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Abstract—In this paper, we present a scalable arrow detection
technique for biomedical images to support information retrieval
systems under the purview of content-based image retrieval
(CBIR) and text information retrieval (TIR). The idea primarily
follows the criteria based on the geometric properties of the
arrow, where we introduce signatures from key points associated
with it. To handle this, images are first binarized via a fuzzy
binarization tool and several regions of interest are labeled
accordingly. Each region is used to generate signatures and then
compared with the theoretical ones to check their similarity. Our
validation over biomedical images shows the advantage of the
technique over the most prominent state-of-the-art methods.

Keywords—Arrow detection, biomedical images, content-based
image retrieval and text information retrieval.

I. INTRODUCTION

Biomedical images are valuable not only for educational
and medical research purposes, but also for establishing clin-
ical decision support system (CDSS) that can benefit from
content-based image retrieval (CBIR). In turn, CBIR technolo-
gies can be advanced by automatically annotating the regions
of interest (ROIs) on images. For clinicians and medical
researchers, essential information is often conveyed through
graphical illustrations in biomedical publications found in on-
line databases such as the U.S. National Library of Medicine’s
PubMed Central� system. In order to exploit meaningful
content (i.e., ROIs) from figures in these scientific publications,
one needs either to index the whole image or provide access
directly to its relevant parts. Medical images tend to be
complex by nature and often contain several regions that need
to be differentiated. Therefore, processing an entire image
at one time is not trivial, and can make analysis systems
cumbersome and inefficient. Medical researchers often use
pointers (such as arrows and symbols) to highlight meaningful
regions. Also the pointers minimize distractions from other
less relevant regions in images. Additionally, these pointers
are often referred to in figure captions and mentioned in the
text of the associated document. Detecting arrows could help
identify meaningful ROIs and improve CBIR performance.
However, in the CBIR literature, there are few techniques to
detect overlaid arrows. Existing methods rely on sparse pixel
vectorization, segmenting text-like and symbol-like objects,
and thresholding (either global or local). The techniques tend
to vary for different types of images. In this paper, we present
a scalable arrow detection technique that overcomes challenges
posed by the visual complexity of the arrows in medical images

(see Fig. 1), and advances the technology compared to previous
text information retrieval frameworks [1], [2], [3].

In [4], Dori and Wenyin propose a technique to detect
arrows based on sparse pixel vectorisation [5]. The concept
relies on the cross sectional runs (or width runs) of the black
area. This represents the line at intervals along the tracking
direction and records the middle points of these sections.
These points are used to construct vectors. Such a vectorization
process results in many thick short bars from the arrow heads
that are then used to make a decision. The technique utilizes
an interesting application but is limited to machine printed
line images. Measuring features such as eccentricity, convex
area and solidity can be considered to detect arrows, but the
current techniques are limited to regular arrows (i.e., straight
arrows showing left, right, top and bottom) [6]. Additionally,
the method uses pre-defined threshold to avoid small objects
and noise. Cheng et al use text-like and arrow-like objects
separation, assuming that arrows are shown in either black
or white color with respect to the background [8]. From the
binary image, arrow-like object separation employs a fixed
sized mask (after removing the small objects and noise as
in [6]), which are then used for feature computation such
as major and minor axis lengths, axis ratio, area, solidity
and Euler number. A recent study uses a pointer region and
boundary detection to handle distorted arrows [10], which is
followed by edge detection techniques and fixed thresholds
as reported in [7], [9]. These candidates are used to compute
overlapping regions, which are then binarized to extract the
boundary of the expected pointers.

Fundamentally, edge-based arrow detection techniques are
limited by the weak-edge problem [8], [6], [10], no matter
how robust the binarization tools are. Hard thresholding (either
global or local) is one of the primary reasons. This means that
a hard threshold cue often weakens the decision in pointer
detection. For edge detection in binary or grayscale images,
most state-of-the-art methods use classical algorithms like
Roberts, Sobel and Canny edge detection. Further, template-
based methods are limited since they require new templates
to train new images. Moreover, one needs to re-evaluate the
threshold values when new images are used.

