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Abstract—We present a generalized line histogram technique
to compute global rib-orientation for detecting rotated lungs in
chest radiographs. We use linear structuring elements, such as
line seed filters, as kernels to convolve with edge images, and
extract a set of lines from the posterior rib-cage. After convolving
kernels in all possible orientations in the range [0, π), we measure
the angle for which the line histogram has maximum magnitude.
This measure provides a good approximation of the global chest
rib-orientation for each lung. A chest radiograph is said to be
upright if the difference between the orientation angles of both
lungs with respect to the horizontal axis, is negligible. We validate
our method on sets of normal and abnormal images and argue
that rib orientation can be used for rotation detection in chest
radiographs as aid in quality control during image acquisition,
and to discard images from training and testing data sets. In our
test, we achieve a maximum accuracy of 90%.

Index Terms—Chest radiographs; generalized line histogram;
rib-orientations; rotation detection.

I. INTRODUCTION

Quality control is a critical issue when large number of
digital chest radiographs (or chest X-ray (CXR)) need to
be acquired in an automated fashion, such as during mass
population screening [1]. For this, images need to be inspected
for proper x-ray penetration, adequate inspiration (inhaling)
by the patient, proper angulation, and importantly, the image
should be devoid of any rotation. Rotation can adversely affect
the performance of subsequent automated processing steps
in screening algorithms or computer-aided diagnosis, such as
lung segmentation [2]. Further, rotation can also affect one-to-
one zone comparison, viz. upper, middle, and lower between
lung sections. While rotated CXRs may not necessarily be
challenging for radiologists, they can confuse the machine that
is operating in either a computer-assisted or a fully-automated
fashion. An automatic method for detecting rotated images
is desirable to enable machines to reject the rotated CXR
and/or forward it to a human operator for closer inspection.
Rotation in CXRs can often be expected for images acquired
with portable machines in non-hospital settings or under more
challenging outdoor conditions, such as mobile screening sta-
tions in rural areas. In addition to pathology-related rotations,

misaligned body positions are more frequent in these cases due
to hardware limitations of the screening setup used, poorly-
observed screening protocols, or other factors [3], [4].

To acquire an upright CXR, a radiology technician needs to
align the patient’s body so that it is perpendicular to the x-ray
beam. Any deviation from this position will result in a rotated
image. The degree of rotation in a CXR can be computed by
analyzing the relationship of the medial heads of the clavicles
to the adjacent spinous processes in the upper thorax. Nor-
mally, the spinous processes lie equidistant from the medial
heads of the clavicles. From a practical point of view, the
automatic detection of clavicle heads and spinous processes
needs to be precise. Even a small deviation of 10 to 20 pixels
(in and out) with respect to the actual boundary, can adversely
affect the decision process. We observe that radiologists can
reliably decide if a CXR is rotated by using other contextual
information independent of the clavicles. Motivated by this,
we detect rotation based on the rib-orientation. A rotated lung
is likely to affect the positions of clavicles and ribs in the
same way. In addition, this method is likely to be more stable
because the number of ribs is relatively high and the entire
rib-cage can be used.

Humans have 12 pairs of ribs including false and floating
ribs [5]. Not all of these ribs are necessarily visible in a typical
radiograph for various reasons. However, the visible subset is
usually sufficient to compute the global rib-orientation. Very
few papers on rib detection and segmentation methods have
been reported in the literature [6]–[9]. However, the published
methods usually do not detect the false and floating ribs.
Further some methods detect the ribs only partially due to
the large variation of intensity distributions in CXRs. It is
interesting to note that computing the rib-vertebra anglei.e., the
angle between a rib and its corresponding vertebra, which is a
clinically accepted method [10], [11]. These works used radio-
graphs of scoliosis patients for which they computed the rib-
vertebra angle difference (RVAD), for all ribs. Similarly, image
registration method for interval change detection between two
CXRs based on the difference in anterior-posterior inclination
angles has been reported [12]. Due to low accuracy in rib and



