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This paper describes a supervised machine learning approach for identifying heart disease risk factors in
clinical text, and assessing the impact of annotation granularity and quality on the system’s ability to
recognize these risk factors. We utilize a series of support vector machine models in conjunction with
manually built lexicons to classify triggers specific to each risk factor. The features used for classification
were quite simple, utilizing only lexical information and ignoring higher-level linguistic information such
as syntax and semantics. Instead, we incorporated high-quality data to train the models by annotating
additional information on top of a standard corpus. Despite the relative simplicity of the system, it
achieves the highest scores (micro- and macro-F1, and micro- and macro-recall) out of the 20 participants
in the 2014 i2b2/UTHealth Shared Task. This system obtains a micro- (macro-) precision of 0.8951
(0.8965), recall of 0.9625 (0.9611), and F1-measure of 0.9276 (0.9277). Additionally, we perform a series
of experiments to assess the value of the annotated data we created. These experiments show how
manually-labeled negative annotations can improve information extraction performance, demonstrating
the importance of high-quality, fine-grained natural language annotations.
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1. Introduction

A significant amount of a patient’s medical information in an
electronic health record (EHR) is stored in unstructured text.
Natural language processing (NLP) techniques are therefore neces-
sary to extract critical medical information to improve patient care.
For most serious conditions, many types of relevant information
(e.g., diagnoses, lab results, medications) need to be extracted from
the patient’s records, often over a length of time that spans several
narrative notes. The 2014 i2b2/UTHealth Shared Task Track 2
(hereafter, ‘‘the 2014 i2b2 task’’) [1] evaluates such a case by focus-
ing on the many risk factors for heart disease, including comorbidi-
ties, laboratory tests, medications, and family history, with over 30
specific risk factors. This article describes the method utilized by
the U.S. National Library of Medicine (NLM) for the 2014 i2b2 task.
Our method is a supervised machine learning (ML) approach that
finished first overall in the task, including both the highest (micro
and macro) recall and (micro and macro) F1-measure.

Most state-of-the-art NLP methods for extracting information
from EHRs utilize supervised ML techniques [2–4]. However, one
important yet understudied issue in developing ML-based NLP
systems for EHRs is the impact of the granularity of the labeled
data. To assess the impact of granularity, we evaluate a relatively
simple information extraction (IE) system on two sets of
labels derived from the 2014 i2b2 task corpus: (a) coarse-grained
document-level annotations with at least one positive mention-
level support span and (b) fine-grained mention-level annotations
where every relevant supporting span is marked as positive or neg-
ative. The labels from (a) were provided by the task organizers, and
are described in Section 3. The labels from (b) were created by NLM
staff as part of our participation in the 2014 i2b2 task. The system
utilizing this fine-grained data achieved the highest score among
the 20 participants. Further, unlike most of the other
top-performing participants, the system was entirely limited to
lexical information: no syntactic information (e.g., parts-of-
speech, dependencies) or semantic information (e.g., word senses,
semantic roles, named entities) was utilized. Instead, our primary
contribution was demonstrating the importance of fine-grained
mention-level annotations for developing supervised ML methods
for clinical NLP. In this article, we describe the data provided by the
organizers, the data annotated by NLM, the supervised ML system
for extracting risk factors, and the results on the 2014 i2b2 task.
Additionally, we describe post-hoc experiments to evaluate how
this system would have performed without the fine-grained
annotated data.
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2. Background

Since a significant amount of EHR information can be stored in
an unstructured narrative, the range of NLP tasks spans almost the
full range of potential EHR support functions [5]. The foundation
for NLP-based applications is based on information extraction
(IE), the task of automatically converting some particular type of
unstructured text into a structured form. Widely used IE systems
include MetaMap [6], MedLEE [7], and cTAKES [8]. To supplement
these, the negation algorithm NegEx [9], and its successor method
for more general context detection, ConText [10], are commonly
used to understand negation and modality. Due to the difficulty
in sharing clinical data, several de-identified corpora have been
created, often in coordination with a shared task, to allow
researchers to compare IE methods on a common dataset. Such
shared tasks include the i2b2 shared tasks, discussed below, as
well as the recent ShARe/CLEF eHealth task [11], which evaluated
concept extraction and normalization.

There have been seven i2b2 challenges to date, each dealing
with at least one clinical IE task and evaluating participants on a
de-identified clinical dataset. The tasks have dealt with
de-identification and smoking detection in 2006 [12,13]; obesity
detection in 2008 [14]; medication extraction in 2009 [15]; con-
cept extraction, assertion classification, and relation identification
in 2010 [2]; co-reference [3] and sentiment analysis [16] in
2011; event extraction, temporal expression extraction, and
temporal relation identification in 2012 [4]; and, most recently,
de-identification and heart disease risk factor identification in
2014 [1]. The heart disease risk factor identification task, which
is the focus of this article, contains elements of many of the
previous tasks: (i) many of the risk factors are expressed as
concepts/events similar to the 2010 and 2012 tasks; (ii) smoking
(2006), obesity (2008), and medications (2009) are among
those risk factors, (iii) negation and modality play an important
role in determining whether a concept is identified as a risk factor
(2010 and 2012); and (iv) the temporal aspect (2012) of each risk
factor must be identified to qualify the patient’s risk of heart
disease.

While no previous task has focused on the exact same set of risk
factors as the 2014 i2b2 task, most of the individual risk factors
have been studied in previous work. For example, Cimino et al.
[17] and Gold et al. [18] perform medication extraction from clin-
ical notes. Goryachev et al. [19], Lewis et al. [20], and Friedlin and
McDonald [21] all extract family history information. Finally, a sig-
nificant amount of research has focused on extracting temporal
information from clinical narratives [22–24], as temporality is a
crucial element to medical reasoning.
3. Task description

The 2014 i2b2/UTHealth Shared Task Track 2 evaluates a sys-
tem’s ability to determine whether a patient has particular heart
disease risk factors based on his or her unstructured, longitudinal
medical records. The track evaluates 36 individual risk factors
(18 if all medication types are considered collectively) in eight
general categories:

1. Diabetes risk factors: diabetes mention, high A1c (over 6.5), high
glucose (two measurements over 126).

2. Coronary artery disease (CAD) risk factors: CAD mention, CAD
event (e.g., MI, STEMI, cardiac arrest), CAD test result (showing
ischemia or coronary stenoses), CAD symptom (chest pain con-
sistent with angina).

