
1

A Systematic Approach for Automatically Generating Derivational
Variants in Lexical Tools Based on the SPECIALIST Lexicon
Chris J. Lu, Ph.D.1,2, Lynn McCreedy, Ph.D.1, Destinee Tormey1 and Allen C. Browne 1

1National Library of Medicine, Bethesda, MD
2Medical Science & Computing Inc., Rockville, MD

A systematic approach to generating derivational variants, including prefixes, suffixes, and
zero derivations, from the SPECIALIST Lexicon. This new approach will enhance automatic
generation of derivational variants in the SPECIALIST Lexical Tools (NLP Tools), improving
both precision and recall rate.

1. Introduction
The demand for natural language processing

(NLP) in medicine has grown significantly in
recent years. This growth is expected to increase
rapidly due to the continuing adoption of
electronic medical records (EMRs). Medical
language processing (MLP) seeks to analyze
linguistic patterns found not only in electronic
medical records, but also in published
biomedical research, clinical trials reports, and
other sources. Due to the great deal of lexical
variation in natural language, managing this
variability is an important key to successful
MLP1-2. The National Library of Medicine
(NLM) distributes the NLP SPECIALIST
Lexicon and Lexical Tools as one of the Unified
Medical Language System (UMLS) Knowledge
Sources along with the Metathesaurus to provide
the NLP/MLP community with rich NLP
resources and an extensive NLP toolset since
19943. One of these SPECIALIST tools, Lexical
Variant Generation (LVG), is designed to handle
lexical variations including derivational variant
generation. This paper presents a novel
systematic approach to the automatic generation
of derivational variants using this tool in
conjunction with the SPECIALIST Lexicon.

The SPECIALIST Lexicon
The Lexicon is a large syntactic lexicon of

biomedical and general English, designed and
developed to provide the lexical information
needed for the SPECIALIST Natural Language
Processing System4 which includes SemRep,
MetaMap, and the Lexical Tools. The lexicon
entry for each lexical item (word or term)
records the syntactic, morphological, and
orthographic information needed by the
SPECIALIST NLP System. This information
includes a syntactic category, inflectional
variation, spelling variation, abbreviations,
acronyms, allowable complementation patterns,
etc. Lexical records are built by linguists
through a web-based lexicon building tool called
LexBuild5. A software package, LexCheck6,
validates the syntax and contents of Lexical
record(s). This package is integrated in LexBuild
to ensure the quality of the Lexicon in real-time.
It also provides Java APIs to convert lexical
records (Lexicon) into three forms: text, XML,
and Java objects, for NLP research using the
SPECIALIST Lexicon. In addition to the unit
record format, more than 14 LR-files in
relational table format (expressing the same
information) are generated by computer
programs and distributed to maximize their
usefulness for different types of NLP
applications. Each table contains lexical

2

information retrieved from the SPECIALIST
Lexicon, such as agreement and inflection
(LRAGR), abbreviation and acronym (LRABR),
spelling variant (LRSPL), etc. The Lexicon is
also available for lookup and browsing through a
web tool called LexAccess7. With this
comprehensive computer-aided system, the
Lexicon8 has grown from its first release in 1994
with 66,059 records and 112,990 forms to
462,129 records and 836,066 forms in the 2012
release, providing many NLP projects a corpus
with wider coverage and higher quality.
The SPECIALIST Lexical Tools

Lexical variation is a key factor determining
precision and recall in NLP applications. The
SPECIALIST Lexical Tools9 include a tool
called Lexical Variant Generation (LVG) to
handle lexical variation. Furthermore, the
Lexical Tools also provide other fundamental
and commonly used NLP functions, such as
normalization, Unicode to ASCII conversions,
tokenization, stopword removal, etc. Each
function is represented as a flow component
(flow) in LVG. Currently, the Lexical Tools
include seven tools, 62 flows, 37 options, and
Java APIs in the 2012 release. The Lexical Tools
provide a comprehensive toolset for lexical
variant generation and other NLP tasks in MLP.

LVG uses the Lexicon as the basis for lexical
variant generation. A set of computer programs
retrieves lexical information from the Lexicon
and automatically generates relational database
tables for various lexical variations, such as
inflectional variants, acronyms, spelling
variants, etc. These tables are updated annually
with each new Lexicon release. The derivational
variants table, however, is manually maintained
because there is no direct derivational
information coded in the Lexicon.

