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ABSTRACT 

Modality filtering is an important feature in biomedical image searching systems and may significantly improve the 
retrieval performance of the system. This paper presents a new method for extracting endoscopic image figures from 
photograph images in biomedical literature, which are found to have highly diverse content and large variability in 
appearance. Our proposed method consists of three main stages: tissue image extraction, endoscopic image candidate 
extraction, and ophthalmic image filtering. For tissue image extraction we use image patch level clustering and MRF 
relabeling to detect images containing skin/tissue regions. Next, we find candidate endoscopic images by exploiting the 
round shape characteristics that commonly appear in these images. However, this step needs to compensate for images 
where endoscopic regions are not entirely round. In the third step we filter out the ophthalmic images which have shape 
characteristics very similar to the endoscopic images. We do this by using text information, specifically, anatomy terms, 
extracted from the figure caption. We tested and evaluated our method on a dataset of 115,370 photograph figures, and 
achieved promising precision and recall rates of 87% and 84%, respectively. 

Keywords: image modality classification, content-based image retrieval, endoscopic image figure extraction, ophthalmic 
image figure extraction 

1. INTRODUCTION
OpenI1 is a biomedical literature searching system developed by the U.S. National Library of Medicine (NLM). It allows 
users to search figure images from biomedical articles using either keywords or a query image. Currently OpenI provides 
open access to nearly 1.7 million images from approximately 584,000 open access biomedical research articles obtained 
from the NLM’s PubMed Central (PMC) repository. Each day, there are about 40,000 OpenI visitors and over a million 
pages are accessed. Figure 1 has screenshots of the system interface, showing “query by keyword” (Figure 1a), and 
“query by image” (Figure 1b). OpenI also provides various filters (listed on the top region of the interface) to limit the 
search space category. One such filter is image type (modality). Successfully filtering the search results by image 
modality is not only a desirable feature for end users, but also may significantly improve retrieval performance of the 
system. We have been investigating various approaches for figure modality classification [1-3] and have adopted a 
hierarchical classification strategy, which has been shown to achieve better performance than a flat classification strategy 
[2]. Therefore, in OpenI, figures are first classified into regular figures or graphical illustrations (e.g., charts, sketches, 
graphs). Then the regular figures are classified based on the image modality, such as MRI, CT, X-ray, Ultrasound, or 
photograph. 

In this paper, we focus on the further classification of the category of photograph (visible light image). The content of 
photographic figures is very diverse and there are many non-clinical photos in the OpenI database. However, there are 
some medical images among them that we are interested in and hope to be able to extract. Two such medical image types 
are dermatology (skin) images and endoscopic images, as indicated by the hierarchical image modality classification 
model proposed by ImageCLEF [4], which is shown in Figure 2. We have been developing a method for extracting 
images in which a majority of the area in the image is skin-color tissue (we call this type of image a tissue image). As 
demonstrated in Figure 3, it includes various types of skin tissue images, such as images of the human face, mouth, 
open-wound tissue, skin at various other areas on the body surface, and endoscopic images of inner body surfaces. After 
carrying out a visual examination of the tissue images that we had automatically extracted from 115,370 photographs, we 
identified a characteristic common to the majority of the endoscopic images, although the visual content of the 

1 http://openi.nlm.nih.gov 
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(a) Query by keyword 

