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A systematic approach to generating derivational variants, including prefixes, suffixes, and 
zero derivations, from the SPECIALIST Lexicon. This new approach will enhance automatic 
generation of derivational variants in the SPECIALIST Lexical Tools (NLP Tools), improving 
both precision and recall rate.

1. Introduction
The demand for natural language processing

(NLP) in medicine has grown significantly in 
recent years. This growth is expected to increase 
rapidly due to the continuing adoption of 
electronic medical records (EMRs). Medical 
language processing (MLP) seeks to analyze 
linguistic patterns found not only in electronic 
medical records, but also in published 
biomedical research, clinical trials reports, and 
other sources. Due to the great deal of lexical 
variation in natural language, managing this 
variability is an important key to successful 
MLP1-2. The National Library of Medicine 
(NLM) distributes the NLP SPECIALIST 
Lexicon and Lexical Tools as one of the Unified 
Medical Language System (UMLS) Knowledge 
Sources along with the Metathesaurus to provide 
the NLP/MLP community with rich NLP 
resources and an extensive NLP toolset since 
19943. One of these SPECIALIST tools, Lexical 
Variant Generation (LVG), is designed to handle 
lexical variations including derivational variant 
generation. This paper presents a novel 
systematic approach to the automatic generation 
of derivational variants using this tool in 
conjunction with the SPECIALIST Lexicon. 

The SPECIALIST Lexicon 
The Lexicon is a large syntactic lexicon of 

biomedical and general English, designed and 
developed to provide the lexical information 
needed for the SPECIALIST Natural Language 
Processing System4 which includes SemRep, 
MetaMap, and the Lexical Tools. The lexicon 
entry for each lexical item (word or term) 
records the syntactic, morphological, and 
orthographic information needed by the 
SPECIALIST NLP System. This information 
includes a syntactic category, inflectional 
variation, spelling variation, abbreviations, 
acronyms, allowable complementation patterns, 
etc. Lexical records are built by linguists 
through a web-based lexicon building tool called 
LexBuild5. A software package, LexCheck6, 
validates the syntax and contents of Lexical 
record(s). This package is integrated in LexBuild 
to ensure the quality of the Lexicon in real-time. 
It also provides Java APIs to convert lexical 
records (Lexicon) into three forms: text, XML, 
and Java objects, for NLP research using the 
SPECIALIST Lexicon. In addition to the unit 
record format, more than 14 LR-files in 
relational table format (expressing the same 
information) are generated by computer 
programs and distributed to maximize their 
usefulness for different types of NLP 
applications. Each table contains lexical 
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information retrieved from the SPECIALIST 
Lexicon, such as agreement and inflection 
(LRAGR), abbreviation and acronym (LRABR),  
spelling variant (LRSPL), etc. The Lexicon is 
also available for lookup and browsing through a 
web tool called LexAccess7. With this 
comprehensive computer-aided system, the 
Lexicon8 has grown from its first release in 1994 
with 66,059 records and 112,990 forms to 
462,129 records and 836,066 forms in the 2012 
release, providing many NLP projects a corpus 
with wider coverage and higher quality. 
The SPECIALIST Lexical Tools 

Lexical variation is a key factor determining 
precision and recall in NLP applications. The 
SPECIALIST Lexical Tools9 include a tool 
called Lexical Variant Generation (LVG) to 
handle lexical variation. Furthermore, the 
Lexical Tools also provide other fundamental 
and commonly used NLP functions, such as 
normalization, Unicode to ASCII conversions, 
tokenization, stopword removal, etc. Each 
function is represented as a flow component 
(flow) in LVG. Currently, the Lexical Tools 
include seven tools, 62 flows, 37 options, and 
Java APIs in the 2012 release. The Lexical Tools 
provide a comprehensive toolset for lexical 
variant generation and other NLP tasks in MLP. 

