
Combining DOM Tree and Geometric Layout Analysis
for Online Medical Journal Article Segmentation

Jie Zou, Daniel Le and George R. Thoma
Lister Hill National Center for Biomedical Communications

National Library of Medicine
8600 Rockville Pike, Bethesda, MD, 20894

{jzou, daniel, gthoma}@mail.nih.gov

ABSTRACT
We describe an HTML web page segmentation algorithm, which
is applied to segment online medical journal articles (regular
HTML and PDF-Converted-HTML files). The web page content
is modeled by a zone tree structure based primarily on the
geometric layout of the web page. For a given journal article, a
zone tree is generated by combining DOM tree analysis and
recursive X-Y cut algorithm. Combining with other visual cues,
such as background color, font size, font color and so on, the page
is segmented into homogeneous regions. Evaluation is conducted
with 104 articles from 11 journals. Out of 9726 ground-truth
zones, 9376 zones are correctly segmented, for an accuracy of
96.40%. Segmenting the entire web page into zones can
significantly expedite and increase the accuracy of the subsequent
information retrieval steps.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – Indexing methods; H.3.6 [Information Storage
and Retrieval]: Library Automation – Large text archives; H.3.7
[Information Storage and Retrieval]: Digital Library; I.7.5
[Document and Text Processing]: Document Capture –
Document analysis.

General Terms
Algorithms, Performance, Design, Experimentation

Keywords: Document Object Model (DOM), Document
Layout Analysis, HTML Document Segmentation, Web
Information Retrieval

1. INTRODUCTION
MEDLINE® is the flagship database of the National Library of
Medicine, containing over 14 million citations to the biomedical
journal literature. It is important to have an efficient and reliable
automatic system to extract bibliographic data for MEDLINE
from online journal articles.

Many web information retrieval systems regard the web pages as
the smallest undividable units. However, a web page usually
contains various other contents besides the main topic, such as

navigation panels, advertisements, banners and decorations. Even
for the main topic of the web page, i.e., the article itself, it is
usually necessary to divide it into different information zones,
such as title, authors, affiliations, references and so on, for
citation building purposes.

In this paper, we describe a systematic HTML web page
segmentation algorithm, specifically designed to segment the
online journals in order to expedite the subsequent information
extraction processes in a reliable way.

We note that, similar to the traditional scanned documents, the
most important cue to understand the semantic organization of an
online journal article is the geometric layout of the web page.
Therefore, unlike most of the existing methods, which mostly
depend on HTML tags or DOM tree [2, 6, 10, 11], our approach
heavily depends on the geometric layout of the web page. By
combining DOM tree and traditional document geometric layout
analysis, an HTML document can be represented by a zone tree
model, which hierarchically organizes the regions of the web page
into a tree structure. Depending on the requirements of subsequent
information retrieval processes, other visual cues, such as
background color and font attributes (size, color and face), can
then also be combined to select a set of zone tree nodes, which
appropriately segment the web page.

Many online journal articles are in PDF format. In order to
standardize our input system and to minimize the number of
modules for reading articles, we choose to convert them into
HTML files by using an open source library, PDFTOHTML, [18]
and then analyze the PDF-converted-HTML files. The PDF-
converted-HTML files are quite different from regular HTML
files. Figure 1 shows an example. It is the title of a journal article.
(The whole page is shown in Figure 7.) Notice that it is broken
into two <DIV> nodes. The positions of these two line texts are
specified with absolute values (position:absolute). Besides this
position information, there is not much we can use for segmenting
the document. This is another reason for us to depend heavily on
geometric layout of the web pages.

Copyright 2006 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
JCDL’06, June 11–15, 2006, Chapel Hill, North Carolina, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006...$5.00. Figure 1. A code snip of a PDF-Converted-HTML file.