(a) Input image (b) Lung segmentation (c) Right lung (d) Left lung

Fig. 1. An example showing the complete process of segmenting lung sections (right and left) using graph-cut algorithm.

vertebra segmentation, we propose a method for computing
the global rib-orientation for both lungs. Missing a pair of ribs
does not negatively affect the output of this method because we
are only interested in the global rib-orientation and not in the
orientation of individual ribs. Contributions of our work to the
science are: 1) we have developed a generalized line histogram
method to compute rib-orientations; and 2) we apply this
method as a decision making tool for rotation detection and
quality control in acquisition of CXRs, particularly in remote
rural areas during mass population screening. Taking rotation
into account using ribs minimizes false positive detection
caused by overlapping densities in a rotated patient.

The remainder of this paper is organized as follows. We start
with detailing our proposed method in Section II. This includes
lung segmentation, line seed filter (kernel) development, line
histogram computation, and rotation decision. In Section III,
we evaluate the approach. We conclude the paper in Section IV
with a summary of our results.

II. THE PROPOSED METHOD

A. Lung section segmentation

To effectively compute the rib-cage edge distribution, it is
necessary to segment right and left lung sections from the
whole image. There are several state-of-the-art algorithms, to
detect the lung regions. In this work, we use our algorithm
which is based on graph-cut algorithm guided by patient-
specific atlas model [13]. The system first builds a subset of
atlases (which are expert delineation of lung boundaries of
several patients) by choosing the most similar x-rays in terms
of shape similarity of lungs. Then, it warps these selected
atlases to the target CXRs using a registration algorithm.
We use the scale invariant feature transform (SIFT) flow
(i.e., SIFT-flow) registration approach [14] which computes
the corresponding pixels of image pairs according to their
SIFT feature similarity. The spatial difference between the
corresponding pixels is used to warp the masks derived from
training CXRs to build a lung model for the target CXR. The
lung model and intensity information of the target CXR are
combined by using the objective function: data term, smooth-
ness term and lung model term. The data term forces the seg-
mentation suitable to intensity information of the CXRs; the
smoothness term produces a smooth solution; and the model
term guides the algorithm to produce a segmentation result

similar to the patient lung model. The final lung boundary
is computed by solving the objective function with graph cut
energy minimization approach [15]. Fig. 1 shows a couple of
output examples of it, where the detected right and left lung
sections are separately illustrated.

B. Generalized line histogram

B.1 Kernels.
To detect key lines from the image, we define line seed filter
kernels that is defined in a normal Gaussian distribution. We
compute probability density function (pdf) at each of the
values in X using the normal distribution,

f (x, µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (1)

where σ = 1, µ = 0 and X is a vector and its values are
confined in the range [−σ, σ]. To make it simple, in the discrete
case, a structuring element can be represented as a set of pixels
on a grid, assuming the values 1 if the pixel belongs to the
structuring element or 0, otherwise [16], [17]. Based on this,
we define a binary kernel representing a line of any particular
length len and angle θ i.e., f (‘line ′, len, θ). To generate a
kernel that represents the shape of a Gaussian (‘bell-shaped’)
hump g, we perform an element-wise multiplication of binary
kernel with the values obtained from Eq. (1),

g = f (‘line ′, len, θ) ◦ f
(

[−σ :
2σ

len − 1
: σ], µ, σ

)
. (2)

Note that the kernel size depends on the length of the linear
structuring element. Unsurprisingly, larger the size of the
kernel matrix, lesser the number of lines.

Considering a set Θ of possible different orientations {θk}
which are specified in the range [0◦, 180◦), we have a set K
of kernels {gk},

K = {gk}k=1,...,K , and θk =
180◦

bink
(k − 1), (3)

where bin is the number of bins and the index k associated
with kernel g determines the orientation value i.e., θk.