 

LVG uses the Lexicon as the basis for lexical 
variant generation. A set of computer programs 
retrieves lexical information from the Lexicon 
and automatically generates relational database 
tables for various lexical variations, such as 
inflectional variants, acronyms, spelling 
variants, etc. These tables are updated annually 
with each new Lexicon release. The derivational 
variants table, however, is manually maintained 
because there is no direct derivational 
information coded in the Lexicon. 

 

2. Derivational Variant Generation in LVG 
Derivational processes such as suffixation and 

prefixation create new words based on existing 
words. Words are derivational variants of each 
other if they are related by a derivational 
process. They need not be synonymous, and in 
fact, derivation often entails thoroughgoing 
meaning change. For example, the adjective 
“unkind”, the adverb “kindly,” and the noun 
“kind” are all derived from the adjective “kind”, 

by  the derivational processes of prefixation 
(“un”), suffixation (“ly”) and zero derivation 
(category change without affixation, here, 
changing adjective to noun), respectively. Since 
we are interested in relatedness rather than 
history, we do not record the direction of 
derivation but consider each member of a 
derivational pair (dPair) a derivational variant of 
the other without regard to which came first. The 
information that such a dPair exists (not 
including which word is the root word) is coded 
in LVG for use in NLP applications. 

 

Figure-1 shows the derivational network for 
the “kind” family. Each link and the associated 
two nodes in derivational network define a 
dPair. For example, kindness|noun and kind|adj  
are a dPair because they connect directly. This 
dPair is coded in LVG’s derivational fact table 
as kindness|noun|kind|adj. Derivational pairs 
include base forms as well as  syntactic category 
information, are bi-directional, and can be 
categorized into three types: prefix derivation 
(prefixD), suffix derivation (suffixD), and zero 
derivation (zeroD). Each dPair can only involve 
one derivational affix, or none, in the case of 
zero derivation. This is not to say that each pair 
of terms can only contain one derivational affix; 
just that only one affix will be pertinent to a 
given dPair. 

 

 
Figure-1. Derivational Network Example 

 

In contrast, terms that are not connected 
directly do not comprise a dPair. For example, 
kindness|noun and kindly|adv are not  a dPair 
because they connect through kind|adj. LVG 
handles both cases via two derivational 
generation flow components: direct (-f:d) and 
recursive (-f:R). The recursive derivational flow 
also provides the distance (number of dPairs 
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involved). For example, kindness|noun and 
kindly|adv have a distance of 2 because two 
dPairs are involved. 
 

Use of the LVG derivational flow components 
allows users to find closely related terms that 
may differ in syntactic category, but are 
nonetheless usefully related. For example, if the 
source vocabulary includes hyperuricemic|adj, 
the derivational variant  generation flow will 
map it to hyperuricemia|noun, which is a 
UMLS Metathesaurus10 term. More information, 
such as concepts (C0740394) and synonyms, can 
be retrieved for further NLP analysis. 

 

The LVG derivational flow component is 
based on a Rules and Facts paradigm designed 
to capture the morphological relations between 
terms. It is handled by a list of known dPairs 
(Facts) and a set of rules with exceptions 
(Rules). Derivational rules should have two 
characteristics: high frequency and high 
precision rate. In practice, Rules-generated 
derivational variants tend to have higher 
coverage (recall rate) with lower precision rate. 
A list of known exceptions for each rule is added 
to increase the precision.  Both derivational 
Facts and Rules are manually maintained by 
linguists before the 2012 release. The 
maintenance task involves collecting, validating, 
and tagging dPairs. This process requires 
derivational analysis by linguists. The 
derivational analysis is complicated when more 
than one affix is involved. For example,  
multioptional|adj could be derived from 
optional|adj with the prefix “multi” or from 
multioption|noun with suffix “al”. It could get 
even more complicated when more affixes are 
involved, such as “pseudo-hyper-para-thyroid-
ism”. In such cases, the usage of all related 
words must be checked and the order of 
derivation must be determined for accurate 
analysis and tagging. This process is time 
consuming and labor intensive. Over the years, 
derivational Facts and Rules in LVG have not 
grown proportionally with the growth of the 
Lexicon because of this difficulty and limited 
resources. This paper describes a systematic 
approach to the updating dPairs and generating 
the derivational table (Facts) in LVG from the 
Lexicon. Both precision and recall rate are 

improved. This study also provides analysis and 
refinement of derivational Rules development. 
 