<DIV
style="position:absolute;top:126;left:91;height:25;width:697;"
>Identification of Hypertension-
Related Genes Through an</nobr></DIV>
<DIV
style="position:absolute;top:155;left:158;height:25;width:563;
">Integrated Genomic-
Transcriptomic Approach</nobr></DIV>

The rest of the paper is organized as follows. In Section 2, we
review the existing HTML document segmentation algorithms
and compare to ours. We also give a very brief review on the
traditional scanned document layout analysis. We then introduce
the zone tree model in Section 3. In Sections 4 and 5, the detailed
algorithms for generating a zone tree and segmenting the page are
described. Evaluation and error analysis are conducted in Section
6. Summary and conclusion constitute Section 7.

2. RELATED WORK
There are actually not many stand-alone reports on HTML
document segmentation in the literature. Most of the previous
studies treat the HTML document segmentation as a small
component of a larger module in a web information retrieval
system. Several authors argue that a complete and sound model
for web pages may not be necessary for their specific tasks. This
is not the case for online journal articles. Online journal article
web pages usually can be logically divided into different zones.
By modeling this zone structure, the article can be distinguished
from its decoration and advertisement parts, and the article itself
can be further segmented into regions of title, author, affiliation,
abstract, sections, acknowledgement, references, and so on.
Subsequently, the bibliographic data, including title, author,
affiliations, grant number and databank, comment in and
comment on, can be much more reliably and efficiently collected.

We believe that, just as several well-known models have already
been proposed for analyzing scanned documents, e.g. X-Y tree
[13], Docstrum [15], Block Adjacency Graph (BAG) [9], etc., a
complete and sound semantic model for online journal article
HTML pages is critical for efficient and reliable analysis.

A straightforward approach for segmenting web pages is to use
tag information. Usually, a small set of tags serve as the segment
indicators. In [6], four types of tags, including <P>, <TABLE>,
/ and <H1>~<H6>, are used to detect four major types
of segments: paragraph, table, list and headings, respectively. In
[11], only <TABLE> tag is used to partition a page into several
blocks. Similarly, in [2, 10], several simple tags, such as <P>,
<TABLE> and are chosen to divide the web page for
subsequent conversion and summarization.

A Function-based Object Model (FOM) is proposed in [5]. FOM
attempts to understand author’s intention by identifying object
functions. By grouping objects based on the identified functions, a
hierarchical FOM structure is then generated for the page.
However, the functions and properties of the objects and the
grouping rules are hard to define. Most importantly, FOM is
designed for website adaptation, and not for semantic
understanding of the web page.

The VIPS (VIsion-based Page Segmentation) algorithm [3, 4] is
the most similar work to ours. In VIPS, a tree structure is used to
model the page. Each node corresponds to a block in a page, and
has a value to indicate the Degree of Coherence (DoC). The DOM
tree is analyzed from root to leaves and the DOM nodes are
divided based on their spatial layout and several other visual cues,
such as color. The process continues until the DoC of the leaf tree
node meets the predefined DoC.

In VIPS, assigning the degree of coherence needs to balance
many incomparable features and is a difficult task. We
concentrate on online journal articles, where the geometric layout

is the dominant cue for semantic organization. Furthermore, in
PDF-Converted-HTML files, geometric layout is the only
information we can utilize for segmentation. Therefore, we
choose to avoid the difficult task of trading off several
incomparable features, but depend only on geometric layout to
determine the relationship between zones.

In VIPS, the DOM tree is expanded layer by layer, and a set of
complicated heuristic rules is defined to decide whether to divide
a particular DOM node. In our work, we choose to break the
DOM nodes down to the deepest level, i.e., collecting only the
naturally undividable DOM nodes. (The details are explained in
the following sections.) These undividable DOM nodes are leaf
zones. The zone tree is then created by analyzing the geometric
layout of the leaf zones. This approach makes the zone tree more
independent from the DOM tree, i.e., the zone tree structure
depends more on the leaf nodes’ geometric relationship than their
positions in the DOM tree. This choice is based on our
understanding that DOM tree follows exactly the original HTML
code and therefore is a model at a syntactic level, mostly for
displaying and manipulating HTML pages. On the other hand, the
geometric layout is a very powerful cue for grouping related
information. Therefore, although we pay close attention to the
DOM tree, we try to minimize its effect on the zone tree. Tracing
down directly to the deepest leaf zones also increases the speed of
the algorithm.