B.2 Line histogram.
Given an edge image edg(m,n) of size M × N , our idea
is to perform convolution with the kernel gK. Note that
the edge image is resulted from Canny edge detector after
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Fig. 2. An example showing (a) lung sections (cf. Fig. 1), (b) kernels at three different orientations, which are defined in 1D Gaussian distribution and (c-e)
the corresponding lines that are via convolution.

global histogram equalization. Convolution in general, can be
expressed as o(m,n) = g ⊗ edg

o(m,n) =
∑I
i=1

∑J
j=1 g(i, j)edg(m− i, n− j). (4)

This means that, for each pixel (m,n) in the image, the con-
volution output value o(m,n) is calculated by translating the
convolution mask to pixel (m,n) in the image, and then taking
the weighted sum of the pixels in the neighborhood about
(m,n), where the individual weights are the corresponding
values in the convolution mask. Such a convolution produces
prominent lines that are appeared in the lung section. Consider
a complete set K of kernels (cf. Eq. (3)), convolution will pro-
duce a complete set L of lines, L = K⊗ edg = {`k}k=1,...,K ,
where `k refers to the set of lines in that particular index k.
Fig. 2 shows a few examples of it. Formally, any ` can be
represented by a tuple: total number of lines (noL) and total
length of the lines (loL) i.e., ` = 〈noL, loL〉.

To compute histogram, without loss of generality, we use
loL in every particular k since lengths of the lines vary from
one line to another (see Fig. 2). Based on this, a complete set
H of line histograms hk = loLk of lines in every convolution,
designated by kernel gk is

H = {~k}k=1,...,K, and ~k =
1

max(hk)
hk. (5)

C. Chest radiograph rotation

Global chest rib-orientation can be computed as,
arg maxk(~k) i.e., the angle from which the maximum
magnitude of line histogram is produced.

Consider two lung sections: right and left, and kernels at
several different θ values from 0◦ to 180◦, the CXR is said
to be upright if their orientation angle difference ∆ is zero
or negligible (see Fig. 3), ∆α1,2

= |α1 − α2| ≈ 0, where
α1 = θ1 and α2 = 180− θ2 respectively represent the global
chest rib-orientation angles from right and left lung sections.
In practical, since ∆α1,2 6= 0, our decision relies on a small
tolerance (tol.) to perform a binary response. Therefore, the
proposed algorithm accepts the test CXRs as rotated ones
if ∆α1,2

≥ ∆tol.
α1,2

and rejects them as non-rotated ones,
otherwise. In our test, ∆tol.

α1,2
is empirically designed based

on the observations.
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Fig. 3. An example (cf. sample 1 in Fig. 1), illustrating the way to compute
CXR rotation based on global rib-orientations, by separately taking two lung
sections.

III. VALIDATION

A. Dataset, ground-truths and evaluation protocol

Two different datasets: Indiana and Montgomery county,
are used in our test. The Indiana dataset is a large collection
of over 4000 frontal CXRs covering a wide range of lung
abnormalities. The images were acquired as a part of routine
clinical care at a university hospital and a regional hospital
affiliated with the Indiana University School of Medicine.
From this, we have selected all rotated (50 samples) and a
subset of 100 non-rotated samples. The Montgomery dataset
contains 138 frontal CXRs, where several abnormal CXRs
show manifestations of Tuberculosis and have abnormal lung
shapes. The images were acquired within the tuberculosis
control program of the Department of Health and Human
Services of Montgomery County in Maryland, USA. Both
datasets have been de-identified at source and are exempted
by the respective IRBs at the source organizations and the
National Institutes of Health. Since it is hard to provide an
accurate rotation angle for the expert, our evaluation protocol
follows binary (1|0) classification: rotated or non-rotated i.e.,
qualitative response. In our testing protocol, the response
returned from our algorithm is correct if it matches the expert’s
response.