3. Hyperlipidemia risk factors: hyperlipidemia/hypercholesterole
mia mention, high cholesterol (over 240), high LDL (over 100).
4. Hypertension risk factors: hypertension mention, high blood
pressure (systolic over 140 or diastolic over 90).

5. Obesity risk factors: obese mention, high BMI (over 30), high
waist circumference (over 40 in. in men or 35 in. in women).

6. Family history risk factor: mention of immediate family member
with history of early CAD.

7. Smoking risk factor: whether patient currently smokes (CURRENT),
smoked in the distant past (PAST), smoked at some unspecified
point (EVER), never smoked (NEVER), or unknown (UNKNOWN).

8. Medication risk factors: whether the patient takes any
medications indicative of the above risk factors. This includes
the following drugs and drug classes: ACE inhibitor, amylin,
anti-diabetes, ARB, aspirin, beta blocker, calcium channel
blocker, diuretic, DPP4 inhibitor, ezetimibe, fibrate, insulin,
metformin, niacin, nitrate, statin, sulfonylurea, thiazolidine-
dione, thienopyridine.

Here, a mention is a statement of a specific disease diagnosis
(e.g., ‘‘patient has diabetes’’) instead of a diagnosis based on a mea-
surement (e.g., ‘‘A1c is 8.5’’) or other factor, and is limited to the
patient (as opposed to a family member).

The organizers provided 790 training notes and 514 testing
notes. Between 2 and 5 notes were provided for each patient to
enable longitudinal analysis, though the manual annotations were
done at the document level without considering previous notes (so,
for instance, an early note might be positive for diabetes while a
later note is marked as negative if it does not contain an explicit
diabetes diagnosis). Each note contained 617 words on average.
Each of the risk factors above is annotated at the document level
(e.g., whether a note contains a high A1c value) by asking annota-
tors to highlight at least one text span that indicates the risk factor
(e.g., ‘‘A1c of 7.1’’), additionally labeling the time of the risk factor
(before, during, or after the hospital visit, or any combination of
these). These text spans were provided by the organizers in
addition to the document-level decision. However, since this is a
document-level task, annotators were not provided with guideli-
nes to ensure consistent span annotation. If two of three annota-
tors found some support for a risk factor (and agreed on the
time), the note was considered positive for that risk factor (and
time) and all the highlighted spans were included in the
annotations. No inter-annotator conflict resolution was performed.
Further, when only one annotator found a textual support, the doc-
ument was considered negative and those highlighted spans were
not included in the annotations. Also, when annotators agreed on a
risk factor but disagreed on its time, the document was also
considered negative. See Stubbs and Uzuner [25] for more details
on the risk factor annotation process. The organizers’ annotation
decisions were made to increase the total number of annotated
notes: a choice of quantity over both quality (since no resolution
was performed) and granularity (document-level instead of
mention-level). However, this has important ramifications on the
types of automatic methods usable for the task. Since supervised
ML methods require both positive and negative examples, and
the only negative examples were at the document level and not
mention level, any mention-level ML method, such as the one
described in this article, either needs additional labels or must rely
on heuristics to automatically label negative examples.

4. NLM annotations

To address the shortcomings of the original data described in
Section 3, our annotation process had five goals:

1. Achievable annotation time.
2. Consistent annotation boundaries.
3. Both positive and negative annotations.



Table 1
Annotation differences between the original and NLM sets. Counts are by document
and time, not mention. The maximum count for most annotation types is three times
the number of documents (i.e., an annotation for before DCT, during DCT, and
after DCT in each note). Medications, however, can have up to 57 annotations per
note (for the 19 types of medication).

Annotation Original only Both NLM only

Diabetes mention 0 1560 22
A1C 3 107 44
Glucose 0 25 187

CAD mention 3 777 19
CAD event 0 246 26
CAD test result 2 77 78
CAD symptom 2 79 145

Hyperlipidemia mention 0 1020 21
Cholesterol 0 9 63
LDL 0 33 50

Hypertension mention 0 1563 13
Blood pressure 2 361 264

Obese mention 12 401 15
BMI 0 20 11

Smoker mention 0 400 13

Medication 7 8631 207

Family history 2 20 0

Total 33 15,329 1178
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4. Classification of types of negative annotations.
5. Maximum number of annotations per document.

One of the most time-consuming and least productive require-
ments of annotation is reading through irrelevant parts of a
patient’s record. Yet, if they read too quickly, annotators may miss
crucial information. We thus utilized a form of pre-annotation of
candidate risk factors that leverages the data provided by the orga-
nizers. Based on the spans highlighted by the original annotators,
we created a lexicon for each risk factor.

The lexicon was manually built to ensure a set of consistent,
maximal annotation boundaries. Since IE classifiers utilize linguis-
tic cues, it is important that span boundaries are expanded to best
recognize these contextual elements. For example, if the word
before a lexicon match is no, that provides useful information that
the risk factor is negated. If our lexicon only contained the word
diabetes, this cue would work well for the phrase ‘‘no diabetes’’,
but not for ‘‘no type 2 diabetes’’. Our annotations, therefore, should
span the full extent of the risk factor. The lexicons were further
expanded based on known synonyms that were missing in the
set of spans highlighted by the original annotators.