Edge-based techniques are worth considering since sam-
pling points can be remarkably compact compared to solid
regions, especially when a broken boundary does not affect the
performance. In biomedical images, one of the major issues for
a broken boundary is non-homogeneous intensity distribution,
where pointers overlap with content. Broken lines can be
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(a) sample 1 (b) sample 2 (d) sample 3 (c) sample 4 (e) sample 5

Fig. 1. A few examples of arrows in biomedical images. Considering background color, to make them visible, both filled and non-filled (black and white)
arrows are employed, in addition to large variations in style.

recovered when gaps are small, but this may be inaccurate [11].
In this context, techniques that use key points hold promise
and form the basis of our proposed method. Following the
basic concept presented in [12], in this paper, we consider
the geometrical definition of an arrow. To efficiently handle
arrow detection, discrete signatures are computed along the
contour from every candidate region and are compared with the
theoretical signatures. Such a comparison can handle several
different types of arrows, not just the regular ones.

The rest of the paper is organized as follows. We define
arrow in Section II. This includes an explanation about discrete
and theoretical arrows. Based on it, in Section III, we describe
a complete system. It details the binarization process where
lists of key points from every labeled connected component
(CC) are used to perform discrete arrow assessment. We
evaluate the the proposed technique using the imageCLEF
dataset in Section IV, and then compare it with recent state-
of-the-art methods. Section V concludes the paper.

II. ARROW DEFINITION

A. Arrow description

As shown in Fig. 2, an arrow is modeled as an isosceles
triangle, T, that is linked to a rectangle, R,

T =
(
A(xa,ya), B(xb,yb), C(xc,yc)

)
and

R =
(
E(xe,ye)F(xh,yh)G(xg,yg)H(xf ,yf )

)
, (1)

where we set c = d(A,B) and a = d(A,C) = d(B,C), and d
refers to a Euclidean distance metric. The aim is to model both
discrete and theoretical signatures of arrows as in [12] and to
integrate them into a broad (scalable) arrow recognition model.

B. Discrete arrow signature

Let Sec(a, c) be the sector defined from the segments
[A,C] and [A,B] which includes T from A. We can then
set the angle between (A,B) and (O, x) as,

θAB = atan

(
yB − yA
xB − xA

)
+mπ, (2)

where xB − xA �= 0 and m ∈ N, and similarly the angle
θAC between (A,C) and (O, x). A triangle is by definition a
convex polygon. For any segment joining two points in T,
every point on the segment must also lie within T. From A,
take the pencil of lines L and the corresponding set V defined
by T from A, in the sector Sec(a, c),

LA =
{
DA

θ

}
θ∈[0,π]

and VA = {IθA}θ∈[θA
B ,θA

C ], (3)

where IθA is the segment beared by pencil of lines contained
in Sec(a, c). Note CA on the circle centered in A of radius
r = max(a, c) and all the segments IθA, are included in
CA. Repeat the same process to define VB . In addition, VC

includes the definition of R (that is using CC centered in
C of radius r = max (a, d(C,F ))). In this case, T and R
are completely described (where (CEFGH) is convex). For
efficiency reasons, Bresenham’s algorithm [14] is used since
it is fast to minimize errors in drawing lines on integer grid
points.

C. Theoretical arrow signature

In this section, we define the theoretical signature, SX ,
associated with the discrete ones, VX . To generalize, we
consider any triangle, T′, which consists of three unaligned
points X1, X2 and X3. X1 is assumed to be the origin of
the orthogonal frame and θ′ and θ′′ the angles described by
the segments [X1, X2] and [X1, X3] in this frame. We also set
x = d(X1, X2) and y = d(X1, X3). Let f be the function
defining the new representation of [X2, X3] from X1 is given
by: SX1

(θ) : [θ′, θ′′]→ R+
∗

f(θ, 〈x, y, θ′, θ′′〉) = x · y · sin (θ′ + θ′′)
x · sin (θ − θ′)− y · sin (θ − θ′′)

. (4)

Based on Eq. (4), for the points A, B and C associated with
the triangle T, we have

SA(θ) : [θ
A
B , θ

A
C ]→ R+

∗ , SA(θ) = f
(
θ, 〈a, c, θAB , θAC〉

)
,

SB(θ) : [θ
B
C , θBA ]→ R+

∗ , SB(θ) = f
(
θ, 〈b, c, θBC , θBA〉

)
,

SC(θ) : [θ
C
A , θ

C
B ]→ R+

∗ , SC(θ) = f
(
θ, 〈a, a, θCA , θCB〉

)
, (5)

where θCA ≤ θ ≤ θCB , for R = ∅ in case of SC(θ). This does
not hold true when R �= ∅. In the latter case, five different
triangles are processed to express SC(θ) (see Fig. 2),