2. Derivational Variant Generation in LVG
Derivational processes such as suffixation and

prefixation create new words based on existing
words. Words are derivational variants of each
other if they are related by a derivational
process. They need not be synonymous, and in
fact, derivation often entails thoroughgoing
meaning change. For example, the adjective
“unkind”, the adverb “kindly,” and the noun
“kind” are all derived from the adjective “kind”,

by the derivational processes of prefixation
(“un”), suffixation (“ly”) and zero derivation
(category change without affixation, here,
changing adjective to noun), respectively. Since
we are interested in relatedness rather than
history, we do not record the direction of
derivation but consider each member of a
derivational pair (dPair) a derivational variant of
the other without regard to which came first. The
information that such a dPair exists (not
including which word is the root word) is coded
in LVG for use in NLP applications.

Figure-1 shows the derivational network for
the “kind” family. Each link and the associated
two nodes in derivational network define a
dPair. For example, kindness|noun and kind|adj
are a dPair because they connect directly. This
dPair is coded in LVG’s derivational fact table
as kindness|noun|kind|adj. Derivational pairs
include base forms as well as syntactic category
information, are bi-directional, and can be
categorized into three types: prefix derivation
(prefixD), suffix derivation (suffixD), and zero
derivation (zeroD). Each dPair can only involve
one derivational affix, or none, in the case of
zero derivation. This is not to say that each pair
of terms can only contain one derivational affix;
just that only one affix will be pertinent to a
given dPair.

Figure-1. Derivational Network Example

In contrast, terms that are not connected
directly do not comprise a dPair. For example,
kindness|noun and kindly|adv are not a dPair
because they connect through kind|adj. LVG
handles both cases via two derivational
generation flow components: direct (-f:d) and
recursive (-f:R). The recursive derivational flow
also provides the distance (number of dPairs

3

involved). For example, kindness|noun and
kindly|adv have a distance of 2 because two
dPairs are involved.

Use of the LVG derivational flow components
allows users to find closely related terms that
may differ in syntactic category, but are
nonetheless usefully related. For example, if the
source vocabulary includes hyperuricemic|adj,
the derivational variant generation flow will
map it to hyperuricemia|noun, which is a
UMLS Metathesaurus10 term. More information,
such as concepts (C0740394) and synonyms, can
be retrieved for further NLP analysis.

The LVG derivational flow component is
based on a Rules and Facts paradigm designed
to capture the morphological relations between
terms. It is handled by a list of known dPairs
(Facts) and a set of rules with exceptions
(Rules). Derivational rules should have two
characteristics: high frequency and high
precision rate. In practice, Rules-generated
derivational variants tend to have higher
coverage (recall rate) with lower precision rate.
A list of known exceptions for each rule is added
to increase the precision. Both derivational
Facts and Rules are manually maintained by
linguists before the 2012 release. The
maintenance task involves collecting, validating,
and tagging dPairs. This process requires
derivational analysis by linguists. The
derivational analysis is complicated when more
than one affix is involved. For example,
multioptional|adj could be derived from
optional|adj with the prefix “multi” or from
multioption|noun with suffix “al”. It could get
even more complicated when more affixes are
involved, such as “pseudo-hyper-para-thyroid-
ism”. In such cases, the usage of all related
words must be checked and the order of
derivation must be determined for accurate
analysis and tagging. This process is time
consuming and labor intensive. Over the years,
derivational Facts and Rules in LVG have not
grown proportionally with the growth of the
Lexicon because of this difficulty and limited
resources. This paper describes a systematic
approach to the updating dPairs and generating
the derivational table (Facts) in LVG from the
Lexicon. Both precision and recall rate are

improved. This study also provides analysis and
refinement of derivational Rules development.

3. Approaches

This section describes a systematic approach
to semi-automated data mining processes for
generating dPairs of prefixD, suffixD, and zeroD
for LVG by using information already contained
in the Lexicon (The SPECIALIST Lexicon 2012
release).

Prefix Derivations
For prefix derivations, a prefix is placed at the

beginning of a base word to form another word.
This process results in prefixD pairs. A series of
computer-aided processes has been developed to
generate prefixD pairs as follows.