The boundaries of the original highlighted spans were adjusted
to match the terms in the lexicons, while some incorrect annota-
tions were removed. The adjusted spans were then automatically
labeled as positive and thus did not need to be addressed by the
NLM annotators (about one-third of the total lexicon matches).
The remaining lexicon matches were then pre-annotated so that
the NLM annotators did not need to read the full notes, only the
immediate context of each risk factor annotation to determine
whether it was positive/negative and, if possible, what temporal
classification should be assigned. This also ensured annotators
were able to easily label every mention of a risk factor in the
notes, maximizing the number of examples for training. For mea-
surements (A1c, glucose, cholesterol, LDL, blood pressure, BMI),
the lexicon contained the name of the measurement (the ‘‘base’’),
and the right context was searched for numbers that were within
the valid range for the given lab test. We annotated all measure-
ments, not simply those above the threshold. Since the values
under the threshold could easily be filtered automatically, all
actual measurement values were considered positive. This
increased the number of available annotations while also allowing
the threshold to be changed at a later time without altering the
annotations.

Negative concepts are split into two cases: validity and polarity.
While a negative polarity corresponds to the linguistic notion of
negation (e.g., ‘‘patient is not obese’’, ‘‘goal A1c is 7.0’’), a negative
validity corresponds to a lexicon match that does not refer to the
actual concept. Invalid concepts were typically the result of word
sense differences. Usually this was either abbreviations that in
the given context were referring to something else, or a measure-
ment whose value span is not actually a valid measurement (e.g., in
the phrase ‘‘A1c 7.8 19 days ago’’, the value 7.8 is positive, while the
value 19 is invalid). By classifying whether negative risk factors are
either negations or invalid, classifiers can focus on separate linguis-
tic problems, such as negation and word sense disambiguation.

Only two-thirds of the training data was annotated in this way,
as the final third was only available a few days before the submis-
sion deadline. Four annotators, including three MDs (LR, SA, DDF)
and one medical librarian (SS), double-annotated the documents
one risk factor at a time. The annotators worked in fixed pairs, with
disagreements being resolved first within each annotator pair, then
with an annotator from the other pair acting as tie-breaker as
needed. Both pairs annotated all of the risk factors (one annotating
the even-numbered documents, the other the odd-numbered),
with the exception of CAD events, test results, and symptoms,
which were entirely annotated by one pair due to time availability.
Table 1 shows a comparison of the original and NLM annota-
tions at the document level. For instance, the original set had
1560 Diabetes mention annotations, while the NLM annotators
added a further 22 annotations without removing any. While many
mention-level annotations were pruned (e.g., a medication being
marked as a CAD mention), few of the original annotations at the
document level were removed. A notable exception was Obese
mentions, where 12 annotations were removed that referred to
obesity of the abdomen. The lexicon-based method allowed for
finding many additional mention-level annotations, which resulted
in a significant number of document-level changes. Notably, the
number of document-level Glucose and Cholesterol annotations
were significantly increased (though this is before the minimum
two glucose measurement criteria is applied, so the final count
would be smaller). In total, 33 document-level annotations were
removed, while 1178 document-level annotations were added.

Despite the faster annotation process, it would be unreasonable
to claim this process should fully replace the full-text examination
performed by the original annotators, as it still depends heavily on
the highlighted spans from the original annotation process.
Without those highlighted spans, there would be no terms to seed
the lexicons. For risk factors with a diverse set of textual expres-
sions, it would be difficult to build a lexicon simply from a priori
knowledge of the way such concepts are expressed (e.g., the dia-
betes mention lexicon is quite complicated: it contains 20 base
mentions as well as 30 possible pre-modifiers and 44 possible
post-modifiers to account for cases such as ‘‘diabetes mellitus type
II’’, ‘‘DM2’’, or ‘‘adult onset diabetes’’). For risk factors with a small,
closed set of textual expressions, such a standalone annotation
strategy might be a more feasible means of reducing annotation
cost without a noticeable impact on quality (e.g., the LDL lexicon
has only 3 bases, ‘‘ldl’’, ‘‘ldlcal’’, and ‘‘low density lipoprotein’’, and
no pre- or post-modifiers). Since annotators may skim past
instances of a risk factor, however, this pre-annotation strategy
may also increase the total number of available annotations when
the corpus size is fixed. An optimal strategy might involve full-text
annotation for a sample of the data, followed by lexicon building,
pre-annotation, and then complete annotation as described above.



Table 2
Annotation counts and inter-annotator agreement numbers for the NLM annotations created from two-thirds of the original training data.

Annotation Total Annotator Pair 1 Annotator Pair 2

Validity/polarity Time Validity/polarity Time

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa

Diabetes mention 375 0.92 0.79 0.90 0.76 0.96 0.90 0.95 0.88
A1C 127 0.99 0.97 0.91 0.83 0.98 0.97 0.95 0.91
Glucose 959 0.99 0.99 0.92 0.83 0.94 0.87 0.90 0.79

CAD mention 137 0.97 0.95 0.97 0.95 0.83 0.67 0.87 0.71
CAD event 720 0.88 0.81 0.87 0.76 – – – –
CAD test result 1,184 0.56 0.37 0.50 0.17 – – – –
CAD symptom 970 0.92 0.88 0.82 0.61 – – – –

Hyperlipidemia mention 375 0.95 0.89 0.96 0.90 0.93 0.80 0.80 0.42
Cholesterol 241 0.95 0.88 0.97 0.91 0.90 0.81 0.68 0.05
LDL 149 0.88 0.81 0.93 0.86 0.93 0.90 0.93 0.87

Hypertension mention 209 0.99 0.98 0.99 0.98 0.96 0.91 0.87 0.74
Blood pressure 411 0.99 0.94 0.94 0.87 0.97 0.92 0.92 0.85

Obese mention 59 0.96 0.90 1.00 1.00 0.97 0.94 1.00 1.00
BMI 20 1.00 1.00 0.57 0.36 1.00 1.00 0.92 0.87