SC(θ)→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θCA ≤ θ < θCE f(θ, 〈a, a′, θCA , θCE〉)
θCE < θ ≤ θCF f(θ, 〈a′, a′′, θCE , θCF 〉)
θCF < θ ≤ θCG f(θ, 〈a′′, a′′, θCF , θCG〉)
θCG < θ ≤ θCH f(θ, 〈a′′, a′, θCG, θCH〉)
θCH < θ ≤ θCB f(θ, 〈a′, a, θCH , θCB〉)

where a′ = d(C,E) = d(C,H) and a′′ = d(C,F ) = d(C,G).
On the whole, two different cases defined in the context of R
must be used to compute SC(θ). A more detailed idea about
the signature’s unicity can be found in [12], which was first
introduced to recognize similar arrows often linked with area
networks in line drawings.

3258



(a) (b)

D
C

θC
A

D
C

θC
A

O

B

y

x

c

C(xc,yc)

G

F

H

D
C

θC
B D

C

θC
B

E

A

a"

x’

π

y’

c c

a’
a f

tπ C(S  )

SA B
S

Fig. 2. An example illustrating (a) a discrete arrow and (b) a signature from point C i.e., SC(θ) of an arrow using pencils of lines in that particular sector.
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Fig. 3. Overall system workflow in block format.

III. ARROW DETECTION

As shown in Fig. 3, our testbed system can be summarized
as follows. It relies on a binarization process on grayscale
images. To extract ROIs, we employ an adaptive binarization
tool to produce four different levels of binarized images. We
take CC from every level of binarization and select extreme
points representing arrow heads. Since we consider the geo-
metrical convex properties of an arrow, we detect arrowhead
locations by considering a maximum of four scans. At the
same point, two major criteria, viz., symmetry and overlap,
are used to select the potential candidates (i.e., CCs). This step
avoids noisy CCs. After that, we handle mainly two different
cases: 1) three head points are checked whether it characterizes
the inscribed circle; 2) two head points are studied in order
to find a missing point by estimating via geometrical arrow
description. Broadly speaking, both cases allow us to check a
triplet of points that on the whole, characterize an arrow head.
To make a decision, the sets of triplets are then estimated
from the comparison of theoretical and discrete models. In
our assessment, the corresponding CCs are said to be detected
as arrows if their similarity ratio crosses the empirically set
threshold.

A. Fuzzy binarization

In our dataset, arrows appear at either high or low intensity
to enhance their visibility in the image. In addition, in many
cases arrows are blurred, overlapped or surrounded by textured
areas. In such contexts, typical binarization tools that are based
on fixed threshold values do not extract ROIs perfectly. There-
fore, we focus on an adaptive binarization tool, which is based
on a fuzzy partition of a 2D histogram of the image, taking into
account the gray level intensities and local variations [13]. 2D
Z-function criteria based on the optimization of fuzzy entropy

are then computed from this histogram to automatically set
the threshold. Z-function employs two kernels: low level and
high level cuts, in addition to direct inversions. The latter issue
(image inversion) takes opposite image intensities into account.
Altogether, four different binarized levels are processed, as
illustrated in Fig. 4. Finally, CCs are extracted and labeled to
identify the shapes as arrow-like objects.

B. Key points

The aim here is to find arrowhead points (cf. Fig. 2) by
studying four scans over the orthogonal frame. Consider a scan
s and a set of K CCs {Gk}k=1,...,K , where k = Iij is the
value of the point at (i, j), associated with CCs Gk in an
image I to be evaluated. While evaluating, a point is added to
a list LGk

s

LGk
s = LGk

s ∪ {(i, j)} iff Iij = k ∧ ∀t �= s, (i, j) �∈ LGk
s . (6)

Fig. 5 shows a list of key points associated with all CCs.
Based on the convex property of arrow heads, these four scans
are sufficient to catch point C (as shown in Fig. 2(a)). Other
arrowhead points can be issued from the scan or they can be
estimated (see Section III-C and Fig. 6) from the location of
point C.