First, the Lexical Systems Group (LSG)
collects 143 unique and commonly used prefixes
for derivations. Both prefixes (e.g. “re“) and
combining forms (e.g. “multi”) are included in
this prefix list because both could generate
prefixD pairs. This prefix list11 is subject to
annual update with the Lexical Tools release.
Second, all base forms (citations and spelling
variants) are retrieved from the Lexicon. Third,
three types of raw prefixD pairs are generated if
they match the prefix patterns shown below:

prefix: nonsignificant|significant
prefix and a dash: non-significant|significant
prefix and a space: non significant|significant

There are 115,139 raw prefixD pairs found in
this step from the Lexicon, as shown in the last
row of Table-1. This list is then sent to linguists
for final tagging. Due to limited resources for
this labor intensive process, LSG decided to tag
only the most frequent and user requested
prefixes in the Lexicon for the 2012 release.
65.67% (56,694) of the 86,333 tagged prefixD
pairs are valid (as shown in the second to the last
row in Table-1). Among valid prefixD pairs,
24.54% (13,914) involved category change, such
as the prefixD pair fog|noun|antifog|adj, in
which the category changes from noun to
adjective. Also, 0.83% (472) of valid prefixD
pairs involved abbreviations or acronyms (such
as “MDR“, acronym for “multidrug resistance”
which occurs in the valid prefixD pair

4

MDR|noun|antiMDR|adj). Accordingly, no
category filter, abbreviation filter or acronym
filter was implemented in the prefixD generation
program to preserve the high recall rate. The
prefixD tagging results are recorded so that only
data newly added to the Lexicon will be tagged
for future releases.

Columns 1, 2, 3, and 4 in Table-1 show the
frequency ranking (rows 2 ~ 6), prefix word,
raw prefixD counts (percentage) and valid
prefixD counts (percentage) of prefixD pairs
found in the Lexicon, respectively. As shown in
column 4, the maximum valid rate (80.31%) of
the prefix “post” and the average valid rate
(65.67%) are not high enough to implement
prefixD rules to auto-generate prefixD pairs.

 Prefix Raw prefixD Valid prefixD
1 non 16,471 (14.31%) 12,598 (76.49%)
2 pre 9,651 (8.38%) 7,224 (74.85%)
3 post 9,490 (8.24%) 7,621 (80.31%)
4 anti 6,500 (5.65%) 5,051 (77.71%)
5 sub 4,262 (3.70%) 2,698 (63.30%)
...

Tag 86,333 (74.98%) 56,694 (65.67%)
Raw 115,139 (100%)

Table-1. Statistical Data for the Most
Frequent, Tagged, and Raw PrefixD Pairs

Suffix Derivation Facts and Nominalizations
In linguistics, a suffix is an affix which is

placed after the stem of a word. We limit our
scope on suffix derivation Facts (SD-Facts) to
suffixes which create nominalizations because
this information is encoded in the SPECIALIST
Lexicon. Nominalization is a process that relates
a verb or adjective to a synonymous noun with
matching complementation. Nominalization
derivation (nomD) is a type of suffixD. A series
of computer-aided processes has been developed
to retrieve nomD as follows.

First, nominalization information in the lexical
records is retrieved from the Java object format
of the SPECIALIST Lexicon. For example,
state|verb|statement|noun is retrieved from
nominalization=statement|noun|E0057700 in
the lexical record for the verb “state” in the
Lexicon, as shown below:

{base=state
entry=E0057695
 cat=verb
 variants=reg
 tran=fincomp(t)
 tran=np
 tran=whfincomp
 tran=whinfcomp:arbc
 cplxtran=np,infcomp:objr
 nominalization=statement|noun|E0057700
}
Please note that the nominalization is

symmetric (bi-directional). Hence, the code
nominalization_of=state|verb|E0057695 is in
the lexical record of “statement”. In our system,
only one nomD pair (of these two symmetric
nomD pairs) is added to remove the redundancy.
14,445 raw nomD pairs are found in the
Lexicon. NomD pairs are over-generated and
filter algorithms subsequently eliminate invalid
nomD pairs as follows:

1). Pattern filter: the most common way to
nominalize a verb is by adding a suffix.
However, not every nominalization occurs that
way. Thus, not every nominalization is a
derivation. Nominalizations with verb particles
are identified as invalid derivations. Four
patterns of verb particle nominalizations are
identified as invalid nomD pairs and associated
examples are illustrated as follows:

Pattern-1: baseParticle|noun|base|verb
 backup|noun|back|verb
Pattern-2: base-Particle|noun|base|verb
 cut-through|noun|cut|verb
Pattern-3: inflParticle|noun|base|verb
 grownup|nou|grow|verb
Pattern-4: infl-Particle|noun|base|verb
 salting-in|noun|salt|verb

The “base” and “infl” represent base forms
and inflectional variants of the base forms,
respectively. Particles are classified as
prepositions in the Lexicon. However, the
preposition “per” is not included in the particle
list because it filters out valid nomD pairs. For
example, shopper|noun|shop|verb is a valid
nomD pair and should not be removed.