Smoker mention 79 0.97 0.93 1.00 1.00 0.83 0.61 1.00 1.00

Medication 657 0.93 0.67 0.63 0.45 0.91 0.72 0.78 0.64
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Inter-annotator agreement numbers (accuracy and Cohen’s
Kappa) are shown in Table 2. Again, only one pair of annotators
labeled CAD events, test results, and symptoms. For the most part,
annotators achieved good agreement. Of the 58 measured Kappa
scores, only 11 (19%) were below 0.7, which indicates fairly
good agreement. CAD test results were particularly difficult.
Annotators appeared to have more difficulty agreeing on time than
on whether a risk factor was positive, negative, or invalid. The
extremely low agreement for the time of total cholesterol in the
second set of annotators (0.05) is likely the result of a single anno-
tator, as the first set of annotators had high agreement (0.91).
There were similar disparities between annotator pairs for CAD
mentions – with Annotator Pair 1 achieving much higher agree-
ment – and BMI times – with Annotator Pair 2 achieving higher
agreement. The annotators described most of the differences as
the result of simple mistakes that were easily fixed in the conflict
resolution stage, indicating the importance of resolving differ-
ences. The differences in annotator pair agreements suggest that
Fig. 1. System architecture. Blue borders indicate rule-based modules while red bo
classification models for each annotation type. The primary exception to this architecture
figure legend, the reader is referred to the web version of this article.)
occasionally, a single annotator would make a consistent error
that, upon consultation with the other member of the pair or a
member from the opposite pair, was easily fixed during
reconciliation.

5. Risk factor identification

A simplified architecture of our system is shown in Fig. 1.
Unstructured notes are first processed with a collection of trigger
lexicons. The first type of trigger lexicon targets medical concepts,
covering diabetes mentions, CAD mentions, CAD events, CAD tests,
CAD symptoms, hyperlipidemia mentions, hypertension mentions,
obesity mentions, smoker mentions, and 18 different classes of
medications. The second type of trigger lexicon targets measure-
ments, containing base names for measurements within the note
whose value is the result of the measurement. This lexicon type
includes A1c, glucose, total cholesterol, LDL, blood pressure, and
BMI (the waist circumference measurement is in the guidelines
rders indicate machine learning-based modules. N indicates there are different
is the Smoker mention approach. (For interpretation of the references to color in this



Table 4
Features used in ML classifiers.

All classifiers
F1 Indexed uncased previous words
F2 Indexed uncased next words
F3 Generic words within 5 tokens
F4 Has family term within 5 tokens
F5 Negation word in previous 10 tokens
F6 Modality word in previous 10 tokens
F7 ConText negation value
F8 ConText history value
F9 ConText hypothetical value
F10 ConText experiencer value
F11 Section name

Measurement classifiers only
F12 Words between base and value
F13 Word shapes between base and value
F14 Value shape
F15 Base and value on same line
F16 Number of tokens between base and value
F17 Target word in previous 5 tokens

Time classifiers only
F18 Annotation type
F19 Medication type
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but not our system due to the lack of data). Each measurement
base is paired with its value as determined by a regular expression
(e.g., A1c is a real value with optionally one digit after the decimal)
and a min/max range (e.g., in the range (0,100) for A1c, though
the extreme values are admittedly unlikely). Measurements can
therefore be considered a relation between base and value. At test
time, the measurements are further filtered to only include those
above the specified threshold. The third type of lexicon includes
immediate family relations (e.g., mother, brother) for family his-
tory detection, which is a rule-based system and therefore sepa-
rated from the other triggers. Table 3 reports the number of
terms in each lexicon.

After trigger extraction, the candidate risk factors go through a
series of support vector machine (SVM) [26] classifiers that (1) fil-
ter out invalid triggers, (2) filter out negated triggers, and (3) clas-
sify time with three separate binary classifiers. Different SVM
models are used by the validity and polarity classifiers for each
annotation type, while each of the three time classifiers uses one
model for all annotation types. The features used in all the classi-
fiers are described below. The output of the three time classifiers
is then subject to a set of constraints and exceptions:

1. Diabetes, CAD, hyperlipidemia, hypertension, and obesity men-
tions are assumed to be [before DCT, during DCT, after

DCT] (i.e., all times). They therefore do not go through time
classifiers.

2. A1c, glucose, CAD events, CAD test result, CAD symptoms,
cholesterol, LDL, blood pressure, and BMI are assumed to have
exactly one time. Therefore, the highest confidence positive
result of the three time classifiers is used to determine their
time.

3. Medications are the only annotation type with an uncon-
strained time. All three time classifiers are run and the corre-
sponding times are assigned if the positive confidence is
greater than the negative.

4. Smoker mentions are not run through either the time classifiers
or a polarity classifier. Instead, a 5-way classifier is used to
assign the smoking status, as explained below.

5. Glucose requires two measurements over 126. Therefore, if only
one glucose measurement is present in a note, it is removed
prior to time classification.

The features used in our classifiers are shown in Table 4. The
first set of features is used in every classifier. The second set is used
only in the measurement validity and polarity classifiers. The third
set is used only in the three time classifiers. For the most part, the
Table 3
Number of terms in each annotation lexicon.

Annotation Base terms Pre-modifiers Post-modifiers

Diabetes mention 20 30 44
A1C 37 – –
Glucose 12 – –
CAD mention 7 2 –
CAD event 31 – –
CAD test result 18 – –
CAD symptom 6 – –
Hyperlipidemia mention 19 3 –
Cholesterol 4 – –
LDL 3 – –
Hypertension mention 12 3 –
Blood pressure 10 – –
Obese mention 4 6 –
BMI 1 – –
Smoker mention 25 13 13
Medication 565 – –
features used were quite simple, and chosen entirely based on our
intuition for the ways in which validity, polarity, and temporality
were expressed in the corpus. To illustrate these features, consider
the following two examples, where the relevant risk factor spans
are in bold:

(1) He has a history of diabetes and sleep apnea.
(2) His hemoglobin A1c was 7.4% a month ago.

