorization process that connects all

broken lines along the subpanel boundaries. Considering the

dataset, the proposed technique provides precision and recall

of 81.22% and 85.08%, respectively, in less than 3 seconds per

image, on average. Based on our experience, no state-of-the-

art methods reported the use of image processing techniques

to separate subpanels from these stitched multipanel figures.

Since execution time largely depends on the size of the

image, we recommend to scale down the image size, prior

to this technique. This allows efficient tool integration with

the NLM’s Open-i search engine, which is considered as a

precursor to CBIR.
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(a) (b) (c) (d)

Fig. 6. Output examples, showing
(a-c) under and (d) over segmenta-
tion. Under segmentation is due to
the use of an identical background
for all subpanels and over segmen-
tation is due to the existence of
clear boundary between the objects
within the subpanel.
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