In brief, VIPS is designed to handle any kind of web pages, but
our work is only concerned with online journal article web pages.
Online journal article pages allow us to concentrate mostly on
geometric layout of the web page. Our algorithm, thus, is able to
avoid many ad hoc rules, and adopt a clean model, which makes
the algorithm more efficient and reliable.

Geometric layout analysis on scanned documents has been
extensively studied and documented in the literature. Most of the
algorithms can be categorized as following either a top-down or
bottom-up approach. Top-down algorithms recursively divide a
whole page into smaller zones. The process terminates when some
criteria are met. Typical top-down methods include the X-Y cut
[13, 7], shape-directed-covers-based algorithms [1] and several
others. Bottom-up algorithms start with the image pixels, and
cluster them into connected components, then into words, lines
and finally zones. Typical bottom-up methods include Docstrum
[15], Block Adjacency Graph (BAG) [9], and several others.
Hybrid methods combining split and merge strategies are also
proposed in [16, 8]. A review on scanned document image
analysis is given in [14].

We choose the classic recursive X-Y cut method in our
segmentation algorithm. X-Y cut, primarily based on the gaps
between adjacent blocks, is a simple and efficient algorithm [13,
7]. The major drawback is that the algorithm is sensitive to skew
and noise. However, it is not a problem for online pages. The
bounding boxes of DOM nodes are straight and clean.

3. HTML DOCUMENT MODELS: DOM
TREE AND ZONE TREE
In order to handle the structured document, such as HTML and
XML, more efficiently and consistently, the World Wide Web
Consortium (W3C) published the Document Object Model
(DOM) specification. DOM is a set of platform and language

independent application programming interfaces (APIs) that
describe how to access and manipulate information stored in a
structured HTML or XML document. [12, 17]

HTML DOM is in a tree structure, usually called an HTML DOM
tree. Figure 2 illustrates a simple HTML document and its
corresponding DOM tree. We are interested only in the <BODY>
node and its offspring. In this example, <BODY> node has three
children: element nodes and <I>, and text node #and.
Element node has a text node child #bold, and element node
<I> has a text node #italic. Following the DOM convention, we
use <> to indicate element node, and use # to indicate text node.

In order to make the following discussion easier, based on the
HTML specification from W3C, we categorize the HTML DOM
nodes as follows:

Insignificant node: A type of node that cannot be seen through
the browser. This type includes nodes containing only space, line
feed, carriage return, or characters and nodes that do not
occupy any space on the page, such as comment nodes, hidden
nodes, (e.g., <INPUT type=hidden>) and so on, with exception of

 nodes, which are line-break nodes.

Inline node: This type of node does not introduce line breaks. A
complete inline node tag list in our algorithm includes: <A>,
<ACRONYM>, <ABBR>, , <BIG>, <CITE>, <CODE>,
, <DFN>, , , <I>, , <INPUT>,
<INS>, <NOBR>, <KBD>, <Q>, <SAMP>, <SMALL>,
, , <SUP>, <SUB>, <TT>, <U>, <VAR>.

Line-break node: A node which is neither insignificant nor
inline.

DOM tree is a well defined HTML document model. However, it
is intended for displaying HTML document in a browser. Due to
the flexibility of HTML syntax, the same web page can be
implemented with completely different HTML codes. Since the
DOM tree follows the HTML code exactly, it is not uncommon
that two visually similar HTML documents have completely
different DOM tree structures. This is generally undesirable when
HTML documents are to be represented semantically.

For online journal articles, we observe that, as with scanned
documents, the geometric layout is the most important cue for
semantic organization. We, therefore, introduce another tree

structure model, zone tree, which hierarchically groups the DOM
nodes into zones based on the geometric layout of the web page.

Visually, a zone is a region on a web page that contains one or
more DOM nodes. The root zone is the entire web page and
includes only the <BODY> DOM node. The offspring DOM
nodes of <BODY> are divided and then grouped into zones at
different levels depending on their geometric relationships. The
most important advantage of the zone tree model is that it is
HTML tag independent. We believe that this zone tree model is
better for organizing the related information within a document,
and therefore better for information retrieval compared to the
DOM tree model.