The first set of features provides simple external context. Since
a different model is used for each risk factor, the internal informa-
tion (e.g., whether the risk factor is spelled diabetes or DM) was lar-
gely irrelevant. These features are:

� F1 and F2 are simple contextual features to represent the case-
less words before and after, respectively, the risk factor. For
(1), F1 would be {1:of, 2:history, 3:a, 4:has, 5:he}, while F2 would
be {1:and, 2:sleep, 3:apnea}.
� F3 is a bag-of-words feature for a 5-word context around the

risk factor where case is removed from words and numbers
are replaced with 0. For (1), F3 would be {a, apnea, has, he, his-
tory, of, sleep}.
� F4 is a binary feature indicating whether a family word is in a

5-token context. This helps identify cases where the risk factor
is associated with a family member and not the patient. The
family member lexicon has 28 terms, including more than just
the immediate family, as well as plural words (e.g., grandpar-
ents, aunts). Neither (1) nor (2) have such a word.
� F5 and F6 use negation and modality lexicons, respectively, to

identify words in the 10 previous tokens that might indicate
negation, modality, or temporality. These lexicons were first
proposed in Kilicoglu and Bergler [27]. The negation lexicon
includes words like hasn’t, exclude, and prevent. The modality
lexicon includes words like attempt, potentially, and unknown.
� F7 to F10 use the ConText algorithm [10] to provide contextual

clues about negation (negated vs. affirmed), history (historical
vs. recent), hypotheticality (not particular vs. recent), and experi-
encer (other vs. patient).
� F11 provides the name of the section using a simple heuristic.

The closest previous line ending in a colon and containing less
than 10 tokens is considered the section header.



Table 5
Official submission results, sorted by micro-F1, including our two submissions,
aggregate results, and other top submissions.

System Micro Macro

P R F1 P R F1

NLM Run #2 (1st) 0.8951 0.9625 0.9276 0.8965 0.9611 0.9277
Harbin (2nd) 0.9106 0.9436 0.9268 0.9119 0.9399 0.9257
Kaiser Permanente

(3rd)
0.8972 0.9409 0.9185 0.8998 0.9429 0.9209

Linguamatics (4th) 0.8975 0.9375 0.9171 0.8989 0.9361 0.9171
NLM Run #1 0.8702 0.9694 0.9171 0.8694 0.9682 0.9162
Nottingham (5th) 0.8847 0.9488 0.9156 0.8885 0.9411 0.9141
Median 0.852 0.908 0.872 0.849 0.904 0.870
Mean 0.808 0.835 0.815 0.800 0.834 0.812
Min 0.455 0.203 0.305 0.455 0.258 0.365
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The second set of features provides internal context for mea-
surements. Since the measurement candidate extraction simply
looks for compatible base and value pairs within a reasonable dis-
tance, often the base and value do not correspond to each other
(e.g., multiple measurements in the same sentence). The measure-
ment features therefore are designed to indicate the relatedness
between the base and value:

� F12 is a bag-of-words feature between the base and value. For
(2), F12 would be {was}.
� F13 is a bag-of-wordshapes feature between the base and value,

where a wordshape is a case representation where all upper
case letters are replaced with A, all lower case letters are
replaced with a, and all numbers are replaced with 0. For (2),
F13 would be {aaa}.
� F14 is the shape of the value, which helps capture legal types of

values. For (2), F14 would be {0.0}.
� F15 is a binary feature that indicates whether the base and value

are on the same line. In most cases this is true for gold measure-
ments, but occasionally the measurements are located in
multi-line tables which requires expanding the context beyond
the line.
� F16 indicates the token distance between the base and value. For

(2), F16 would be 1.0.
� F17 is a binary feature that indicates if a ‘‘target’’ word is in the

previous 5 tokens. Commonly, the notes express a desired mea-
surement instead of an actual measurement (e.g., ‘‘target A1c
value is 7.5’’ or ‘‘shooting for A1c of 8.0)’’. This feature uses a lex-
icon of 17 target synonyms to help capture these cases.

The third set of features only applies to the time classifiers.
Since all risk factors are classified with the same 3 time models,
the two features in this set distinguish between the type of risk fac-
tor under the assumption that different risk factors have different
temporal properties:

� F18 indicates the type of annotation (e.g., A1C, Blood_pressure,
Medication).
� F19 indicates the type of medication (e.g., fibrate, diuretic,

aspirin), and ignores non-medications.

Since smoking status is not binary, the heuristic of a single pos-
itive mention indicating the entire note is positive does not apply.
Instead, the smoking status SVM is a document-level classifier. It
uses the same set of base features, but the individual features for
every valid smoking mention in the note is aggregated into a single
feature. For example, with feature F11, instead of returning a single
section name for the smoker mention, F11 returns the section
names for all the smoker mentions in the note.

Finally, the family history of CAD module is a simple rule-based
system that combines a lexicon of immediate family names with
the output annotations from the previously described classifiers.
The lexicon consists of 6 immediate family relations (father,
mother, brother, sister, son, daughter). Within the immediate con-
text (10 tokens) of one of these terms, a valid, non-negated
CAD-related annotation (CAD mention or CAD event) must be pre-
sent with an age below the specified threshold (55 for male, 65 for
female) for the family history attribute to be considered PRESENT.
Otherwise the family history attribute is considered NOTPRESENT.
Additionally, if a synonym of the phrase ‘‘family history’’ appears
with a CAD-related annotation, the presence of a family history
of CAD is assumed regardless of age (since it is un-specified). In
all cases, no syntactic processing is used, simply the presence of
terms matching those described above within the local context is
assumed to be an indication of a family history of CAD.
6. Results

The official results for our first two runs are shown in Table 5,
along with the official aggregate results and other top submissions.
Our third run performed worse on every measure and is omitted.
Run #1 has the best recall of the two runs, while Run #2 has the
best precision and F1-measure. Run #1 is the system as described
in the Risk Factor Identification section. Run #2 is essentially the
same, but with two filtering steps to improve precision. First, all
glucose results are removed since the vast majority of the glucose
measurements in the gold data are not annotated as a risk factor,
which results in models that predict large amounts of false posi-
tives. Second, a set of 52 low-precision triggers is filtered out
(e.g., chest for CAD symptom, substance for smoker mention).
These two filtering steps raise precision considerably (0.8702–
0.8951) without a large drop in recall (0.9694–0.9625), thus raising
the overall F1-measure (0.9171–0.9276).