5

2). Exception filter: other known invalid nomD
pairs from nominalizations are filtered out as
exceptions. These are identified by linguists
from a computer-generated list comparing the
first and last three characters between base
forms of dPairs. Some of these exceptions are
listed as follows:

face-saving|noun|save|verb
decision-making|noun|make|verb
lovemaking|noun|make|verb
...

As a result, 0.5% (72) nomD pairs are
removed by filter programs and 99.5% (14,373)
of nomD pairs (14,445) are valid dPairs from
Lexicon. These program generated nomD pairs
are used for SD-Facts table in LVG.

Suffix Derivation Rules (SD-Rules)
In addition to SD-Facts, LVG also uses SD-

Rules to generate suffixD variants to cover
suffixD that are not nomD. LSG derives 97 SD-
Rules12 from the most common English suffixes
for derivations in LVG. For example, the suffix
“ment” can be added to a verb to create a noun,
which is then the suffix derivational variant of
the word. Thus, adding “ment” to “retire”
creates “retirement”, expressible as the suffixD
pair retire|verb|retirement|noun. SD-Rules
can be applied to generate suffixD pairs in both
directions. This SD-Rule is coded in the
following format in LVG:

$|verb|ment$|noun

 “$” means the end of the word. SD-Rules are
stored and retrieved through a persistent Trie13
mechanism for generating suffixD variants in the
LVG rule based generation. Again, the SD-Rules
over-generate suffixD pairs. Four heuristic
algorithms are implemented in LVG to eliminate
these non-realistic derivational variants and
increase precision:

1). Exception filter: there are exceptions (invalid
dPairs) for each SD-Rule. For example,
depart|verb|department|noun is an invalid
suffixD pair that is filtered out and added to the
exception list for the SD-Rules listed above.
Exceptions for each rule are maintained by
linguists and implemented as part of Trie.

2). Min. length of a word: if the length of a term
is too short (less than 3 as default), the word is
usually an acronym or abbreviation; thus, SD-
Rules should not be applied. For example,
mo|verb generated from moment|noun is an
invalid suffixD pair and is removed because the
length of “mo” is too short (2).

3). Min. length of stem in the Trie: the stem
length is the length of the word minus the length
of its suffix. If the length of the stem is too short
(less than 3 as default), usually the generated
suffix derivational variants are invalid. For
example, the stem size of “lament” is 2 (6-4)
and thus the invalid suffixD pair
lament|noun|la|verb is removed.

4). Domain filter: this filter allows users to
eliminate invalid results in which the SD-Rules
generate suffixD pairs that are not both in the
Lexicon. For example, “colorment|noun”, an
SD-Rules generated derivational variant of
“color|verb”, is eliminated because it is not in
the Lexicon.

The above 2-4 options are configurable in
LVG to provide more flexibility for different
NLP goals.

SD-Rules Validation
We developed a set of programs to validate

SD-Rules using SD-Facts. First, a program is
used to identify possible SD-Rules by stripping
the same starting characters of each valid dPair
in SD-Facts. For example, a SD-Rule of
ion$|noun|e$|verb is identified by stripping
“locat” from “location” and “locate“ in the
dPair location|noun|locate|verb. In this way,
496 possible SD-Rules are identified from SD-
Facts. These identified SD-Rules must be further
analyzed and decomposed by adding linguistic
knowledge to form better SD-Rules because not
all of these identified SD-Rules have high
enough frequency and precision rates. For
example, the SD-Rule ion$|noun|e$|verb is
identified with 1,694 instances in the SD-Facts.
This rule can be further categorized into seven
linguistic SD-Rules, as shown in Table-2. The
two most frequent SD-Rules of this example are
used in LVG. Table-3 shows seven SD-Rules

6

from the five most frequent SD-Rules identified
from the SD-Facts are used in LVG.