Figure 3 illustrates a portion of a real online article. Several zones
are marked with bounding boxes of the inside DOM nodes and
labeled with numbers.

The root zone, corresponding to <BODY> DOM node, is broken
into Zone 1-1 and Zone 1-2. Zone 1-2 is on the right and includes
a <TABLE> DOM node. Zone 1-1, which is not marked, includes
the remaining components on the page. The gap between Zone 1-
1-1 and Zone 1-1-2-1 is the largest and causes Zone 1-1 to be
separated into Zone 1-1-1 and Zone 1-1-2 (not marked in the
picture). The gaps between adjacent zones from Zone 1-1-2-1 to
Zone 1-1-2-6 are the same. Zone 1-1-2 is therefore further divided
into these 6 zones.

Zones 1-2 and 1-1-1 correspond to <TABLE> DOM nodes and
have sub-trees under them. Zone 1-1-2-2 is also not a leaf zone,
because it actually contains line break nodes, e.g.,
’s.
Although it has more than a dozen DOM nodes inside, Zone 1-1-
2-4 is a leaf zone, because all the inside DOM nodes are inline
nodes. Although depending on the application, one may want to
analyze the inside DOM nodes to retrieve, for example, the name
of each individual author, we decide that, for zone tree model, the
zones containing only inline DOM nodes are leaf zones. Zones 1-
1-2-1, 1-1-2-3, 1-1-2-5 and 1-1-2-6 are therefore considered leaf
zones.

<html><head><title>document</title></head>
<body>bold and <i>italic</i></body></html>

 <HTML>

<HEAD>

<TITLE>

<BODY>

 #and <I>

#bold #italic #document

Figure 2. A simple HTML document and its DOM tree.

Figure 3. An example of zone tree structure.

Zone 1-1-2-4 clearly demonstrates an advantage of zone tree over
DOM tree. In HTML documents, it is not uncommon for a text
line to be broken into several DOM nodes in order to implement
some special features. In this example, a <NOBR> tag is added
for each author name to avoid breaking the name into different
lines. A <SUP> and an <A> tag are added for * characters to
make them superscripts and establish web links, respectively. To
make things worse, these DOM nodes can be at significantly
different levels of the DOM tree. In this example, all the commas
are direct children of <BODY> nodes, while the * characters are
several levels deep in the DOM tree. DOM tree structure is good
for Browser rendering and manipulating HTML documents, but
obviously cumbersome for information retrieval. In zone tree
representation, because all the texts inside Zone 1-1-2-4 are
geometrically connected, they naturally belong to one zone.

Worth mentioning also is that the HTML code of Zone 1-2, which
is a <TABLE> node, is between the HTML codes of the text lines
of “Published online …” and “(Circulation Research …” (top 2
lines of Zone 1-1-2-2). Therefore, in the DOM tree, those two text
lines are always separated by the <TABLE> node. For the zone
tree model, they can be grouped together at a certain level
because they are geometrically much closer. In our opinion,
grouping these two text lines is also semantically sound.

(a)

(b)

(c)

It is important to realize that the DOM and zone tree structures
are generally different. DOM tree models the HTML syntax,
while zone tree models the geometric layout of the HTML page.
See another example in Figure 4. The page displays two figures
with captions. It is easy to find several HTML implementations to
realize the page. The DOM trees of two HTML implementations
are also shown in the figure. They are quite different. In (b), the
two figures are grouped together under a <TR> node and the two
captions are grouped together under another <TR> node. In (c),
each figure is grouped with its caption first.

Zone tree, on the other hand, is the same for both HTML
implementations. As shown in Figure 4(a), Zone 1-1 and Zone 1-2
are grouped to form Zone 1, and Zone 2-1 and Zone 2-2 are
grouped to form Zone 2, because they are geometrically close to
each other.