The per-annotation type results for Run #2 are shown in Table 6.
Compared to the overall F1-measure for the run (micro 0.9276,
macro 0.9277), many of the risk factors perform much better or
worse. Every mention annotation except CAD outperforms the
overall F1, while every measurement annotation under-performs
the overall F1. For all but 6 of the annotations, recall outperformed
precision. Additionally, for the lower performing risk factors, if one
ignores the time attribute, their performances are significantly
improved. Most of the individual validity and polarity classifiers
achieve a classification accuracy of over 95%. Much of the loss,
therefore, comes from time classification. This is why many of the
chronic diseases, which are almost always [before DCT, during

DCT, after DCT], have high overall performance, while many of
the measurements have lower overall performance.

7. Discussion

7.1. Error analysis

As the results in the previous section show, our system is heav-
ily skewed toward recall. To some extent, this is a natural result of
our system’s design: the lexicons are high-recall by design, and
most of the validity and polarity classifiers are trained on data that
is heavily skewed positive. While the gold test data contains
10,974 annotations, our system output 11,801 annotations (almost
8% more). This evaluation is complicated, however, by the way
times were evaluated. No partial credit is given for an incorrect
time, and risk factors that occur before, during, and after the hos-
pital visit receive three times the amount of credit as a risk factor
with only one time. Biasing toward recall can thus help here:
guessing [before DCT, during DCT] for a risk factor that is only
[during DCT] results in an F1-measure of 66.7, while guessing
just [before DCT] results in an F1-measure of 0.0. Upon examina-
tion of the precision errors made by the system, the majority were



Table 6
Results by risk factor for Run #2. Notes: (1) Glucose was omitted from this run. (2)
Smoking status is a 5-way classification, hence precision and recall should be
identical and equal to the accuracy. However, some documents are inadvertently
missing a smoking status, so only the recall is equal to the accuracy on the sub-set of
documents with a smoking status. (3) There are no examples of Amylin in either the
training or test data, while only the training data contains examples of anti diabetes
medications.

Type Risk factor P R F1

Diabetes Mention 0.9568 0.9972 0.9766
A1C 0.8235 0.8537 0.8383
Glucose – – –
ALL 0.9473 0.9593 0.9533

CAD Mention 0.8705 0.9767 0.9205
Event 0.6719 0.9281 0.7795
Test result 0.4425 0.8475 0.5814
Symptom 0.6170 0.4143 0.4957
ALL 0.7648 0.9082 0.8303

Hyperlipidemia Mention 0.9419 0.9578 0.9498
Cholesterol 0.6000 0.5455 0.5714
LDL 0.7333 0.7586 0.7458
ALL 0.9292 0.9441 0.9366

Hypertension Mention 0.9581 1.0000 0.9786
Blood pressure 0.7627 0.9231 0.8353
ALL 0.9247 0.9884 0.9555

Obesity Mention 0.9325 0.9592 0.9457
BMI 0.7692 0.5882 0.6667
ALL 0.9245 0.9351 0.9298

Family history Present 0.8000 0.6316 0.7059
Accuracy 0.9805

Smoking Status 0.8555

Medication ACE inhibitor 0.8754 0.9707 0.9206
Amylin – – –
Anti diabetes – – –
ARB 0.8972 0.9948 0.9435
Aspirin 0.9427 0.9887 0.9651
Beta blocker 0.9019 0.9904 0.9441
Calcium channel blocker 0.9031 0.9688 0.9348
Diuretic 0.7955 0.9646 0.9719
DPP4 inhibitor 1.0000 0.8333 0.9091
Ezetimibe 0.7805 0.8889 0.8312
Fibrate 0.9195 0.8889 0.9040
Insulin 0.8588 0.9544 0.9041
Metformin 0.8561 0.9946 0.9202
Niacin 0.6250 1.0000 0.7692
Nitrate 0.7723 1.0000 0.7692
Statin 0.9301 0.9767 0.9528
Sulfonylurea 0.9135 0.9896 0.9500
Thiazolidinedione 0.8406 0.9508 0.8923
Thienopyridine 0.9213 0.9894 0.9542
ALL 0.8890 0.9766 0.9307
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indeed due to an excessive emphasis on recall. This includes med-
ications in the allergy section (i.e., should have been negated, but
their presence in a list structure meant there was no local context
cues) as well as those with a super-set of the valid times (e.g.,
marking discontinued medications as after DCT in addition to
before DCT and during DCT). There were some examples,
though, of mentions missed by the original annotators and picked
up by our system, possibly including following examples:
1.
 A 75-year-old diabetic whose glycemic control is good.
2.
 His CRF include HTN, elevated cholesterol, smoking, male
gender.
3.
 2/02: A1c 6.50.
4.
 Test
Description
Result
 Abnormal Flag Ref.
Range
Ref.
Units
. . .(table) . . .
Cholesterol
 245
 mg/dl
The first example is a diabetes mention that was missed by the

annotators, likely because it is the adjective form instead of the
noun (it was observed at least once in the training data, however,
and was therefore in our lexicon). In the second example, ‘‘elevated
cholesterol’’ is generally considered to be a hyperlipidemia mention
in the training data, as well as much of the test data. In the third
example, while 6.5 is not strictly ‘‘over 6.5’’, many times in the
training data an A1c of 6.5 was marked as a high A1c value. In
the fourth example, the total cholesterol’s value is located within
a tabular structure (tables, in general, were not only difficult for
the automatic system, but they also were time-consuming to anno-
tate due to the large number of quantitative values).