(b) Query by image 
Figure 1. OpenI system interface 

 
endoscopic images varies greatly (showing epithelial surfaces of different locations in esophagus, stomach and colon). 
This common characteristic is shown in Figure 3(b): the endoscopic images are enclosed by an approximately circular 
shape, or part of such a shape, on a dark background. This seemingly simple geometric feature was the initial focus of 
our investigation. In spite of its simplicity, however, we learned that developing a high-performing endoscopic image 
detection method is not as straightforward as it might appear: many difficulties are encountered, due to the intrinsic large 
variety in endoscopic images in the biomedical literature. For example, Figure 4 shows several sample images where the 
outline of the endoscopic region is not entirely round. The boundary of the endoscopic region may be blurred. The 
illumination may not be uniform. Additionally, there are text overlays, arrows, or bright bounding borders in some 
figures that may interfere with the extraction of the boundary of the endoscopic region. Each of these issues poses a 
challenge to the task of successfully and reliably extracting the image. In addition, another important type of medical 
image – ophthalmic photographs – also exhibit the same visual characteristics as endoscopic images; as shown in Figure 
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The rest of the paper is organized as follows: Section 2 describes the method we developed to extract tissue images from 
photographs. Section 3 presents the method for extracting candidate endoscopic images from these tissue images. 
Section 4 explains the method for separating ophthalmic images out using textual information extracted from figure 
captions. Section 5 shows experimental results and discussion. Section 6 concludes the paper with future work. 

2. TISSUE IMAGE EXTRACTION 
Tissue image in our research denotes a photographic image with tissue regions greater than a pre-determined threshold 
(e.g., 50%) of the entire image. Hence defining tissue region is the first step for separating tissue regions from non-tissue 
regions in images and further tissue images from non-tissue images. We develop a tissue region detection method based 
on Markov random field (MRF) theory that is applied to label image patches. Images are split into non-overlapping 
patches and each patch is assigned one semantic label: tissue, bright, dark, or photo. Each label corresponds to a 
different type of region in the image. The tissue region is used to categorize images into two groups, tissue and non-
tissue. Our tissue image extraction method has been published in [5]. Please refer to [5] for details of the algorithm. As a 
summary, each step in the algorithm is briefly described below.  
 
Image resizing and patch creation 
Each image is resized by setting its smaller side (either width or height) to 100 pixels while preserving the aspect ratio of 
the original image. We found resizing to be effective in reducing the computation time in our MRF model. Resized 
images are then split into non-overlapping patches of size 10×10 pixels. 
 
Initial patch classification 
A three dimensional CIELUV color vector is computed from the input RGB color channel values at each patch pixel. 
These vectors are concatenated to form a 300-dimension patch feature vector. Patches from training samples are 
clustered into 525 clusters (empirically selected) by K-means clustering with the feature vectors. An unknown patch is 
classified by finding the nearest cluster center to the patch feature in the feature space, and the numeric cluster label (0-
524) is assigned to the patch as its initial label.  
 
MRF model for relabeling patches 
Patches are relabeled from their initial numeric labels to one of the four semantic labels using a Markov random field 
(MRF) model. Two types of compatibility functions are defined to model contextual dependencies that exist among 
neighboring patches. They are unary and binary compatibility functions that are defined by visual characteristic of a 
single patch and visual similarity between the patch and its neighboring patches, respectively. An optimal labeling 
configuration (labels of the patches) is found by belief propagation that passes local messages between patches and 
updates their labels iteratively based on the propagated messages. Details of our MRF model can be found in [6].   
 

    

        

 

 

 

  
 

 

 

Figure 5. Image segmentation results (red: tissue, blue: photo, white: bright, green: dark) 
 
Figure 5 shows several example results of tissue region detection. Essential conditions that are applied to separate tissue 
images from non-tissue images are as follows. The percentage threshold is applied to the entire image region.  
 

(a) Condition 1: tissue region > 30% 
(b) Condition 2:  tissue region + bright region + dark region > 80%  
(c) Condition 3: tissue region > photo region 
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In the condition 2, we add bright and dark regions to the tissue region, since tissue images are frequently accompanied 
with dark background (e.g., endoscopy images) or bright regions (e.g., teeth in mouth images). We considered two 
thresholds, 80% and 50%, for condition 2. With 80% threshold, only the left three images in Figure 5 are detected as 
tissue images. With 50% threshold, the next three images are detected. The last two images are categorized as non-tissue 
images. As shown in the segmentation results, tissue regions are accurately separated from other regions.  
   