To summarize, we describe the zone tree model as follows: The
entire web page is the root zone node: () ()SNDZ ,= . { }idD = is
a set of DOM nodes inside this zone. The geometric position, i.e.,
upper-left and lower-right rectangular boundary coordinates, of
zone Z is derived from these inside DOM nodes, i.e., finding the
tightest bounding box of the DOM nodes. { }iZN = is a set of
children zones of zone Z . (){ }ZZZZZsS jiji ∈= ,|, is a set of

separators separating children zones iZ and jZ . Recursively,

child zone, () ()iiii SNDZ ,= , has the same structure as Z . The
leaf zone is the zone with only inline DOM nodes inside.

For a given HTML document, the zone tree generating process is
to find a set of appropriate separators S to partition the Zone Z
into a set of children zones N at each level of the tree. The
process terminates at leaf zones. The algorithm detail is discussed
in the next section.

Algorithm BuildZoneTree()
{
1. Render the HTML document on a browser. A DOM tree is then
created by the browser.
2. Traverse the DOM tree to retrieve DOM node attributes,
position information, and then label each DOM node as an
insignificant, inline or line-break node.
3. Create a root zone of the whole page with <BODY> as the
inside DOM node. Save it into a dividable zone list.
4. Choose a zone, pZone, from the dividable zone list, and do the
following:

a. Analyze the immediate children of pZone’s inside DOM
nodes. If overlapping is detected, separate overlapping zones,
save them into the dividable zone list, and go to step 5.

b. Analyze all offspring of pZone’s inside DOM nodes, and
collect leaf zones of pZone at this level. Leaf zones include:

zones corresponding to <TABLE> DOM nodes;
zones corresponding to the deepest line-break DOM nodes;
zones that include a set of consecutive inline DOM nodes.
c. Perform recursive X-Y cut on the collocation of the leaf

zones to establish hierarchical tree structure.
d. Save zones with <TABLE> as inside DOM node into the

dividable zone list. They need to be further analyzed.
5. Repeat 4 until dividable zone list is empty.
}

<…>

<TR>

<TD>

<TR>

<TD> <TD> <TD>

#Fig4 #Fig5

<…>

<TD> <TD>

#Fig4 #Fig5

<TR>

Figure 4. An HTML page showing two figures with their
captions (a), which can be implemented with different HTML

code, and therefore have different DOM trees, (b) and (c).

4. GENERATE ZONE TREE STRUCTURE
Given an HTML document, the zone tree is generated by
combining DOM tree structure analysis and recursive X-Y cut.
Given above is the high level process flow of the zone tree
generation algorithm. Each step of the algorithm is explained in
detail in the following subsections.

4.1 Retrieve attributes and position
information of DOM nodes
We choose to render the HTML document on a WebBrowser
ActiveX control of Microsoft Internet Explorer. It provides simple
interfaces to create and access HTML DOM trees. During
rendering, the DOM tree is created by the WebBrowser control.
Performing a preorder traverse of the DOM tree, the attributes and
position information of each DOM node can be easily retrieved
through several interfaces.

The attributes extracted by the current algorithm include align,
font-face, font-size, font-color and bgColor. The list can be
expanded if necessary.

4.2 Label DOM nodes
We then label every DOM node to be either an insignificant,
inline or line-break node, based on its tag and position
information. This is accomplished with the following recursive
function. Please note that it is a postorder traversal of the DOM
tree, since we want to label a DOM node as a line-break node if at
least one of its offspring is a line-break node.

Function LabelDomTree(pParent) //pParent is a DOM node
{
IF pParent is an insignificant node, label it as insignificant
IF pParent has no children OR pParent has only one text child

Label it as either inline or line-break node based on its tag
FOR each child of pParent: pChild

LabelDomTree (pChild)
IF all children of pParent are insignificant nodes, label pParent as
insignificant
IF at least one of its children is a line-break node

label pParent as a line-break node
ELSE

label pParent as either inline node or line-break node
depending on its tag
}

4.3 Generate zone tree
After the labeling process on the DOM tree is finished, we are
ready to generate the zone tree. In the generation process, a
dividable zone list is maintained. At the beginning, the root zone,
corresponding to the whole page, is saved into the dividable zone
list. Each zone in the dividable zone list is then retrieved and
processed to create its sub-tree. The process continues until the
dividable zone list is empty. The process on each dividable zone
includes the following steps.