These examples demonstrate the difficulty of attempting to
replicate the implicit annotation standard used by the original
annotators. During our annotation process, when a question arose
as to the legitimacy of a certain annotation, we generally consulted
the training data. If around half the times in the training data (or
more) a phrase was annotated a particular way, our annotators
were instructed to do that as well. When a question arose where
no example in the training data existed to guide our decisions,
we relied on the clinical expertise of the annotators to determine
if the given risk factor applied to the patient. In general, we erred
on the side of recall. In practice, this again resulted in ML classifiers
with unbalanced data, creating clear errors in our output. An exam-
ple is this case where the abbreviation NG is mistaken for a nitrate,
since it was used that way once in the training data and thus
appeared in our lexicon:

5. NG tube lavage showed 200 cc of pink tinged fluid, cleared after
50 cc.

Other low-precision examples include ‘‘chest’’ in the CAD men-
tion lexicon and ‘‘cholesterol’’ in the hyperlipidemia lexicon. While
these examples were used at least once as positive mentions in the
original data, it was felt that they had sufficiently low precision
that we removed these and other mention candidates (a total of
52 different lexicon items) for Run #2, which outperformed Run
#1 in both precision and F1 at the cost of a small drop in recall.
Ideally, the classifiers would have filtered these errors out to main-
tain the superior recall, but it is likely there was not sufficient data
for the classifiers to properly handle these fairly rare terms.
Integration of methods for abbreviation disambiguation [28] and
concept normalization [29] could potentially handle such cases
without any additional data directly related to this task, as each
of those methods indirectly incorporates additional data into their
models.

The CAD event, test result, and symptom risk factors are some
of the most difficult to annotate (Table 2) as well as detect auto-
matically (Table 6). While the original annotations generally had
predictable spans, and normalization typically involved adding or
removing a few words, the three non-mention CAD risk factors
often had entirely unpredictable spans in the original annotations.
For example, the following typify the provided annotations:

� Event: ‘‘s/p ant SEMI + stent LAD’’, ‘‘PTCA w/ Angioplasty to LAD’’.
� Test result: ‘‘Stress (3/88): rev. anterolateral ischemia’’, ‘‘normal

ECG but a small anteroseptal zone of ischemia’’.
� Symptom: ‘‘occasional and very transient episodes of angina’’,

‘‘Since 11/19/2096 he has had complaints of increasing dyspnea
on exertion and chest pain’’.

These were shortened in our lexicon to one-word terms such as
‘‘infarction’’ and ‘‘stent’’ for event, ‘‘ecg’’ and ‘‘catheterization’’ for
test result, and ‘‘angina’’ and ‘‘cp’’ (chest pain) for symptom.
However, our main reason for normalization was to learn
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Table 7
Post-hoc experiments with varying degrees of reliance on the NLM annotations. Place
is the theoretical ranking (micro F1) had the given system been submitted as an
official result.

System Micro Macro Place

P R F1 P R F1

NONORM 0.8470 0.9648 0.9021 0.8456 0.9629 0.9005 7th
NORM 0.8506 0.9652 0.9043 0.8484 0.9630 0.9021 7th
GOLDNEG 0.9030 0.9579 0.9296 0.9041 0.9560 0.9294 1st
RUN2 0.8951 0.9625 0.9276 0.8965 0.9611 0.9277 –
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consistent lexical context, but the loose descriptions seen above
meant that many of the contexts in the test data were never seen
in the training data. Due to the diversity of phrasing, we attempted
to find the most minimal set of lexicon terms to cover all the cases
in the training data. Thus, we chose ‘‘chest’’ instead of ‘‘chest pain’’
for symptoms to cover cases such as ‘‘a dull and mid scapular dis-
comfort that radiated to his upper chest’’. However, it was found that
‘‘chest’’ was too imprecise and was removed for Run #2 without
adding ‘‘chest pain’’ to the lexicon. This missing term alone proba-
bly accounts for a significant loss of recall for CAD symptoms.
Instead of mention-level classification, these risk factors may
perhaps be better suited for sentence classification, where
n-gram features can overcome the sparsity in phrases.

A surprising result was the poor performance on BMI, as our
method performed quite well on BMI with the training data.
There were not very many BMI instances in the data, however:
Run #2 had 10 true positives, 3 false positives, and 7 false nega-
tives. The false positives are indeed system errors: one marked a
BMI of 30 when the standard requires over 30 (though for other
measurements in the training data, values at the threshold were
sometimes marked as positive), and twice a [during DCT] was
marked as a [before DCT], which also resulted in two false neg-
atives. Four of the false negatives (recall errors) could easily be
argued to be annotation mistakes: twice a BMI was marked as
[before DCT, during DCT, after DCT] when the system classi-
fied [during DCT] despite the annotation convention generally
favoring marking only a single time for a measurement. The final
false negative was the result of the note providing a height and
weight, implicitly allowing for a BMI calculation, but the actual
BMI was not in the note (this type of BMI annotation never came
up in the training data).

Several of the errors made by our system were the result of our
additional annotations. Ultimately, given that the original annota-
tions and the NLM annotations were created by two different sets
of annotators, and without a highly detailed guideline to ensure
consistency, it would be impossible to expect the two sets of anno-
tations to line up perfectly. A prime example of this is the glucose
annotation, which was annotated in only 24 documents in the orig-
inal training data, but was labeled by our annotators hundreds of
times. Even when applying the ‘‘two times’’ filter, there were still
far more glucose measurements using our annotations. As a result,
we removed them from Run #2, resulting in a large precision gain
for a small drop in recall.