3. Approaches 
 

This section describes a systematic approach 
to semi-automated data mining processes for 
generating dPairs of prefixD, suffixD, and zeroD 
for LVG by using information already contained 
in the Lexicon (The SPECIALIST Lexicon 2012 
release).  
 

Prefix Derivations 
For prefix derivations, a prefix is placed at the 

beginning of a base word to form another word. 
This process results in prefixD pairs. A series of 
computer-aided processes has been developed to 
generate prefixD pairs as follows.  

 

First, the Lexical Systems Group (LSG) 
collects 143 unique and commonly used prefixes 
for derivations. Both prefixes (e.g. “re“) and 
combining forms (e.g. “multi”) are included in 
this prefix list because both could generate 
prefixD pairs. This prefix list11 is subject to 
annual update with the Lexical Tools release. 
Second, all base forms (citations and spelling 
variants) are retrieved from the Lexicon. Third, 
three types of raw prefixD pairs are generated if 
they match the prefix patterns shown below: 

 

prefix: nonsignificant|significant  
prefix and a dash: non-significant|significant  
prefix and a space: non significant|significant   

 

There are 115,139 raw prefixD pairs found in 
this step from the Lexicon, as shown in the last 
row of  Table-1. This list is then sent to linguists 
for final tagging. Due to limited resources for 
this labor intensive process, LSG decided to tag 
only the most frequent and user requested 
prefixes in the Lexicon for the 2012 release. 
65.67% (56,694) of the 86,333 tagged prefixD 
pairs are valid (as shown in the second to the last 
row in Table-1).  Among valid prefixD pairs, 
24.54% (13,914) involved category change, such 
as the prefixD pair fog|noun|antifog|adj, in 
which the category changes from noun to 
adjective. Also, 0.83% (472) of valid prefixD 
pairs involved abbreviations or acronyms (such 
as “MDR“, acronym for “multidrug resistance” 
which occurs in the valid prefixD pair 
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MDR|noun|antiMDR|adj). Accordingly, no 
category filter, abbreviation filter or acronym 
filter was implemented in the prefixD generation 
program to preserve the high recall rate. The 
prefixD tagging results are recorded so that only 
data newly added to the Lexicon will be tagged 
for future releases. 

 

Columns 1, 2, 3, and 4 in Table-1 show the 
frequency ranking (rows 2 ~ 6), prefix word, 
raw prefixD counts (percentage) and valid 
prefixD counts (percentage) of prefixD pairs 
found in the Lexicon, respectively. As shown in 
column 4, the maximum valid rate (80.31%) of 
the prefix “post” and the average valid rate 
(65.67%) are not high enough to implement 
prefixD rules to auto-generate prefixD pairs. 

 

 Prefix Raw prefixD Valid prefixD 
1 non 16,471 (14.31%) 12,598 (76.49%) 
2 pre 9,651 (8.38%) 7,224 (74.85%) 
3 post 9,490 (8.24%) 7,621 (80.31%) 
4 anti 6,500 (5.65%) 5,051 (77.71%) 
5 sub 4,262 (3.70%) 2,698 (63.30%) 
... ... ... ... 

Tag  86,333 (74.98%) 56,694 (65.67%) 
Raw  115,139 (100%)  

 

Table-1. Statistical Data for the Most 
Frequent, Tagged, and Raw PrefixD Pairs 

 

Suffix Derivation Facts and Nominalizations 
In linguistics, a suffix is an affix which is 

placed after the stem of a word. We limit our 
scope on suffix derivation Facts (SD-Facts) to 
suffixes which create nominalizations because 
this information is encoded in the SPECIALIST 
Lexicon. Nominalization is a process that relates 
a verb or adjective to a synonymous noun with 
matching complementation. Nominalization 
derivation (nomD) is a type of suffixD. A series 
of computer-aided processes has been developed 
to retrieve nomD as follows. 