4.3.1 Separate overlapping DOM nodes
There can be overlapping children zones inside a zone. As shown
in Figure 3, Zone 1-2, the right-aligned <TABLE>, overlaps with
Zone 1-1-2-3, Zone 1-1-2-5 and Zone 1-1-2-6. The latter three
encompass the whole width of the page. This overlap may
seriously affect the subsequent recursive X-Y cut step. In our

algorithm, once the overlapping zones are detected, they are
immediately separated to form children zones. In the example, the
page is divided into Zone 1-1 and Zone 1-2. The resulting
children zones are saved into the dividable zone list.

Our experience shows that only <TABLE> nodes with the align
attribute set as right, i.e., <TABLE align=right>, causes serious
overlapping problems, which affect the following recursive X-Y
cut step. Therefore, in the current algorithm, we restrict ourselves
to separate only right-aligned <TABLE> zones.

4.3.2 Collect leaf zones inside a zone
If there are no overlapping children zones detected within a zone,
we collect a set of leaf zones inside this zone at this level, such
that the recursive X-Y cut can be applied.

There is no space between the consecutive inline nodes and they
should be naturally merged together to form a leaf zone.
<TABLE> DOM node is usually used by the author of HTML
pages to group related information. We, therefore, choose to keep
<TABLE> DOM node as a leaf zone at the level where it is
found. <TABLE> zones are saved into the dividable zone list to
be further divided at the next level. For line-break DOM nodes
other than <TABLE>, we will always trace down until we reach
the line break nodes, which contain only inline DOM nodes or
have no children. Each of these deepest undividable line break
DOM nodes also forms a leaf zone.

The following recursive function collects the leaf zones for a
particular zone, pZone, where pDomNodes are the DOM nodes
inside pZone.

Function CollectLeafZones (pDomNodes)
{
FOR each DOM node, pParent, of pDomNodes
{
IF pParent is a line-break node
{
Save the leaf zone formed by the previous inline DOM nodes.
IF pParent is a <TABLE> node

Save pParent as a leaf zone.
ELSE IF pParent has no children or all children are inline DOM
nodes

Save pParent as a leaf zone
ELSE

Get pParent’s children, pChildren
CollectLeafZones(pChildren)

}
ELSE

Merge pParent with its previous adjacent inline or
insignificant siblings
}}

4.3.3 Recursive X-Y cut on the merged zones
After the leaf zones are collected, the traditional recursive X-Y
cut algorithm is applied to build the sub-zone-tree for the zone.

The next dividable zone is then retrieved from the dividable zone
list and the leaf zone collection and recursive X-Y cut steps are
repeated. The algorithm stops when dividable zone list is empty.

Figure 5. An example of segmentation results. Solid and dotted bounding boxes of inside
DOM nodes alternate to indicate the result zones. The parenthesis indicates an under

segmentation error. See text on error analysis for details.

Figure 6. An example of segmentation results. Solid and dotted bounding boxes of inside
DOM nodes alternate to indicate the result zones.

 Figure 7. An example of segmentation results. Solid and dotted bounding boxes of inside

DOM nodes alternate to indicate the result zones. The arrow indicates an over segmentation
error. See text on error analysis for details.

5. SEGMENT HTML DOCUMENT
The algorithm described in Section 4 generates a zone tree
structure to represent the whole page by combining geometric
layout and DOM tree analysis.

In a real application, the HTML document is required to be
segmented into a set of blocks, not a tree structure. Therefore, a
set of rules are required to prune the zone tree and select a set of
zone nodes which appropriately segments the HTML document.

We regard this issue application dependent. Different applications
require different specific rules. The ultimate goal of our system is
to extract bibliographic data from online journal articles to help
build a citation database, MEDLINE. Currently, we apply the
following rules on each zone tree node in a preorder traversal of
the zone tree to select a set of zone nodes. The HTML page is
then segmented into blocks.

Rule 1: If the zone has only insignificant DOM nodes, stop.

Rule 2: If the zone is a leaf zone, stop and save this zone into the
result.