3. ENDOSCOPIC IMAGE CANDIDATES EXTRACTION 
Once tissue images have been extracted, our goal is to filter out the endoscopic images. The method we propose has two 
main steps: 1) region-of-interest (ROI) boundary extraction and 2) ROI shape measurement.  
 
3.1 ROI boundary extraction 
 
The performance of the ROI boundary extraction is crucial since it affects the next step, ROI shape measurement. In our 
dataset of figures from biomedical articles, we have observed a large variation with respect to the size, shape, and color 
of the endoscopic ROIs. There may be graphical annotations, such as text and arrows, sometimes presented in the images 
and overlaid on the boundary of the endoscopic ROI. The border of the endoscopic ROI may blend with the background 
or connect with other objects. The illumination may not be uniform, and the dynamic range may be quite different across 
images. To address these problems, we combine techniques of contrast enhancement, edge detection, thresholding, and 
morphological processing. Figure 6 shows a diagram of the procedure.  
 

 
 

Figure 6. Diagram of the ROI extraction method 
 
 
We first apply an intensity threshold to convert the input image to binary form, since the background area is dark 
compared to the endoscopic region. As shown in the diagram in Figure 6, there are two paths (denoted by blue dotted 
lines and blue solid lines) before applying the threshold. One is to simply convert the input color image into a grayscale 
image and then apply the threshold (blue dotted lines). The other uses a series of pre-processing steps before the 
application of the threshold (blue solid lines). These pre-processing steps are designed to process the difficult cases when 
the simple path fails. We will explain these pre-processing steps shortly after the discussion of the method for applying 
the threshold. For thresholding, we found that using the global threshold (for example, 60/255) outperformed an adaptive 
value computed by Otsu’s method [7]. That is because the Otsu's method chooses a threshold for each image based on 
maximizing the measure of class separability in gray levels. When there are small numbers of background pixels, the 
threshold obtained may put foreground pixels whose intensity is closer to that of the background pixels (and are very 
often located on or adjacent to the boundary of the endoscopic region) into the same group as the background pixels. 
Figure 7 shows two examples in which the results of Otsu thresholding (Figure 7(d)) are much less satisfactory than 
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those of constant thresholding (Figure 7(e)), l is the value of the threshold and EM is the value of  the effective measure 
output by Otsu’s method.  
 

    
(l = 0.6510, EM = 0.7235) 

 
(l = 60/255)

    
(l = 0.6157, EM = 0.7972) 

 
(l = 60/255)

(a) Original image (b) R channel (c) Histogram (d) Otsu (e) Contant 
 

Figure 7. Thresholding results 
 
 
Although applying a fixed threshold works for many cases, it fails sometimes due to the large variety of the dataset as 
well as the other challenges discussed previously. To increase the performance of the binarization, we also employed 
several pre-processing methods as displayed by the blue solid lines in Figure 6. The endoscopic tissue is reddish/pinkish, 
therefore we used the red channel of the tissue image (R) as the main grayscale image for extracting the ROI; for these 
images, this channel generally provides better contrast to the background than the other two channels (G and B). This red 
channel image is then binarized to obtain the candidates of ROIs by thresholding. We first applied Canny edge detector 
[8] to extract significant edges from each individual channel (R, G, B) grayscale image. Then we added these three edge 
images to the R image to get image Rcombined. We will discuss the value of this step later. We tested two ways of adding 
edges. One is to make those edge pixels to be white in the image Rcombined. The other is to set the intensity of each edge 
pixel to be the complement of the maximum intensity of its neighborhood pixels in the R image. The latter method may 
be helpful at the ROI binary thresholding step in the cases where the ROI connects to a white background. However, 
although this latter method helps for these cases, it might worsen the overall ROI extraction performance because of the 
existence of many edges inside the ROI, which may separate the ROI into multiple regions. Because of this consideration, 
we adopted the first method. We provide additional explanation in our discussion of the post-processing step to handle 
bright borders in figures. We applied contrast-limited adaptive histogram equalization (CLAHE) [9] to the R image 
before edge detection. We then adjusted the intensity values of the grayscale image Rcombined to create the image Radjust , 
using a map that takes Rcombined values to the values in Radjust such that 1% of the pixel data is saturated at low and high 
intensities of Rcombined. This not only increases the contrast in Radjust but also makes the background area darker and the 
endoscopic region brighter, which is propitious for the thresholding step to follow. Figure 8 shows several ROI 
extraction results with fixed value threshold (l = 60/255), where it can be seen that the results with the pre-processing 
steps are much more precise than those without the pre-processing. As demonstrated by Figure 8, the edge detection step 
in pre-processing aims to preserve the boundary which may not be separated by fixed value thresholding.  
 