 

First, nominalization information in the lexical 
records is retrieved from the Java object format 
of the SPECIALIST Lexicon. For example, 
state|verb|statement|noun is retrieved from 
nominalization=statement|noun|E0057700 in 
the lexical record for the verb  “state” in the 
Lexicon, as shown below:  

 

{base=state 
entry=E0057695 
 cat=verb 
 variants=reg 
 tran=fincomp(t) 
 tran=np 
 tran=whfincomp 
 tran=whinfcomp:arbc 
 cplxtran=np,infcomp:objr 
 nominalization=statement|noun|E0057700 
} 
Please note that the nominalization is 

symmetric (bi-directional). Hence, the code 
nominalization_of=state|verb|E0057695 is in 
the lexical record of “statement”. In our system, 
only one nomD pair (of these two symmetric 
nomD pairs) is added to remove the redundancy. 
14,445 raw nomD pairs are found in the 
Lexicon. NomD pairs are over-generated and 
filter algorithms subsequently eliminate invalid 
nomD pairs as follows: 

 

1). Pattern filter: the most common way to 
nominalize a verb is by adding a suffix. 
However, not every nominalization occurs that 
way. Thus, not every nominalization is a 
derivation. Nominalizations with verb particles 
are identified as invalid derivations. Four 
patterns of verb particle nominalizations are 
identified as invalid nomD pairs and associated 
examples are illustrated as follows: 
 

Pattern-1: baseParticle|noun|base|verb 
 backup|noun|back|verb 
Pattern-2: base-Particle|noun|base|verb 
 cut-through|noun|cut|verb 
Pattern-3: inflParticle|noun|base|verb 
 grownup|nou|grow|verb 
Pattern-4: infl-Particle|noun|base|verb 
 salting-in|noun|salt|verb 
 

The “base” and “infl” represent base forms 
and inflectional variants of the base forms, 
respectively. Particles are classified as 
prepositions in the Lexicon. However, the 
preposition “per” is not included in the particle 
list because it filters out valid nomD pairs. For 
example, shopper|noun|shop|verb is a valid 
nomD pair and should not be removed. 
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2). Exception filter: other known invalid nomD 
pairs from nominalizations are filtered out as 
exceptions. These are identified by linguists 
from a computer-generated list comparing the 
first and last three characters between base 
forms of dPairs. Some of these exceptions are 
listed as follows: 
 

face-saving|noun|save|verb  
decision-making|noun|make|verb 
lovemaking|noun|make|verb 
... 

As a result, 0.5% (72) nomD pairs are 
removed by filter programs and 99.5% (14,373) 
of nomD pairs (14,445) are valid dPairs from 
Lexicon. These program generated nomD pairs 
are used for SD-Facts table in LVG.  

 

Suffix Derivation Rules (SD-Rules) 
In addition to SD-Facts, LVG also uses SD-

Rules to generate suffixD variants to cover 
suffixD that are not nomD. LSG derives 97 SD-
Rules12 from the most common English suffixes 
for derivations in LVG. For example, the  suffix 
“ment” can be added to a verb to create a noun, 
which is then the suffix derivational variant of 
the word. Thus, adding “ment” to “retire” 
creates “retirement”, expressible as the suffixD 
pair  retire|verb|retirement|noun. SD-Rules 
can be applied to generate suffixD pairs in both 
directions. This SD-Rule is coded in the 
following format in LVG: 

 

$|verb|ment$|noun 
 

 “$” means the end of the word. SD-Rules are 
stored and retrieved through a persistent Trie13 
mechanism for generating suffixD variants in the 
LVG rule based generation. Again, the SD-Rules 
over-generate suffixD pairs. Four heuristic 
algorithms are implemented in LVG to eliminate 
these non-realistic derivational variants  and 
increase precision: 
 

1). Exception filter: there are exceptions (invalid 
dPairs) for each SD-Rule. For example, 
depart|verb|department|noun is an invalid 
suffixD pair that is filtered out and added to the 
exception list for the SD-Rules listed above.  
Exceptions for each rule are maintained by 
linguists and implemented as part of Trie. 
 