Rule 3: If there is no text inside the zone or the text inside the
zone is all space characters, stop and save this zone into the result.
(In our application, we extract information from text only, and
therefore, we stop when there is no text inside the zone.)

Rule 4: If the gap between two adjacent children zones is large
enough, (empirically set to 6 pixels) we continue.

Rule 5: If the visual appearance of two zones is significantly
different, we continue. The visual appearance is specified by the
attributes of HTML tags, and can be easily retrieved through the
interfaces provided by the WebBrowser control. In our
experiments, we consider the following as significant changes in
appearance: the background color (bgColor) is different, or the
font attributes (size, color or face) are different.

6. EVALUATION
The experimental set consists of 104 articles from 11 journals.
The manually-segmented zones of these 104 articles are
considered as ground truth. There are 9726 zones, and the
algorithm correctly identified 9376 zones, giving an accuracy of
96.40%.
No systematic evaluation on zone tree is conducted due to the
lack of evaluation metric and the difficulty of creating ground
truth. Careful subjective examination on more than 100 pages
shows that most of the zone trees are near perfect and none is
unacceptable.
Figures 5, 6 and 7 show three typical examples. The zones are
indicated with solid red and dotted blue bounding boxes of inside
DOM nodes. Please note that one zone may include several DOM
nodes, and therefore several bounding boxes. We alternate the
solid red and dotted blue bounding boxes to distinguish different
zones. The first two are regular HTML files. They are from
different publishers, and implemented in quite different styles.
The third one is a PDF-converted-HTML file. The algorithm
segments all three of them well.
Our error analysis shows that the major error types include:

• Some significant visual appearance changes are not
important cues for semantic segmentation.

This is the most common error. As shown in Figure 8, the
ground truth segments the region into 3 zones, indicated with
thick black bounding boxes and named as Zone 1-1, 1-2 and
1-3. The algorithm over-segments Zone 1-1 and Zone 1-3,
indicated with solid red and dotted blue bounding boxes.

The algorithm breaks Zone 1-1 into two zones due to the
significant background color (bgColor attribute) change.
(However, no error is counted for this one, since we compare
only the text information of a zone, and the zone with red
solid bounding box has the same text of the ground truth
Zone 1-1.) The algorithm breaks Zone 1-3 into three zones
due to the font color changes.

• Geometry and visual appearance information are not enough
to make the correct segmentation.

As shown in Figure 5, indicated with a parenthesis. In the
ground truth, this region is segmented into 3 zones,
corresponding to author name, affiliation and Email address.
Our algorithm keeps the region as one zone, because they
have the same font attributes, the same background color,
and the line spacing (gap) between them is small. It is
difficult to separate them unless the meaning of the text is
analyzed.

• In PDF converted HTML, sparse texts usually cause over
segmentation.

This is the most common error in a PDF-converted-HTML
document. The PDF conversion library drops the figures and
table rules. This leaves sparse texts, as shown in Figures 9.
Our current algorithm usually oversegments them due to
large gaps. Another example is indicated with a thick arrow
in Figure 7. Because of large spaces, the algorithm breaks
those key words.

Fortunately, in most of the above mentioned errors, the ground-
truth zones have corresponding zone nodes in the zone tree
representation. The error is either over segmentation or under
segmentation. Therefore, it is possible for the subsequent
information retrieval module to traverse the zone tree to find the
correct zones: going down towards leaves in the zone tree if under
segmentation happens; or going up towards the root in the zone
tree if over segmentation occurs.

7. SUMMARY AND CONCLUSIONS
We have proposed a zone tree model to represent HTML
documents of online medical journal articles. The model is
primarily based on the geometric layout of the web page. We
have also presented an algorithm to generate the zone tree and
then segment the HTML documents by combining DOM tree
analysis and recursive X-Y cut algorithm. Experimental results
show that more than 95% zones can be correctly segmented.

Figure 8. Errors due to significant visual appearance change.