Linguistic SD-Rules Example No.

ation$|noun|ate$|verb location|noun|locate|verb 1,547

sion$|noun|se$|verb tension|noun|tense|verb 77

ution$|noun|ute$|verb delution|noun|delute|verb 37

etion$|noun|ete$|verb completion|noun|complete|verb 22

otion$|noun|ote$|verb devotion|noun|devote|verb 6

ition$|noun|ite$|verb ignition|noun|ignite|verb 4

cion$|noun|ce$|verb coercion|noun|coerce|verb 1

Table-2. SD-Rules from ion$|noun|e$|verb
Identified Rules SD-Rules in LVG Counts

ness$|noun|$|adj ness$|noun|$|adj 2,481

ion$|noun|e$|verb ation$|noun|ate$|verb 1,547

sion$|noun|se$|verb 77
Others ... 70

ity$|noun|$|adj ity$|noun|$|adj 881

icity$|noun|ic$|adj 745
ility$|noun|le$|adj ability$|noun|able$|adj 1,036

Others ... 253

ation$|noun|e$|verb ation$|noun|e$|verb 1,133

Table-3. Five Most Frequent SD-Rules
Identified from SD-Facts

Zero Derivations
Zero derivation is a linguistic process that

assigns an already existing word to a new
syntactic category without any concomitant
change in form. This process is also known as a
functional shift or conversion. For example,
flex|noun|flex|verb is a zeroD pair. As
expected, the zeroD pair has the same base form
(“flex”) and different category (noun and verb).
A series of computer-aided processes has been
developed to generate zeroD pairs as follows.

First, the base forms and category information
can be retrieved because they are coded in the
Lexicon. All words from the Lexicon with the
same base form but different categories are
paired up as a raw zeroD pair list. Next, a filter
algorithm is applied to eliminate two types of
invalid zeroD pairs as follows: 1). abbreviations
and acronyms are invalid derivations; 2). all
words with a length less than two are invalid
derivations. This information can be retrieved
from the Lexicon in the Java object format for
the filter algorithm. For example, the invalid

zeroD pair AAIR|noun|AAIR|adj is removed
because “AAIR“ is coded as an acronym in the
Lexicon.

At this point, the filtered zeroD pairs list
includes all possible zeroD pairs. This list is then
sent to linguists for final tagging to remove
invalid zeroD pairs. For example,
round|adj|round|prep is a invalid zeroD pair
because their etymologies are unrelated. The
tags of all zeroD pairs are recorded so that for
future releases, only newly added Lexicon data
will need to be tagged. The result shows that
10.52% (1,935) raw zeroD pairs (18,400) are
automatically filtered out by filter programs and
80.14% (14,747) of raw zeroD pairs are valid.
Given these results, no zeroD Rules are
identified because of the relatively low precision
rate of valid dPairs (80.14%).

Final Compile
All dPairs from prefixD, suffixD, and zeroD

need to be validated by an affix validation
program by checking the first and last three
characters between base forms to assure only
one affix is involved. An exception filter is used
in this program to preserve valid dPairs. For
example, long|adj|length|noun is valid (an
exception) even though “long” and ”length”
have different first and last three characters. This
exception filter also accounts for spelling
variants. For example, “dysmature” is a spelling
variant of “dismature”. Therefore, the exception
filter passes dysmaturity|noun|dismature|adj
as a valid dPair. Finally, the three validated lists
of dPairs (prefixD, suffixD, and zeroD) are
combined and used as Facts in LVG derivational
variants generation.

4. Conclusion & Future Work
Automatic derivational variant generation is a

complicated task. LSG developed a systematic
data mining approach to retrieve raw dPairs by
patterns matched (prefixD and zeroD) and
embedded codes retrieval (suffixD), applied
various filter algorithms to eliminate invalid
dPairs, and integrated the results with expert
tagging processes to accomplish this task in the
Lexical Tools 2012 release. With this approach,
the coverage (recall rate) of derivational variant
generation in LVG will grow proportionally

7

with Lexicon growth. The result has been a
dramatic improvement from 4,559 to 89,950
dPairs in Facts used in LVG. Ideally, the
precision in Facts should reach virtually 100%,
assuming an error-free tagging process. These
improvements in both precision and recall rates
provide better results in NLP applications with
the use of the SPECIALIST Lexical Tools.

For future releases, in addition to the annual
update processes to generate dPairs from the
latest Lexicon, three new tasks will be
necessary:

1). Update the prefix list and complete tagging
processes for all collected prefixes to increase
coverage of prefixD pairs.

2). Develop a set of processes to retrieve more
dPairs in suffixD Facts by suffix list (not limited
to nomD) and thoroughly validate LVG SD-
Rules and associated exceptions by all possible
raw suffixD pairs in the Lexicon to ensure the
quality of generated suffixD pairs.