C. Discrete arrow assessment

For any connected component k, as described previously,
the discrete signature relies on the location of the arrow head
key points A, B and C. During the recognition process, we
compute geometric properties of an arrow considering any
combination of points.

Point C first, can be estimated from the symmetric axis of
the arrow Sym(C). By definition, four scans of the image are
enough to include point C. If several points are found, any
point of the arrow can be reached by a segment starting from
C, that eventually provides the size of the arrow. Consider the
set of n points Xi included in all LCk

s and p the number of
bins of Vi,

Sym(Xi) = sup
t∈[1,..., p2 ]

{∑p
i=1 min

(
V t+i
Xi

, V t−i
Xi

)
∑p

i=1 max
(
V t+i
Xi

, V t−i
Xi

)
}
, then

Sym(C) = argmax
i=1,...,n

{Sym(Xi)}. (7)

The aim is now to assess the location of points A and B
from C. Sym is maximum when angle t corresponds to the
axis of symmetry of the signature. The symmetry axis Δ(C)t
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Fig. 4. Fuzzy binarization at four different levels using the samples from Fig. 1. The overall idea is to illustrate that no arrows are missed during binarization.
Arrows are encircled in both red and black (with respect to the background color). Note that in sample 2, arrow 2 is fully surrounded as well as overlapped by
noisy textures at the first two levels, while it is visible at the other two levels.

Fig. 5. An example (sample 2, level 2 in Fig. 4) illustrating the CCs and
their corresponding key points, resulting from four orthogonal scanning. In this
example, a few regions of interest are magnified to make key points visible.

following the angle t is computed to split the remaining points
into two lists. Since the base of the triangle largely covers
the rectangle, we can consider the farthest points A∗ and B∗
belonging to list such that Δ(C)t ⊥ (A∗, B∗) with

Cardinality =
min (|VA|, |VB |)
max (|VA|, |VB |) , {V

i
A, V

i
B , tπ(V

i
C)}  1, (8)

where |VX | refers to the area of the signature. Additionally,
we also consider another criterion i.e., an area for assessment,

Area = 1−
(
K−H

H

)
, H =

√
(s(s− a)(s− b)(s− c)),(9)

where K is the common area identified from the scans
performed from A, B and C, and s = 1

2 (a + b + c) is the
semi-perimeter to check the well-defined isosceles triangle. By
definition, if the triplet describes a triangle in the image, the
value of K must be close to the calculation of the Herons
formula H.

Considering the whole shape of the CC, both symmetric
and overlapping criteria based on H are first employed to limit
the number of possible candidates. Two main cases can then

(a) Point (scan) Estimated(b)

Fig. 6. Examples of arrows: (a) regular and (b) degenerated. Arrows that do
not possess rectangle at the base, can be one of the degenerated examples.

be processed for regular and degenerated arrows (see Fig. 6).
In case of regular arrows, arrow head points can be directly
captured from scanning, which is the case when an arrow
belongs to a surrounding circle or follows the location of
arrows. If not, the same set of points is used again to estimate
the remaining points with respect to C.

D. Decision

In the state-of-the-art, authors use several metrics to com-
pare two distributions. In our test, a basic similarity ratio (SR)
based on ‘Tanimoto’ index (the minimum over maximum) is
calculated between the theoretical and discrete signatures. In
Fig. 7, we demonstrate an example of a discrete signature
from a sample arrow to see how similar it is to the theoretical
one. Magnitude of the signatures can be decreased to limit the
impact of the size of the rectangle by focusing essentially on
head arrow. But, an overlapping is appeared when we compute
a signature from an arrow with noise and/or from other pointer-
like objects. Therefore, SR is weighted by an overlapping
assessment in order to compute recognition rate,

Reco = SR

(
1−

∑p
i=1 inf{V i

A, V
i
B , tπ(V

i
C)} − 2 · d(A,B)∑p

i=1 sup{V i
A, V

i
B , tπ(V

i
C)}

)
.

(10)
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It is not surprising that the more the overlapping, the lower
the recognition rate. To avoid noisy or distorted areas, we
employ a threshold λ (empirically designed) to support the
decision process whether the shape (i.e., any labeled CC from
binarization in Section III-A) is recognized as an arrow.