The most important property of the zone tree is that it is HTML
tag independent. We consider the zone tree as a representation
model of web pages at the semantic level. Useful operations may
be defined on this tree model, such that the subsequent modules
can retrieve and correlate information more efficiently and
robustly.
The current zone tree model depends mostly on geometric layout
of the web pages. We are investigating the incorporation of
linguistic constraints, which are also HTML tag independent, to
increase the accuracy and the reliability of the HTML page
segmentation.

8. ACKNOWLEDGMENTS
This research was supported by the Intramural Research Program
of the National Institutes of Health (NIH), National Library of
Medicine (NLM), and Lister Hill National Center for Biomedical
Communications (LHNCBC). We acknowledge useful
discussions held with Deng Cai of the University of Illinois.

9. REFERENCES
[1] Baird, H.S., Jones, S.E., and Fortune, S.J., Image

Segmentation by Shape-Directed Covers, Proc. International
Conference Pattern Recognition, pp. 820-825, 1990.

[2] Buyukkokten, O., Garcia-Molina, H., and Paepche, A.,
Accordion Summary for End-Game Browsing on PDAs and
Cellular Phones, Proc. of Conference on Human Factors in
Computer Systems, 2001.

[3] Cai, D., Yu, S., Wen, J.-R., and Ma, W.-Y., Extracting
Content Structure for Web Pages Based on Visual
Representation, Proc. of 5th Asia Pacific Web Conference,
2003.

[4] Cai, D., Yu, S., Wen J.-R., and Ma, W.-Y., VIPS: a Vision-
Based Page Segmentation Algorithm, Microsoft Technical
Report (MSR-TR-2003-79), 2003.

[5] Chen, J., Zhou, B., Shi, J., Zhang, H., and Wu, Q., Function-
Based Object Model towards Website Adaptation, Proc. 10th
International World Wide Web Conference, 2001.

[6] Diao, Y., Lu, H., Chen, S., and Tian, Z., Toward Learning
Based Web Query Processing, Proc. of International
Conference on Very Large Databases, pp. 317-328, 2000.

[7] Ha, J., Haralick, R., and Phillips, I., Recursive X-Y Cut
Using Bounding Boxes of Connected Components, Proc. 3rd
International Conference Document Analysis and
Recognition, pp. 952-955, 1995.

[8] Hauser, S.E., Le D.X., and Thoma G.R., Automated zone
correction in bitmapped document images, Proc. SPIE:
Document Recognition and Retrieval VII, SPIE Vol. 3976,
San Jose, CA, pp. 248-258, 2000.

[9] Jain, A.K. and Yu B., Document Representation and Its
Application to Page Decomposition, IEEE Trans. Pattern
Recognition and Machine Intelligence, vol. 20, no. 3, pp.
294-308, 1998.

[10] Kaasinen, E., Aaltonen, M., Kolari, J., Melakoski, S., and
Laakko, T., Two Approaches to Bringing Internet Services to
WAP Devices, Proc. 9th International World Wide Web
Conference, pp. 231-246, 2000.

[11] Lin, S.-H., and Ho, J.-M., Discovering Informative Content
Blocks from Web Documents, Proc. of ACM SIGKDD,
2002.

[12] Marini, J., The Document Object Model, Processing
Structured Documents, McGraw-Hill/Osborne, 2002.

[13] Nagy, G., Seth, S., and Viswanathan, M., A Prototype
Document Image Analysis System for Technical Journals,
Computer, vol. 25, pp. 10-22, 1992.

[14] Nagy, G., Twenty Years of Document Image Analysis in
PAMI, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 1, pp.38 – 62, 2000.

[15] O’Gorman, L., The Document Spectrum for Page Layout
Analysis, IEEE Trans. Pattern Recognition and Machine
Intelligence, vol. 15, pp. 1162-1173, 1993.

[16] Pavlidis, T., and Zhou, J., Page Segmentation and
Classification, Graphical Models and Image Processing, vol.
54, pp. 484-496, 1992.

[17] http://www.w3.org/DOM/
[18] http://pdftohtml.sourceforge.net/

Figure 9. In a PDF-Converted-HTML file, the figures and the
table rules are lost, which causes sparse texts. These sparse texts

are handled inadequately by the current algorithm.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