3). Further investigate the possibility of
including syntactic category and other linguistic
knowledge for rules-based generated dPairs and
more rules-based filters on zeroD and prefixD
pairs.

References
1. Pacak MG, Norton LM, and Dunham GS,

“Morphosemantic analysis of -ITIS forms in
medical language”, Methods InfMed 1980,
vol. 19, pp. 99-105

2. Wolff S, “Automatic coding of medical
vocabulary”, In: Sager N, Friedman C, and
Lyman MS, eds, Medical Information
Processing – Computer Management of
Narrative Data. Addison Wesley, Reading
Mass, 1987, pp. 145-62

3. A T McCray, A R Aronson, A C Browne, T
C Rindflesch, A Razi, and S Srinivasan,
“UMLS Knowledge for biomedical
language processing”, Bull Med Libr Assoc.
1993 April, 81(2), pp. 184-194.

4. A.T. McCray, S. Srinivasan, A.C. Browne,
“Lexical Methods for Managing Variation in
Biomedical Terminologies”, the Proceedings
of the 18th Annual Symposium on Computer
Applications in Medical Care, 1994, pp. 235-
239

5. Lexical systems Group, LexBuild project:
http://umlslex.nlm.nih.gov/lexBuild

6. Lexical systems Group, LexCheck project:
http://umlslex.nlm.nih.gov/lexCheck

7. Lexical systems Group, LexAccess project:
http://umlslex.nlm.nih.gov/lexAccess

8. Lexical systems Group, Lexicon project:
http://umlslex.nlm.nih.gov/lexicon

9. Lexical systems Group, Lexical Tools project:
http://umlslex.nlm.nih.gov/lvg

10. Unified Medical Language System project:
http://umls.nlm.nih.gov

11. Lexical Tools – Derivational Prefix List:
http://lexsrv3.nlm.nih.gov/LexSysGroup/Proj
ects/lvg/2012/docs/designDoc/UDF/derivatio
ns/prefixList.html

12. Lexical Tools – Derivational Suffix Rules:
http://lexsrv3.nlm.nih.gov/LexSysGroup/Proj
ects/lvg/2012/docs/designDoc/UDF/derivatio
ns/suffixRules.html

13. Alfred V. Aho, Jeffrey D. Ullman, John E.
Hopcroft, “Data Structure and Algorithms”
Addison Wesley, 1983. pp. 163-169.

Chris J Lu is a systems architect in Lexical
Systems Group (LSG) at the NLM. He received
his PhD in Computer Integrated Manufacturing
and Design (CIMAD) in the mechanical
engineering department from University of
Maryland. He is a member of AMIA. Contact him
at lu@nlm.nih.gov.

Lynn McCreedy is a linguist and lexicographer
for the UMLS SPECIALIST Lexicon. She
received her PhD in linguistics from
Georgetown University. Contact her at
mccreedy@nlm.nih.gov.

Destinee Tormey is a linguist and lexicographer
for the UMLS SPECIALIST Lexicon. She
received an M.S. in Computational Linguistics
from Georgetown University. Contact her at
dln4@georgetown.edu.

Allen C. Browne is an information research
specialist at the Lister Hill Center in the
National Library of Medicine where he is the
leader of the Lexical Systems Group. Contact
him at browne@nlm.nih.gov.

	1. Introduction
	2. Derivational Variant Generation in LVG
	Figure-1 shows the derivational network for the “kind” family. Each link and the associated two nodes in derivational network define a dPair. For example, kindness|noun and kind|adj are a dPair because they connect directly. This dPair is coded in LV...
	Figure-1. Derivational Network Example
	In contrast, terms that are not connected directly do not comprise a dPair. For example, kindness|noun and kindly|adv are not a dPair because they connect through kind|adj. LVG handles both cases via two derivational generation flow components: direc...
	Use of the LVG derivational flow components allows users to find closely related terms that may differ in syntactic category, but are nonetheless usefully related. For example, if the source vocabulary includes hyperuricemic|adj, the derivational vari...
	The LVG derivational flow component is based on a Rules and Facts paradigm designed to capture the morphological relations between terms. It is handled by a list of known dPairs (Facts) and a set of rules with exceptions (Rules). Derivational rules sh...
	3. Approaches
	This section describes a systematic approach to semi-automated data mining processes for generating dPairs of prefixD, suffixD, and zeroD for LVG by using information already contained in the Lexicon (The SPECIALIST Lexicon 2012 release).
	4. Conclusion & Future Work