2). Min. length of a word: if the length of a term 
is too short (less than 3 as default), the word is 
usually an acronym or abbreviation; thus, SD-
Rules should not be applied. For example, 
mo|verb generated from moment|noun is an 
invalid suffixD pair and is removed because the 
length of “mo” is too short (2).  
 

3). Min. length of stem in the Trie: the stem 
length is the length of the word minus the length 
of its suffix. If the length of the stem is too short 
(less than 3 as default), usually the generated 
suffix derivational variants are invalid. For 
example, the stem size of “lament” is 2 (6-4) 
and thus the invalid suffixD pair 
lament|noun|la|verb is removed. 
 

4). Domain filter: this filter allows users to 
eliminate invalid  results in which the SD-Rules 
generate suffixD pairs that are not both in the 
Lexicon. For example, “colorment|noun”, an 
SD-Rules generated derivational variant of 
“color|verb”, is eliminated because it is not in 
the Lexicon. 
 

The above 2-4 options are configurable in 
LVG to provide more flexibility for different 
NLP goals.  

 

SD-Rules Validation 
We developed a set of programs to validate 

SD-Rules using SD-Facts. First, a program is 
used to identify possible SD-Rules by stripping 
the same starting characters of each valid dPair 
in SD-Facts. For example, a SD-Rule of 
ion$|noun|e$|verb is identified by stripping 
“locat” from “location” and “locate“ in the 
dPair location|noun|locate|verb. In this way, 
496 possible SD-Rules are identified from SD-
Facts. These identified SD-Rules must be further 
analyzed and decomposed by adding linguistic 
knowledge to form better SD-Rules because not 
all of these identified SD-Rules have high 
enough frequency and precision rates. For 
example, the SD-Rule ion$|noun|e$|verb is 
identified with 1,694 instances in the SD-Facts. 
This rule can be further categorized into seven 
linguistic SD-Rules, as shown in Table-2. The 
two most frequent SD-Rules of this example are 
used in LVG. Table-3 shows seven SD-Rules 
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from the five most frequent SD-Rules identified 
from the SD-Facts are used in LVG. 

    
Linguistic SD-Rules Example No. 

ation$|noun|ate$|verb location|noun|locate|verb 1,547 

sion$|noun|se$|verb tension|noun|tense|verb 77 

ution$|noun|ute$|verb delution|noun|delute|verb 37 

etion$|noun|ete$|verb completion|noun|complete|verb 22 

otion$|noun|ote$|verb devotion|noun|devote|verb 6 

ition$|noun|ite$|verb ignition|noun|ignite|verb 4 

cion$|noun|ce$|verb coercion|noun|coerce|verb 1 

 

Table-2. SD-Rules from ion$|noun|e$|verb  
Identified Rules SD-Rules in LVG Counts 

ness$|noun|$|adj ness$|noun|$|adj 2,481 

ion$|noun|e$|verb ation$|noun|ate$|verb 1,547 

sion$|noun|se$|verb 77 
Others  ... 70 

ity$|noun|$|adj ity$|noun|$|adj 881 

icity$|noun|ic$|adj 745 
ility$|noun|le$|adj ability$|noun|able$|adj 1,036 

Others ... 253 

ation$|noun|e$|verb ation$|noun|e$|verb 1,133 

 

Table-3. Five Most  Frequent SD-Rules 
Identified from SD-Facts 

 

Zero Derivations 
Zero derivation is a linguistic process that 

assigns an already existing word to a new 
syntactic category without any concomitant 
change in form. This process is also known as a 
functional shift or conversion. For example, 
flex|noun|flex|verb is a zeroD pair. As 
expected, the zeroD pair has the same base form 
(“flex”) and different category (noun and verb). 
A series of computer-aided processes has been 
developed to generate zeroD pairs as follows. 