7.2. System design

A notable aspect about our system is its lack of reliance on
many third-party tools to provide higher-level linguistic informa-
tion, such as syntax and semantics. This has inherent advantages
on its own, since many tools (e.g., a part-of-speech tagger) demon-
strate significant performance variation on different texts.
However, we make no claim that such information would not have
improved our performance further on this task. It is quite likely our
performance would have been even higher if we had incorporated
parts-of-speech, syntactic dependencies, named entities, ontologi-
cal knowledge, and more. This type of information was certainly
beneficial to other participants in the 2014 i2b2 task. Actually, very
little work was done at all in feature engineering. The set of fea-
tures in Table 4 were chosen completely based on our sense of
the important lexical information that could be captured.
Removing some of the features might easily help the score, and
there are certainly other lexical features worth adding. No experi-
ments were attempted to adjust this initial feature set, largely due
to the time-consuming nature of feature engineering. Such exper-
iments, as well as adding syntactic and semantic features, would
almost certainly have increased system performance. Due to the
significant number of such features in the literature, however, we
leave such improvements to future work. Despite this, it should
be noted that even without the lack of risk factor customization,
the performance across the mention-type annotations is quite
good, all of which have an F1-measure of at least 0.92. Our method,
therefore, would likely generalize well to other diseases with
similar data, though certainly disease-specific processing would
be ideal.

Given the limited amount of time available for system develop-
ment in the 2014 i2b2 task, we simply chose to devote our
resources instead to creating more fine-grained annotations.
Importantly, this is analogous to a very common real-world prob-
lem when developing NLP systems: given limited resources (time,
funding, etc.), are those resources better spent (a) developing more
advanced systems, or (b) creating higher quality data? While there
is no one absolutely correct answer, and while we make no claim
as to the generalizability of our results beyond the 2014 i2b2 task,
these results do provide an interesting case study to help explore
this important question.

One way to evaluate the effect of the fine-grained annotations is
simply to examine the system rankings in Table 5. Instead, we
would prefer some quantitative measure of the value of these
fine-grained annotations independent of the system itself. That
is, if we had two nearly identical systems, one with access to the
fine-grained annotations and one without, how would these sys-
tems compare? To do this, we utilize the same basic information
extraction approach: identical lexicons, architecture, ML features.
The main factors to remove are the NLM annotations (both positive
and negative) and the normalized concept boundaries. We thus
consider four different systems, with increasing reliance on the
NLM annotations:

� NONORM: Uses only the original, uncorrected annotations
provided by the organizers. Since this leaves only positive
mention-level annotations, we use a heuristic to create negative
annotations: any lexicon match in a negative document is con-
sidered a negative annotation.

� NORM: Same as NONORM, but the boundaries in the original anno-
tations are normalized to be consistent with the lexicon.

� GOLDNEG: Same as NORM, but instead of the heuristically anno-
tated negative concepts, the NLM-annotated negative gold con-
cepts are used.

� RUN2: The official NLM Run #2. Same as GOLDNEG, except all
NLM-annotated gold concepts are used (i.e., includes additional
positive annotations).

The results on these four experiments are shown in Table 7. The
NONORM method (i.e., the system without any changes to the orig-
inal annotations) would only have achieved an F1-measure of
0.9021, a large drop compared to the submitted F1 of 0.9276.
This would have only been enough for 7th place in the task, which
is still above the median but not at all close to the top participants.
The NORM method, which did not add any additional annotations
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but changed the boundaries of the original annotations to be more
consistent with the lexicon, shows a slight improvement (from
0.9021 to 0.9043). This gain is likely due to the fact that the risk
factors’ context in the training data is better captured with the
more consistent span boundaries. Additionally, there were several
dozen incorrect annotations that were removed from the original
data, which is reflected in this score as well.

The GOLDNEG results show the very large improvement made by
adding the manually-labeled negative annotations (from 0.9043 to
0.9296). Interestingly, this F1-measure is higher than that from
RUN2. This means that while adding the gold negatives provided
a large boost in performance, adding gold positives actually hurt
slightly. The most likely explanation for this is the lack of annota-
tion alignment between the original annotators and the NLM anno-
tators. While the benefit of negative annotations far outweighed
the cost of mis-aligned negative annotations, there was insufficient
benefit in the additional positive annotations to overcome the dis-
agreement between the two annotator groups. We can speculate
this would not have been the case if (a) the same set of annotators
labeled both data sets, or (b) extremely detailed annotation guide-
lines were provided to increase the inter-group agreement.

These observations lead us to several points for potentially
improving the system used in Run #2. First, either the
NLM-annotated positive concepts should be removed, or a deeper
investigation should be performed to determine the key points of
inter-group disagreement. Second, further experiments with the
lexical ML features should be performed to determine if any of
the features in Table 4 actually degrade performance, or if any
other lexical features improve performance. Third, further experi-
ments with syntactic, semantic, and discourse-level features
should be performed to assess what additional value they may pro-
vide. The features utilized by other top-performing systems in the
2014 i2b2 task are a useful starting point for such features.

8. Conclusion

This article has described our submission to the 2014 i2b2 task,
which was a fairly simple supervised information extraction
method based on lexicons and mention-level classification. Our
key contribution to the task was a large set of mention-level anno-
tations for the various heart disease risk factors. We have explored
the impact of fine-grained annotations, both manually and heuris-
tically labeled, to assess the value of this data. Despite being a rel-
atively simple system that employs only lexical features, our
submission achieved the highest scores (micro- and macro-F1,
and micro- and macro-recall) out of the 20 participants. The official
results of this task, as well as the post-hoc experiments we per-
formed, demonstrate the importance of high-quality, fine-grained
natural language annotations.
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