For evaluation, considering whole dataset size B, we com-
pute accuracy of the algorithm’s response (AR) with respect
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Fig. 4. An example showing line histograms from (a) a chest radiograph in three different number of bins: (b) 6 (at 30◦ see Fig. 2), (c) 12 (at 15◦)
and (d) 180 (at 1◦), for making decisions. The sample, taken from the Indiana dataset has been decided as fully up-right chest radiograph. As an example,
rib-orientation angle difference ∆α12 = |11◦ − 11◦| = 0 when bin = 180.

to the expert’s response (ER) as,

accuracy =

∑B
b=1 ARb ∩ ERb

B
, (6)

where AR ∩ ER = 1 if AR = ER and 0, otherwise. Note
that the responses: ER and AR are just binary sequences i.e.,
ERb,ARb ∈ {0, 1}.

B. Observations and analysis

Before reporting an overall performance of our algorithm,
we first illustrate its operation through an example shown in
Fig. 4. Here,

1) the solid horizontal line (in black) separates the line
histograms from right and left lung sections; and

2) different number of bins are employed to see whether
decision changes.

We remind the reader that the number of bins depends on the
convolution angle interval (cf. Eq. (3)). In this example, for
different number of bins viz. 6, 12 and 180, ∆α1,2

is zero
regardless their separate values. This provides the fact the
decision remains unchanged (i.e., up-right chest radiograph)
even when number of bins vary. At the same time, while
observing the histogram’s precision, we keep 1◦ angular
step for convolution. Considering the whole dataset, we have
achieved a maximum accuracy of 90% (from Montgomery
county dataset) at an average rate of 1.2 seconds per CXR
using MATLAB 2013a in Linux platform (see Table I).

In what follows, we discuss the following issues, such as
1) accuracy,
2) precision in rib-orientation, and
3) convolution angle-range.

Accuracy has been degraded by non-rotated samples as well
as slightly rotated samples. Beside large variation in intensity
distribution, it is primarily because of the hard threshold (i.e.,
tolerance) in decision making. We have noted that there exists
always a small rib-orientation angle difference even from
the up-right CXR. As a consequence, smaller threshold i.e.,
∆tol.
α12

= 5◦ may not correctly separate non-rotated CXRs from
rotated ones. On the other hand, threshold increment (up to
10◦) offers satisfactory results since it can distinguish severely
rotated and non-rotated samples, which is an interesting part of
the paper, while slightly rotated samples are still not correctly

TABLE I
PERFORMANCE EVALUATION.

Indiana Montgomery

Accuracy@∆tol.
α1,2

79%@5◦ 83%@5◦

84%@10◦ 92%@10◦

CXR sample size 4020×4892 pixs.
(scaled down to 0.25)

Running time 1.2 sec/sample when bin = 180
(system: MATLAB 2013a in Linux)

verified. As an example, in Fig. 5, our algorithm responds that
all samples are rotated when ∆tol.

α12 = 5◦. But samples 1, 5 and
6 are not considered as rotated when ∆tol.

α12 = 10◦.
While mathematical formulation allows all possible angles

from 0◦ − 180◦, practical implementations do not need to
compute beyond 60◦. This helps reduce the running time to
1.2 seconds per CXR as reported in Table I.

IV. SUMMARY AND FUTHER WORK

In this paper, we have presented a method for detecting
rotation in frontal chest radiographs by developing a gen-
eralized line histogram based rib-orientation detector. The
method uses a line seed filter kernel to convolve with an
edge image that produces a set of lines in several different
possible directions.The angle from which the magnitude of
the histogram is maximum refers to the global rib-orientation
angle. Considering both (left and right) lung sections, from our
experimental tests, we have observed that the proposed method
can distinguish severely rotated CXRs from non-rotated ones,
and achieved a maximum overall accuracy of 92%.

In this prototype effort, our decision is based on a hard
threshold. It is possible to learn an optimal threshold from
various training samples reviewed by an experts. However,
the number of available rotated images are few since many
are eliminated during acquisition quality control.
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Fig. 5. A few examples illustrating whether CXRs are rotated based on global chest rib-orientation, when taking tolerance, ∆tol.
α12 = 5◦.
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