 

First, the base forms and category information 
can be retrieved because they are coded in the 
Lexicon. All words from the Lexicon with the 
same base form but different categories are 
paired up as a raw zeroD pair list.  Next, a filter 
algorithm is applied to eliminate two types of 
invalid zeroD pairs as follows: 1). abbreviations 
and acronyms are invalid derivations; 2). all 
words with a length less than two are invalid 
derivations. This information can be retrieved 
from the Lexicon in the Java object format for 
the filter algorithm. For example, the invalid 

zeroD pair AAIR|noun|AAIR|adj is removed 
because “AAIR“ is coded as an acronym in the 
Lexicon. 

 

At this point, the filtered zeroD pairs list 
includes all possible zeroD pairs. This list is then 
sent to linguists for final tagging to remove 
invalid zeroD pairs. For example, 
round|adj|round|prep is a invalid zeroD pair 
because their etymologies are unrelated. The 
tags of all zeroD pairs are recorded so that for 
future releases, only newly added Lexicon data 
will need to be tagged. The result shows that 
10.52% (1,935) raw zeroD pairs (18,400) are 
automatically filtered out by filter programs and 
80.14% (14,747) of raw zeroD pairs are valid. 
Given these results, no zeroD Rules are 
identified because of the relatively low precision 
rate of valid dPairs (80.14%). 

 

Final Compile 
All dPairs from prefixD, suffixD, and zeroD 

need to be validated by an affix validation 
program by checking the first and last three 
characters between base forms to assure only 
one affix is involved. An exception filter is used 
in this program to preserve valid dPairs. For 
example, long|adj|length|noun is valid (an 
exception) even though “long” and ”length” 
have different first and last three characters. This 
exception filter also accounts for spelling 
variants. For example, “dysmature” is a spelling 
variant of “dismature”. Therefore, the exception 
filter passes dysmaturity|noun|dismature|adj 
as a valid dPair. Finally, the three validated lists 
of dPairs (prefixD, suffixD, and zeroD) are 
combined and used as Facts in LVG derivational 
variants generation. 

 

4. Conclusion & Future Work 
Automatic derivational variant generation is a 

complicated task. LSG developed a systematic 
data mining approach to retrieve raw dPairs by 
patterns matched (prefixD and zeroD) and 
embedded codes retrieval (suffixD), applied  
various filter algorithms to eliminate  invalid 
dPairs, and integrated the results with expert 
tagging processes to accomplish this task in the 
Lexical Tools 2012 release. With this approach, 
the coverage (recall rate) of derivational variant 
generation in LVG will grow proportionally 
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with Lexicon growth. The result has been a 
dramatic improvement from 4,559 to 89,950 
dPairs in Facts used in LVG. Ideally, the 
precision in Facts should reach virtually 100%,  
assuming an error-free tagging process. These 
improvements in both precision and recall rates 
provide better results in NLP applications with 
the use of the SPECIALIST Lexical Tools. 

For future releases, in addition to the annual 
update processes to generate dPairs from the 
latest Lexicon, three new tasks will be 
necessary: 

1). Update the prefix list and complete tagging 
processes for all collected prefixes to increase 
coverage of prefixD pairs. 
 

2). Develop a set of processes to retrieve more  
dPairs in suffixD Facts by suffix list (not limited 
to nomD) and thoroughly validate LVG SD-
Rules and associated exceptions by all possible 
raw suffixD pairs in the Lexicon to ensure the 
quality of generated suffixD pairs. 
 

3). Further investigate  the possibility of 
including syntactic category and other linguistic 
knowledge for rules-based generated dPairs and 
more rules-based filters on zeroD and prefixD 
pairs. 
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