After binarization, the region having the largest area is extracted and regarded as the candidate ROI. Next, two post-
processing steps are applied before extracting the ROI boundary. Step 1: we check to see if the binary ROI candidate has 
a white rectangular border and, if so, we remove it. For figures in the literature, it is not uncommon that there is a bright 
band on the periphery of the figure, as in the example given in Figure 9(a) (the border of the figure is enclosed with black 
lines in order to make it easy to recognize the white border area). If these borders are not removed, they will be identified 
as part of the ROI boundary which will in turn cause failure in the subsequent shape roundness detection. The border 
removal is done as follows. We first crop the binary image based on the bounding box of the black regions. Then, after 
cropping off these borders, we check the four corners of the cropped binary image for white pixels; if the corners contain 
white pixels, we iteratively crop the borders up to a small number (empirically determined) of times/lines. This 
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(a) Original image 

   
(b) ROI extraction results (without pre-processing applied) 

   
(c) ROI extraction results (with pre-processing applied) 

 
Figure 8. Benefits of pre-processing 

 

   
(a) Original image

    
(b) Binarization before the post-processing step of border removal 

    
(c) after the post-processing step of border removal 

 
Figure 9. Removal of bright border lines 

 
procedure is to address the issue that the white border may be a little bit tilted, in which case the method of border 
removal using the bounding box of the black regions will not remove all the white border pixels. Figure 9(b) and Figure 
9(c) show the results of binarization with and without border removal, respectively, for several example images. Step 2: 
after white border removal, we apply morphological image processing to the ROI. For this processing, instead of 
applying “hole-filling”, we first extract the four background corners by applying the flood fill algorithm and then get the 
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complementary binary image. This aims to deal with the cases in which the dark endoscopic region connects to the 
image boundary. Two examples are shown in Figure 10. As shown in Figure 10(b), the dark region that connects to the 
boundary is not filled by using morphological hole filling (as a result, the boundary of the ROI does not enclose the 
whole endoscopic region), but will be enclosed within the ROI area by using the method of flood filling from the four 
corners (as shown in Figure 10(c)). We also apply morphological opening to remove thin lines generated by the pre-
processing step of edge enhancement.  
 
 

  
     

  
(a) original image (b) using hole filling (c) boundary of (b) (d) using flood fill 

from corners (e) boundary of (d)  

 
Figure 10. ROI extraction using flood fill from corners  

 
3.2 ROI shape measurement 
 
As discussed in Section 1, the dataset we work on has high variability, and the endoscopic region inside an image is very 
often cropped, that is, it does not have an entirely round outline, as demonstrated by Figure 4. Therefore, the roundness 
measurement needs to accommodate this type of complex input, as well as non-perfect segmentation results. We 
considered shape measures including the minimum bounding circle, the least square fitting circle, and the maximum 
enclosing circle of the extracted ROI region. Figure 11 gives several examples, in which the corresponding minimum 
bounding circle (in red color), least square fitting circle (in blue color), and maximum enclosing circle (in green color), 
are overlaid on the ROI. Note that, in the second row of Figure 11, the binary ROI was first cropped based on the ROI’s 
bounding box and then was padded on the boundary in order to show the minimum bounding circle (therefore they have 
different size as their original images). As indicated by Figure 11, the measures based on the minimum bounding circle, 
the least squares fitting circle, and the maximum enclosing circle, may not be suitable for our application. Cases like 
those given in Figure 11 tend to be representative in the figures of our dataset, and we may reasonably assume many 
failures in endoscopic region shape measurement under such measures. Therefore, instead of using those measures, we 
adopted the following rule-based procedure:  