IV. EVALUATION

A. Datasets, ground-truth and evaluation protocol

A very well-known imageCLEF dataset [15] is used for
testing, which is composed of 298 chest CT images. Each
image is expected to have at least a single arrow. There are
1049 pointers, on the whole. For all images in the dataset,
ground-truths of the pointers were created and each ground-
truth includes information like arrow type, color, location, and
direction. For validation, for any given image in the dataset,
our performance evaluation criteria are precision, recall and
F1-score.

Metrics =

⎧⎪⎨
⎪⎩

m1/M precision
m1/N recall

2
(

(m1/M)×(m1/N)
(m1/M)+(m1/N)

)
F1-score,

(11)

where m1 is the number of correct matches from the detected
set M and N is the total number of pointers (in the ground-
truth) that are expected to be detected.

B. Results and comparison study

Before providing an overall performance of the proposed
method, we first provide a visual demonstration. It aims to
provide an intuitive feeling about how our method works.
Following Figs. 4 and 5, we provide outputs in Fig. 8 based on
the decision (defined by λ = 0.85). Outputs follow the samples
presented in Fig. 1. As an example, considering signature
matching, the arrow detection scores from ‘sample 1’ are as
follows (see Fig. 4 for arrow labeling):

Arrow1 Arrow2 Arrow3 Arrow4 Arrow5

score (%) 0.94 0.87 0.94 0.96 0.89

Moreover, in this illustration, one can take a closer look into
sample 2 and 4, where two different binarized levels have
been used to detect arrows. Therefore, their composition will
provide a complete solution, no matter which binarized level is
used. Note that we avoid redundancies in arrow detection if any
CC is found to be repeated in two or more different binarized
levels. More output samples are provided in Fig. 9, where
test images are taken from radiology image dataset (outside

TABLE I. ARROW DETECTION PERFORMANCE (IN %).

Methods Precision Recall F1-score

Method 1 [7] 22.80 77.80 35.00
Method 2 [8] 81.10 74.10 77.00
Method 3 [10] 84.20 81.60 83.00
Our method 93.14 86.92 89.94

the imageCLEF dataset). These output samples attest to the
extensibility of the proposed method.

In our test dataset, we have white- and black-filled arrows
and therefore category-wise performance evaluation is orga-
nized as follows.

White Black Overall
recognition rates (%) 84.51 88.43 86.92

Using the whole dataset and the evaluation protocol defined
in Eq. (11), experimental results are provided in Table I,
where false positives are also taken into account. Further,
the comparison study with recent state-of-the-art methods 1)
global thresholding-based method [8] and 2) two edge-based
methods [7], [10] has been made. Based on the reported results,
we have observed the following. Higher precision suggests
that the binarization tool does not miss significant number
of arrows and similarly the robustness of the arrow detection
algorithm that can handle up to 90% in average. But on
the other side, binarization tool still carries some artifacts
resembling the arrow-like objects. Theoretically speaking, our
algorithm cannot reject those triangle shaped CCs. The latter
issue however, does not significantly affect the system. Be-
sides, big arrows provide higher recognition rates since their
signatures are robust to noise, compared to small ones. Smaller
ones do not offer clear arrow heads (see test 2 in Fig. 9).
In addition, our system does not offer correct detection of
triangle-shaped arrows with concave base, in few cases. In
this test, we do not consider other pointers such as and ♣.
Even though, the overall performance provides difference with
the benchmarking methods.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a scalable arrow detection
technique for biomedical images. The idea is based on the ge-
ometric properties of the arrow, where we introduce signatures
from key points associated with it. After image binarization,
the similarity between the signatures from every labeled region
and theoretical ones leads to a decision. As shown in this paper,
our validation using biomedical images (from imageCLEF
dataset) outperforms the state-of-the-art methods for straight
arrows.

Based on the dataset used, a few cases of occulted arrows
will be improved by considering the impact of junction points
as arrowhead candidates. Besides, since the current work
does not consider curved arrows, and fixed graphical shaped
pointers like and ♣, we plan to integrate shape description
(DTW-Radon [16], for instance) to detect similar CCs based
on their shape similarity. The proposed method is found to be
applicable to a broader set of images, which is not just limited
to biomedical images.
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Fig. 9. Arrow detection output samples using radiology images. Both filled and non-filled arrows are detected. Arrows without color are missed (see test 2).
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