1) Black corner rule 
All the four corners of the cropped binary ROI (based on its bounding box) should be black regions. This is 
done by checking if the 3 x 3 region in each corner is black.  

2) Shape rule 
The roundness of the ROI is measured by  ܣ = 4 × ߨ × ଶݎ݁ݐ݁݉݅ݎ݁݌ܽ݁ݎܽ > 0.85 

3) Symmetric rule 
The ROI needs to be symmetric either horizontally or vertically. This is measured by flipping the cropped 
binary ROI horizontally/vertically along the central line and calculating the area of the un-matching region. The 
area of the un-matching region must be less than 5% of the total ROI area for the ROI to be considered 
symmetric. 

If the ROI satisfies all above three rules, then the image is flagged as a candidate endoscopic image. 
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Figure 11. The minimum bounding circle, the least square fitting circle, and the maximum enclosing circle 
 

4. FILTERING OF OPHTHALMIC PHOTOGRAPHS 
The method for candidate endoscopic image extraction described in Section 3 is mainly based on the shape information. 
It does not utilize any text content related to the image. Therefore, the output candidate images contain many ophthalmic 
photos because they share a shape outline similar to endoscopic images, as shown in Figure 12. To filter out those 
images, we exploit the text information provided by the figure caption.  
 
The figure caption, wherever present, provides description of the content of the associated biomedical figure. It may also 
sometimes include additional information which may not be directly inferred via visual analysis of the biomedical figure 
such as a relevant biomedical concept or information about a certain scientific procedure being photographed. Our 
textual approach to filter the ophthalmic photographs focuses on identifying key anatomy concepts in the figure captions 
using the Unified Medical Language System® (UMLS®) Metathesaurus®. The UMLS Metathesaurus is a large, multi-
purpose, and multi-lingual thesaurus that contains millions of biomedical and health related concepts, their synonymous 
names, and their relationships. The Metathesaurus is organized into a set of relational files containing biomedical 
concepts. These files also link alternative names and views of the same concept from different vocabularies and identify 
useful relationships between different concepts. 
 
The first step in acquiring anatomy terms consists of analyzing the figure caption and detecting the presence of concepts 
in the UMLS semantic group Anatomy [10]. This is done by searching the captions text for the anatomical UMLS 
concepts. This step is similar in part to concept recognition using MetaMap, a tool that maps biomedical text to the 
UMLS Metathesaurus using a knowledge-based natural language processing approach [11].  Sometimes the concepts 
extracted from the captions are too specific and result in a sparse concept vocabulary, which makes it difficult to detect 
and filter out all ophthalmic images. To overcome this sparsity, once the associated figure caption is analyzed and the 
anatomical concepts are extracted, we expand the extracted concepts to more general anatomical concepts. This is done 
by utilizing the relationship information provided by the UMLS Metathesaurus, and by registering the ‘is-a’ and ‘part-of’ 
relation between anatomical concepts. This provides us with not only the concepts that are directly detectable within the 
figure concept, but also with their parent concepts. 
 
After we have extracted the anatomical concept information from the figure caption, the next step is to determine if the 
concepts indicate that the image under consideration is an ophthalmic image. We use the following three sets of 
keywords to filter out the ophthalmic photos: 
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1) Keyword set I: eye, eyeball, retinal, retina, retinitis, iris, optic nerve, cranial nerve, optic neuropathy, macula, 
retinopathy 

2) Keyword set II: funduscopy, fundoscopy, funduscopic, fundoscopic, fundus photography, retinal image, retinal 
photograph, optic disc 

3) Keyword set III: endoscopic, endoscopy 
 
If the extracted concepts of the figure contains any of the keywords in set I or the figure caption contains any of the 
keywords in set II but the figure caption contains none of the keywords in set III, then the figure is categorized as an 
ophthalmic image. 
 

    
 

Figure 12. Ophthalmic photographs  

5. EXPERIMENTAL RESULTS AND DISCUSSION 
 
5.1 Data 
 
We downloaded 115,370 images from OpenI system. These images are those that are returned by OpenI by selecting 
“Photographs” and “Exclude Multipanel” in the Image Type (i.e. images that are automatically classified into single-
panel photograph modality by the OpenI system). These images contain not only true photographs but also several types 
of noisy images, such as radiography, microscopy, and illustration figures. We use a subset of these images to train and 
test our method for extracting tissue images. Then we apply the tissue image extraction method to the entire dataset of 
115,370 photographic images. Finally, we extract the endoscopic images out of those tissue images using the proposed 
method described in Section 3 and 4. We report the results of tissue image extraction, endoscopic image candidate 
extraction, and ophthalmic image filtering in the following.  All ground truth classifications described below were done 
by manual inspection by two engineers (non-medical experts) with several years’ experience in medical image 
processing. 
 
5.2 Result of Tissue Image Extraction 
 
We used an image set consisting of 1,997 photograph images as a training dataset for creating patch clusters and training 
parameters for the MRF model. Out of the 1,997 training images, we manually selected 408 tissue images (most of the 
image regions in these images are tissue regions). We randomly selected 23,000 out of the 115,370 photographs as a 
testing dataset for evaluating the performance of our tissue image extraction method. The testing dataset doesn’t include 
any images used in the training set. The proposed method was applied to the testing set to extract tissue image and we 
then manually examined the results to compute precision of the extraction. The results are listed in Table 1. Two 
thresholds, 80% and 50% as discussed in the section 2, were used to set the minimum area of tissue region in 
determination of tissue and non-tissue images. Table 1 lists the number of extracted images, the number of true positive 
images, the number of false positive images, and the precision rate for each threshold. A recall rate could not be obtained 
since we did not create ground truth for the entire 23,000 image test set. As shown in the result, a smaller threshold (50%) 
detected about 40% more tissue images than a larger threshold (80%) with insignificant precision decrease. We believe 
that the threshold of 50% is suitable for our tissue image detection and classification.  

 
Table 1. Tissue image extraction result 

Threshold Extracted tissue images True positive images False positive images Precision (%) 
80% 3,359 2,757 602 82.1% 
50% 4,628 3,788 840 81.8% 
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5.3 Result of Endoscopic Image Extraction 
 
We applied the tissue image extraction method (using the threshold of 50%) to the entire dataset of 115,370 photographs 
and extracted 14,510 tissue images. Then, we employed the method described in Section 3 to get the candidate 
endoscopic images out of these tissue images. There are 1242 candidate images. The candidate images are further 
filtered by separating out ophthalmic photos. To evaluate the performance, we generated ground-truth data by visually 
examining all the 14,510 tissue images and identifying all the endoscopic images (890 images) that have four dark 
background corners around the endoscopic region in the image (using both visual and caption information). Therefore, 
cases such as those shown in Figure 13, which are zoomed in/cropped too much and (almost) do not have background 
region outside endoscopic region, will not be counted. Table 2 lists the results of endoscopic image detection with and 
without the step of ophthalmic image filtering, respectively. The precision is increased significantly (from 61.2% to 
87.3%) after sorting these photos out with a slightly drop of recall (from 85.4% to 84.7%). This indicates the large 
quantity of ophthalmic images that have similar shape/color characteristics as endoscopic images and also demonstrates 
the effectiveness of our method for detecting ophthalmic images.  
 

  
Figure 13. Endsocopic images that are not considered because of unusual zoom or cropping 

 
Table 2. Endoscopic image extraction result 

 Extracted 
images 

True positive 
images 

False negative 
images Precision recall 

Without 
ophthalmic photo 

filtering 
1242 760 130 61.2% 85.4% 

With ophthalmic 
photo filtering 864 754 136 87.3% 84.7% 

 
5.4 Discussion 
 
The proposed method exploits color and shape information to extract endoscopic images from figures in biomedical 
articles. It also uses text information, such as anatomy concepts obtained from figure captions, to filter out unwanted 
images and boost the algorithm performance.  (In fact, we found that this method is also a very effective approach for 
extracting ophthalmic photos, although for the study of this paper, they are considered unwanted images). The method 
has been shown promising as demonstrated by the experimental results given in Table 1 and Table 2. For further 
performance improvement, we examined the false positive and false negative images, several of which are displayed in 
Figure 14.  
 
The false positive examples are extracted due to the similarity of their shape and color to those of endoscopic images (in 
this respect, similar to the ophthalmic photos). Filtering out these images likely requires the use of semantic information 
about the image content. In addition to filtering out unwanted images using additional textual information (like using the 
keyword histopathology for removing the first case in Figure 14(a)), in the future we will explore the option of extracting 
desired image classes using textual information. We have already carried out one experiment on retrieving endoscopic 
images by text-only searching with the keywords of endoscopic and endoscopy in figure captions. Out of 14,510 tissue 
images, only 486 endoscopic images were retrieved. This is much lower than that of the proposed method which uses the 
image visual information first. Therefore, we may need to identify more candidates by expanding the keywords with 
anatomy terms which refer to medical “targets” of the endoscopy, such as esophagus, stomach, or colon and then filter 
the results by using image visual information.  
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Our false negative examples are mainly caused by the unsuccessful binarization/segmentation results due to the intensity 
of part of the endoscopic region boundary area being very close to background intensity. We will explore the idea of 
resetting the threshold value for each image using the intensity of the background area identified by the first round of 
ROI extraction if it did not pass the shape measurement criteria; for example, for the second case in Figure 14(b), a lower 
threshold of 20/255 gives improved results. The method described in this paper uses rules to measure the shape 
information extracted from the ROI segmentation result in the endoscopic images. We plan to test classification-based 
methods using shape descriptors extracted from the entire endoscopic image and compare the performance of those 
methods to that of our algorithm. We have previously developed a contour-based shape descriptor [10], which we 
adapted from a feature extraction method used in optical character recognition for character shape representation. We 
have applied this descriptor to radiology images (e.g., MRI, CT, ultrasound, X-ray) to evaluate its usefulness for 
modality classification. We will apply this shape descriptor and other state-of-the-art shape descriptors in the 
classification-based method. 
 

  
(a) False positive cases 

   
(b) False negative cases 

Figure 14. False positive and false negative cases 
 

6. CONCLUSIONS  
Because of the prevalence and the rich information contained in medical images, their search and retrieval within the 
peer-reviewed biomedical literature has become an important research topic. For a biomedical literature figure searching 
system such as OpenI, image modality classification is one essential component for achieving high retrieval 
performance. This paper focuses on the topic of detecting endoscopic figures, a modality for which, to the best 
knowledge of the authors, there is no work specifically reported in the literature. The proposed method consists of three 
major steps: extraction of tissue images based on color information, extraction of endoscopic image candidates based on 
shape information, and identification and removal of ophthalmic images from the endoscopic image candidates based on 
textual information. We have combined a set of image processing techniques as well as text information from figure 
captions to boost the method’s performance, aiming to cope with the high content, color, and shape variability of these 
figures. We evaluated our method on a large dataset of photographs categorized by OpenI and have shown that it 
achieves very promising results. Future work includes using textual information to augment the detection of endoscopic 
image candidates and developing a shape feature descriptor based classification method.  
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